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Fast algorithm for constrained linear system control
via geometric techniques
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Abstract: A new method was proposed to solve the control problem for linear system with constrained states and control
constraints. Polytope and Ellipsoidal techniques had been used for constrained system control, but they were either too complex
or too conservative for many applications. Based on the mathematic analysis, the algorithm with simple computations was pro-
posed by optimizing the computation of the level sets. Simulations show that the computation of this new method is much sim-
pler than before and all the initial points can be steered to the given set properly.
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1 Introduction

In most process control applications there is a need for
controllers, which are able to take into account con-
straints both on input and state variables. For such a
control problem, Gilbert & Tan'!! defined the concept of
maximal output admissible set and employed it to con-
struct controllers. Mayne & Schroeder?’ designed non-
linear controllers to stabilize the system and steer all tra-
jectories emanating a prescribed set to a control invariant
set in minimum time. But it cannot be used for the sys-
tem with higher dimensions in state spaces because of the
computation difficulties. J. Chen & S.M. Veres'®) use
ellipsoids to compute the level sets instead of polytopes.
It can be used for the system that does not suitable to the
polytope techniques because of the computation com-
plexity. But it is conservative and the solution cannot be
ensured for some special points.
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A new algorithm is suggested in this paper. With this
algorithm, the computations for any system will be easy
enough to be conducted on line. In the worst case, the
time to the terminal set will increase. The new algorithm
for searching the control inputs is proposed solving this
problem.

2 Minimum time problem
Suppose the controllable linear system of the form
x[k +1] = Ax[k] + Bulk] + w, (1)
where x[ k], [ k], w € R". The states sequence, con-
trol inputs sequence and disturbance are subject to the
following hard constraints
x[k] € E, u[k] E Qandw € M, )
where £ € R" is convex compact set, 2 & R" is convex
closed set and M € R" is convex compact set, each set
containing the origin in its interior.
Let V denote the value function for the discrete-time,
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minimum time problem, and X;,k € N the associated
level sets are defined by!?! as
V(x) = min {k| x[k;x,0] € X!, (3)
Xi = 1o V(x) < k. (4)
Because of the disturbance, we cannot steer the states
to the origin but to a small terminal set X;. X is the set
of states of the given system that can be steered to the
terminal set in no more than k steps. These level sets
can be recursively generated as Algorithm 1 in [2],
where it is supposed that {2 and M are polytopes and E is

a polyhedral.
Algorithm 1
Data Given A,B,E,(2,Mand N.
Step 1 Compute tenminal set X,.
Step2 Setk = 0.
Step 3 Compute the set X; = X; > M.
Step 4 Compute the set
Xes1 = 147X, - AT'BQ} N E.
StepS Setk = k+1.Ifk = N, stop.

Else, go to Step 3.
Notation Given two sets X, Y be non-empty, con-
véx subsets of R", .
A+B={a+bla€c A,bE€ B}, (5)

A>B=1{x1x+B¢€ Al. (6)
Definition 1'') A set X ¢ E is said to be control

invariant for the discrete-time system (A,B,E,Q,M)
if, for every x € X, there exists a u € 2 such that Ax
+Bu +w € X.

If X, is a robust control invariant polytope, then the
non-decreasing sequence { X;| generated by Algorithm 1
is a sequence of control invariant polytopes for the dis-
crete-time system (A, B,E,Q,W). For all k¥ > 0 and
every x[ k] € X,, there exists a u € (2 such that

Ax[k] + Bulk] + w € X;_| C Xi- (7)

And there exists a control law which robustly steers
the discrete time system from any initial state in Xj to the
terminal sets in k steps, then maintains the state in the
terminal sets.

Although the algorithm as above is simple to express,
there are considerable computational difficulties. A ma-
jor concem is the increasing complexity of the sets X, as
n and k increase. Mayne has given a table to show the
total number of vertices, simplices, and inequalities

arising in various example problems in [2]. We can see
that for a system with state dimension 5, the vertices
may be 566, simplices 8122 and inequalities 3329. It is
hoped to simplify the computation.
3 Simplified algorithm

For later use, the following elementary results are re-
quired. Let A, B & R"*" be arbitrary, and X, Y and Z
be non-empty, convex subsets of R”. Then we can get

(A + B)X c AX + BX, (8)
A(X +Y) = AX + AY, (9)
(X>Y)+ Zc(X+2Z)>Y, (10)

(XNY)>Z=(X>Z)N(Y> Z).(11)
According to Algorithm 1 we can see that if M = {0}
and £ = R", then we get

X, = {0},

& (12)
X, =- >, A"'BO.

i=1

We can take

Y, =- (2,AB)2 C X, (13)

i=1
instead of X, as the level set. The computation is much
simpler.

The new algorithm will be discussed in three computa-
tion steps: the terminal set, the level sets and the control
inputs.

3.1 Terminal set

It is hoped that the terminal set is a small set in accor-
dance with the disturbance. And from Algorithm 1, we
can see that, the terminal set X; must be a control in-
variant polytope and the existence of X = X, > M must
be ensured.

Theorem 1 For the system above,

Xo=-A"'BQNE (14)
is a robust control invariant set for (A, B, E,Q,M),if
M c - A7'BQ holds.

Proof Forall x[k] € X,, we take

ulk] = - B 'Ax[ k],
so that
ulkl] €-B'Ax(-A"'BQNE)cQ,
and AX[k] + Bulk] + w = w € M  X,.
For the system is controllable, we can get M - - B(2,
and A™' = I. So M — - A~' B2 holds.

We can say that the terminal set as above is a small

set in accordance with the disturbance.
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The computation of the terminal set as shown above is
much more easier than those in [2].
3.2 Level sets

First, we consider the system with E = R”, that
means there are no states constraints.

Theorem 2 Suppose E = R*, for all &,

k
Y, = (DADX, C X (15)
=0
Proof
As Xo=-A'BQNE-=-A"'BQ,
we get

Xo=Xo>M=-A"'"BQ > M,
X =(A'X[-AT'BO) > M 5 A X{ +
A7'BQ =M)= A7'X] + X;.
Take Vi = A7VY, 4+ X3, Yo = Xp,
then we can get
k k

Y, = (EA"')X(’, c ZIA“X(’, C Xi.
The fact that { ¥, | is a subset of { X | implies that { Y; | can
be used in place of { X |. As the shape of the polytopes is
not changed, it is very easy to be computed.

Then we will use the results above for the system where
the states constraints exist. As the system is controllable,
must be a robust control invariant set. That means for every
point x € E, there exists a u € 2, such that

x = Ax + Gu+w€ E,

so that
x =A% —A'Bu - A”'w € (A'E - AT'BQ).
Hence Ec (A'E - A”'BQ).

Theorem3 If X = ((_EA-i)(_A-‘m) NE)>

M, then X;,1 = (2, A(- A7'BQ) N E) > M.

i=0
Proof
Xo = (A'X; —A'BOYNE = M =

1(A-l(fjA-i)(_A-'m NE>M)-A"'B2>M!} N

i=0
k+l1

(E> M) 5 (24 )(-A'B2 > M) N

((A'E-A'BQ) > M) N (E >~ M) =
(X A-)(- A BD) N E) = M.
As in this case,

XO = — A“B.Q ﬂ E,

X, =(-A""BANE)> M,
then take
Yo = Xy, Yo = Xo,
k+1

Yio = @’“’“ AT'BQ) N E,

k+1
Yia = ((Z)A"')(— A'BO) N E) > M.
As Y, c X, we take { Y} | instead of { X} | as the level
sets. Then the computation will be much more easier
than before. It can be conducted on line. But as the
spaces of the level sets are more greatly lessened than
before, it is not the time-optimal solution for the sys-
tem. For some initial point, the time to terminal set is
increased. To solve this problem a new method for
searching the time-optimal solution is proposed in 3.3.
3.3 Control inputs
The serial number of the smallest level set that the ini-
tial states lies is the same as the number of the smallest
level set with the initial states, which is the same as the
number of the control steps. That means if the initial
state les in k-level, then it can be steered to the termi-
nal set in k steps. If the initial state lies in k-level, it
can be steered to and only to ( k — 1)-level. So the
states can be stecred to the terminal set in minimum time
with polytope techniques as there is no 'space loosing .
The state spaces, control input spaces and level sets
are all lessened in the algorithm above, k-level set con-
tains the points, not all of which can be steered to the
terminal set in % steps. If the initial state lies in k-level,
it may be steered not only to (k — 1)-level. With suit-
able control input, the state may be steer to (k — 1)-lev-
el, (k-2)-level and so on. If the state is steered to the
smallest level set and it can be steered to with suitable
control input, the control steps will be the least. The
aim of the optimizing algorithm for the control input is
to search the smallest level set which the state can be
steered to with constraints satisfied control input.
The whole algorithm is as follows.
Algorithm 2
Data Given A,B,E,{2,M and N.
Step 1 Compute termminal set as
Xo=-A"T"BONE,
Xy = Xo> M.
Step2 Letk = 0.
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Step 3 Compute level sets as

k+1

= (24 (- 4B N E,

o
by
x

|

k+1
Yo = ((_Z)A“)(— A-'BQ) N E) > M.

Step4 Letk = k + 1.

Step 5 If all vertices of E are inside Y, go to Step
6;else go to Step 3.

Step6 Letk = 0,x[k] = x.

Step 7 Compute which ellipsoid Y, the current state
x[ k] lies inside.

Step8 IfY, = X¢,ulk] =- B 'Ax[k], stop.
Else, go to Step 9.

Step 9 Compute set O = B2 + Ax[k].

Step 10 Compute set G = O (1 E.

Step 11 Letj = 2.

Step12 If G Gi_j = $, go to Step 14.

Step 13 Letj = j + 1, go to Step 12.

Step 14 Compute set S = G\ Yg' _j+1,R =
B~1(S - Ax[k]).

Step 15 Compute the center value of R as the single-
value control u[ k].

Step 16 Get xq, go to Step 6.

To determine whether the intersection of two polytope
exits or not, we use the method of collision detection in

robot path planning as the method in S. J. Ren et al'*).

4 Examples

For such a system
0.9 0.09

k+1] = ] k
k1l =] o1y oplolkle
0.02 -0.20
k k

0.3¢ 0.0 | uLEl+ wlk]

with following constraints:

x€E=[-1,1]x[-1,1] € R,

v€ QR =[-1,1]x[-1,1] € R,

wEM=[-0.1,0.1] x[-0.1,0.1] € R®.
Initial state is [ - 0.99, - 0.98].

Figure 1 shows the control results of polytope tech-
niques, Fig.2 ellipsoidal techniques and Fig.3 the new
algorithm.

We can see that the new algorithm is much simpler.
Although the level sets are more than those in polytope
techniques and ellipsoidal techniques, the time for the

state to be steered to the terminal set does not increase so

much as in ellipsoidal techniques.
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Fig. 1 Polytope techniques
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Fig. 2 Ellipsoidal techniques
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Fig. 3 New techniques

5 Conclusion

A simple method is proposed to solve the control
problem for linear system with state and control con-
straints. By choosing the suitable terminal set and sim-
plifying the computation for the level sets, the computa-
tion is much simpler. The new algorithm for optimizing
the control inputs is proposed to solve the problem of
time increase. The terminal set and level sets in the new
algorithm can be computed on-line as it is easy to com-
pute. So the parameters of the system can be adjusted

on-line. The algorithm can be more robust and more
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useful than before. constrained linear systems [J]. Automatica, 1997,33(12):2103 -
As the level sets and terminal set are computed ac- 2118.
cording to the control constraints, there are some Limit (3] CHENJ, VERES S M. Constrained nonlinear control design via el-

i o . , lipsoidal techniques [A]. Proc of the 14th IFAC World Comgress
for its application as it can not solve the control problem [C).[s.1.]:[s.n.],1999:497 - 502.

as single-input multi-output system. [4] RENSJ, HONG B R, MENG Q X. A faster algorithm to determine
: whether the intersection of two polytopes is empty [1]. J of Soft-
ware ,2000,11(4) : 563 - 568.
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