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Abstract: The uncertain model of the robotic system was decomposed into repetitive and non-repetitive parts, and the
normal model of the system was taken into account. By using Lyapunov method, an adaptive robust iterative learning control
scheme was presented for the robotic system with both structured and unstructured uncertainties, and the overall stability of the
system in the iteration domain was established. In the scheme the bound parameter estimates and the iterative leaming control in-
put were adjusted in the iteration domain. The validity of the scheme is illustrated through a simulation example.
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1 Introduction

The iterative leaming control (ILC) methods deal
with systems that perform the same tasks repetitively
over a finite time interval. The basic idea of the ILC is
that the information obtained from the previous trial is
used to improve the control input for the next trial. The
control input in each trial is adjusted by using the track-
ing error signals obtained from previous trial. As the it-
eration continues the control system eventually leamns the
task and follows the desired trajectory with little or no
error. Depending on whether the system parameters are
estimated or not, the ILC schemes may be classified into
two categories: nonadaptive and adaptive. In the non-
adaptive case, the current input profile is computed sim-
ply by adding the scaled system error and/or its time
derivative to the previous input profile!’~3!, In the
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adaptive case, however, uncertain parameters are esti-
mated and used to identify the system dynamics, which
is in turn used to generate the control input profile!*~8!.
There have been substantial research effort in the
adaptive ILC area. Among the reported resuits, Park et
all*! proposed an adaptive iterative leamning controller
(AILC) for uncertain robotic systems by using the fact
that they are linearly parameterizable. Seo et al'®! ex-
tended the result to a class of general nonlinear systems
and proposed an intelligent learning control scheme. In
the above control schemes!*s, the parameter estimate
and the leamning control input were updated in the itera-
tion domain. On the other hand, French & Roger'®! and
J. Y. Chol &J. S. Lee!” gave another AILC in which
the parameter estimate is updated in the time domain.
However, in these controllers’® ~®!, the normal mod-
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els are not taken into account, and the uncertain parame-
ters are not treated differently. Xu & Viswanathan'®’ de-
composed a class of MIMO nonlinear dynamical systems
into periodic and nonperiodic parts, without taking the
normal model into account.

In this paper, by using Lyapunov method an adaptive
robust iterative learning control scheme is presented for
the robotic system with both structured and unstructured
uncertainties. In this control scheme, the whole control
variable consists of three parts, i.e., the iterative leamn-
ing control input, the normal model based computed
torque control input, and the robust control input. The
bound parameter estimates for the robust input and the
leaming control input were updated in the iteration do-
main.

In the subsequent discussion, the following definition
is used. For any matrix A, the induced matrix nomm

AN is defined as | A1l = [Apu(ATA4)]2, where
A max is the largest eigenvalue.
2 Problem formulation

Consider an uncertain robot system with n rigid bod-
ies:

[Mo(q)+AM(q)1G+[Co(q,q)+AC(q,¢)1g+

[Go(q) + AG(g)] + d + f = u, (1)
where My(¢) € R*™*",Co(g,¢) € R"*"and Gy(q) €
R" are the known normal inertia matrix, centripetal plus
Coriollis force matrix and gravitational vector, and
AM(q),AC(q,¢),AG(q) are the corresponding un-
certain parts, respectively; u is the control input, d and
f are the unknown disturbances which are assumed to be
bounded, and ¢,q ,§ are the generalized joint position,
velocity, and acceleration, respectively. Furthenmore,
the disturbance d is assumed to be repetitive and f non-
repetitive. For notational convenience, in Eq. (1) and
other expressions all over the paper, the time argument ¢
is omitted.

Assumption A1 The uncertain models AM(q),
AC(q,¢),AG(q) are Lipschitz continuous. In other
words, the following inequalities hold:

| AM(q)-AM(g) | < lyllg-¢*ll =lyllell,

IAC(q,¢) - AC(¢%,¢*) |

<lclhg- N +lg-glll=1clllell+1el],
1AG(q) —AG() | < lcllg-¢*ll =1lllell,

where ¢ = ¢ — ¢% and Iy, I, I are the unknown finite
Lipschitz constants. g%, 4%, §® represent the desired joint
position, velocity, and acceleration, respectively.
Assumption A2 Like most other iterative learning
control schemes, the initial error is assumed to satisfy
the equalities: ¢(0) = Oand ¢(0) = 0.
3 Adaptive robust iterative learning con-
trol
For system (1), the presented adaptive robust itera-
tive learning control scheme is as follows:
w = uf + u +ul. (2)
Where u; denotes the control input at the j-th iteration,
uj is the computed torque control input, u; the robust
control input, and u,’- the leaming control input. The
computed torque control input ] is generated by
uj = Mo(g;)[q* — (k + al)¢; — ake;] +
Co(q,-,q,-)q,- + Go(qj), (3)
where ¢; = ¢; — q°, g;»4;» 4; denote the actual joint posi-
tion, velocity, and acceleration at the j-th iteration, re-
spectively; k is a positive feedback matrix and o is a
positive parameter.
Define 5; = ¢; + ke;. Substituting Eqs.(2) and (3)
into Eq. (1) yields
My(gj)o; + as;] =
u + uj—1AM(q;)§;+AC(q;,4;)4;+AG(q;) +d +f}.
4
Let AM,AC,AG denote AM(gq;),AC(q;,q;),
AG(g), and AM,;,ACs,AGy denote AM(q?),
AC(¢%,4%),AG(¢%,¢%) respectively. We can get
AM(q;)§i+AC(q;,¢;)¢i+AG(g;) +d+f=
AMs; + B + h. (5)
Where
B = AMy4§* + ACy¢® + AGy + d,
h = (AM - AMy)§® - AMké + (AC -
ACY ¢ + ACe + (AG - AGY) + f.
Substituting Eq. (5) into Eq. (4) yields
(Mg + AM)6; + aMoo; = uf + uf — B — h. (6)
Obviously, the uncertain part .% is repetitive and h is
non-repetitive. From Assumption Al, the following in-
equality holds:
el <
Bl @l +2c N g? ll +2c]- el k1l AM Il +
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lellg®ll + Tacll- el « I fIl = re.

(7)
Where
| F=[ L bl
L=tlg@l +icl¢l + 1,
1 h=kllamMll +icll¢?ll + lacl, (8
L= N7,
CE=(llel,lel,1]m

Then, the main aim is to find out the iterative leaming
algorithm and to determine the robust control input and
its bound parameter estimates. This would be discussed
in the next section.

4 Main results

The mains results of this paper are described as fol-
lowing theorem and corollaries.

If the system satisfied Assumptions Al and A2 de-
scribed in Section 1, then the leaming algorithm, adap-
tive update law and the system’s convergence are given
as Theorem 1.

Theorem 1 If the iterative leamning algorithm and
robust control input are given as

u]l- = u,l-_l - Boj, uh =0, (9)

u = —(3B7 P+ Cord)a;-[Esen (3)), (10)
where {3 is a positive constant, & and [" are the j-th esti-
mates of parameters £ (¢* = || AC || ) and I, respec-
tively, and if the adaptive updating laws of éj and fj are
given as

& =&, ,+Blqll2 & =0, (11)

Iy = fi+Blgll 4% £y = [0,0,0], (12)
where the parameter 7 = E = [l el , |l el ,1]7,
then system (1) is asymptotically stabilized under the
control scheme (2).

Proof Choose a Lyapunov function

T
RINEST o
I&-¢ 12+ 1 B5-T 1 Dde,  (13)

where P is a symmetry positive matrix. Then
ViV =

T
fo(u]l- - u)(ul + ufy - 2R)de +

T
L(o}‘Paj - a}‘_lPaj_l)dt +
T . 5 " 5
Jo(ej - 6,-_1)T($,- + &1 - 267 )de +

[ty - 1oy + By - 20T

From (9), (11) and (12) we have
Vi= Vi =

LT(— Bo)"(Bo; + 2(uf — B))dt +
.[Z(U}Pai - U}‘-IPUj_1)dt +
for(ﬁll g 1= Bl o 12 +2(& - £*))ds +

T
J BNl gD Bl o1l 47+ 2(F; - 1))Tar.

(14)
The equation (6) can be converted into
u - B =
(Mo + AM)6; + aMys; — (uj - h) =
Ms; + aMoo; - (uf — h). (15)

Substituting (15) into (14), the following inequality is
derived easily .

V- Vi <

J‘:‘( - 2,&1;!‘Mo"j - ZaBJ;!‘Moaj)dt +
JT(UTPa-dt frzpaT( ul — h)dt +

o 21T oAl + | Loy Y;

T . . T

[ 2816, 125-£" )ar+[ 261l o; | (Fy-I) pae-

T T
T T
Jl) ‘Bzdjdjdt - Jl) o1 de_ldt.

Since
T . T .
fo 2B0TMo;dt = oMo 1] - fo BoMa;de,

we have
V.- V.| <

i -1 =

T .
fo (ﬂr}‘Ma] - 2(1&7}‘M00j)dt -
T T —
ﬁa’]'-‘Mo]- I+ L d}‘Po]-dt + LZ,@G}‘( uj — h)dt +
T 02 . T
281,125 -¢")ar+[ 26 1l ;I (-1 pas-

T T
T T
foﬂzdidjdt __[oaj-lpaf-ldt =

T
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| aTCP + 8 - 20) - 20t +

J:Zﬁo}'( Co + AC)o;dt +
B(aT(0)M(0)5;(0) — o] (T)M(T)a;(T)) +

T _ T .

L)Zﬁof( uj - h)dt + L2B I o; 128 ~ €7 )de +
T T

[ 28161 (8 = D ge - [ ofode -

T
T
IO Uj_]de._]dt s

where M(0) = M(q(0)),M(T) = M(q(T)).

It is well known that M — 2C is a skew-symmetric
matrix and the inertia M is positive. From Assumption
A2, we get5;(0) = 0. Thus, we have

Vi- Vi<

T T
Io o"Po;dt + JOZﬁoJT( Co + AC)ojdt +

T _ T ” s X
|27 ~ By + [ 2811 0,178 - &7 )t 4

T . T T
fozp (Al (Pj_F)th—foﬁza}ajd:_foa,T_.Paj_.dt.
From (10) we get
T —
| 2857 - By =

T .
Jo - Zﬁo}'(%ﬁ"P + Co + &)aydt —

T T -
JOZﬁa}T’jEsgn (8;)dt —JOZﬁo;rhdt.
Substituting this equation into the above inequality yields

Vi- Vi<

j:Zﬂa}‘(AC)ajdt - J:Zﬂéjd;!‘djdl +
T . T

[72816,12(6 - ¢ di - [ 20571 Esgn (5)d -
T T

L)Zﬁo}'ﬁdt + IOZB o | (£ - T)pde -

T T
J‘O ﬁza}bjdt - jo d;r_lpdj_ldt.

Since all the desired and estimative bound parameters are
positive, £* = [[AC|, and oTsgn (g;) = | g;|

and ojo; = |l o; || * for g; is a column vector, such that

T T
[Toaracroa <[ 11" ar,
0 0

T, T,
[T8oma = [ 810,121,

T " T .
J‘OU’J!‘FI.ESgn (8J)dt = _[0 ” oj ” FjEdt.

So the following inequality can be obtained easily

Vi-Via s
T . T _
- [ 281 ;I Ty - | 2ppThar +
T A
J 72810, (£, - Pyga -

T T
JO ﬁzd}‘djdt - JO U;r_lpd'j_ldt.

For the parameter 7 = E = [l el , [l el ,1]7, be-
sides expression (7), the following inequality holds

Vi-Viy s—J:ﬁzafq-dt—j:af_,Poy_,dt < 0.
When and only when o; | = 0,0; = Ofor all ¢ € [0,
T], the equality V; — ¥, ; = Oholds. The proof of the
theorem is completed.

Since Assumption 2 is too strict and difficult to
achieve in practice. Following corollaries can remove
this constrain.

Corollary 1 If Assumption 2 is not found, and the
condition

Jl_l_rg 0;(0) =0
is satisfied, then the system (1) is also asymptotically
stabilized under the control scheme (2), in which the
robust control and iterative leamning input and the adap-
tive update law, as in the theorem, are given as (9) ~
(12).
Proof For lim 0;(0) = 0, we have

oo
lim A57(0) M(0)5,(0) = 0.
So Corollary 1 can be provided easily, and the proof
of the corollary is the same as the proof of the theorem.
In practice, the condition given above is usually unre-
alizable. And when the nommn of the initial error
| ;(0) | <&,j=1,2,-, where d is a small enough
positive constant. Then the convergence of the system
can be achieved as in Corollary 2.
Corollary 2 If the following condition about initial
error
o0 I <&,j =12,
is satisfied, then the system is stable and following in-
equality is found.
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tim [ < 2, (o)
where A is the maximum eigenvalue of matrix M(0),
and 8 is the leaming parameter .
Proof Like the proof of the theorem given above,
when
o)l <6,j=1,2,-,

we can get
Vi-Vias

T T
_L) BoTo;dt -JO ;-1 Po;_1dt + BT (0) M(0)0;(0) <

T
_ jo Balsdr + BAS.
If
T
Jo ojo; > B'A8%,
we have
T .
Vi- Vi< - Jo,eza}ajdz + A8 < 0.

So the inequality (16) is satisfied, and Corollary 2 is
provided.
5 Simulation

To illustrate the effectiveness of the presented adaptive
robust iterative leaming control scheme, a two-link pla-
nar robot is designed to follow a continuous path. The
robot system is shown as Fig.1. The vectors ¢, g, de-
note the angles of the two links. We assume that the
links are homogeneous rigid bodies with the mass m,,
m, and the length /,, [,, respectively. The model of this
system with disturbance is given in Appendix.

2
s~
£
= 0
8
25 1 2 3 4 5

t/s
(al) joint 1

palstance/rad- s 1
(=)

palstance/rad- s~
(=)

t/s
(b1) joint 1

X

»
% % *2
Ul
9
Xo
Fig. 1 Two-link robot configuration

In this simulation example, we select
;, =1.0m, I, = 0.5m,
45kg, 0s <t <2.5s,
5.5kg, 2.5s g t < 5 s,
The desired trajectories are required as
¢* = [ 41,4317 = [sin (3¢),cos (31)]7, ¢ € [0,5],
and the repetitive and non-repetitive disturbances are as-
sumed as
d=[di,d;]"=[2-1/10, 2-¢/10]", ¢ € [0,5],
f=L1fi,a]" = [2rand (1),2rand (1)]7,
where rand (1) € (-1,1) is a random function. In the
simulation, the learning gain and other parameters were

m = 10.0 kg, m2={

chosen as
B=05,a=2,

20 0 [3 0
o 30’ 1o sl

The simulation results for the first and fifth iteration
are shown in Fig.2 and Fig.3, respectively. It is proved
that the control scheme presented in this paper is very ef-
fective. In addition, since the normal model of the un-
certain system has been taken into account, the system
can achieve good performance at a few times of itera-
tions.

-

angle/rad
[=-]

=35 1 2 3 4 5
t/s
(a2) joint 2

-10 e p—

t/s
(b2) joint 2

Fig. 2 Responses at the first iteration (solid:desired dashed: actual)
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angle/rad
<

angle/rad
<

t/s
(al) joint1

palstance/rad. s 1
<
palstance/rad- s~1
<

t/s
(b1) joint 1}

t/s
(a2) joint 2

t/s
(b2) joint 2

Fig. 3 Responses at the fifth iteration(solid: desired ~dashed: actual)

6 Conclusion

By using the Lyapunov method, an adaptive robust it-
erative leaming control scheme is presented for the
robotic system with both structured and unstructured un-
certainties. Its distinct feature against other iterative
leamning schemes is that the uncertain model of the
robotic system is decomposed into repetitive and non —
repetitive parts, the normal model is took into account,
and the bound parameter estimates and the iterative
leaming control input were adjusted in the iteration do-
main. The simulation results show the control scheme is
very effective.

References:

[1] ARIMOTO S, KAWAMURA S, MIYASKI F. Bettering operation of
robots by leaming [J]. J of Robotic Systems, 1984,1(2):123 —
140.

[2] JANG T, CHOI C H, AHN H S. Iterative leaming control in feed-
back systems [J]. Awtomatica, 1995,31(2):243 - 248,

[3] LEEJH, LEEKS, KIM W C. Model-based iterative learing con-
trol with a quadratic criterion for time-varying linear systems [J].
Automatica , 2000,36(4):641 - 657.

[4] PARKKH, KUCTY, LEE J S. Adaptive leaming control of un-

" certain robotic systems [J1. Int J Control, 1996,65(5):725 - 744,

[5] SEO W G, PARK K H, LEE J S. Intelligent learning control for a
class of nonlinear dynamics system [J] . IEE Proc — Control Theo-
ry and Applications, 1999,146(2):165 - 170.

[6] FRENCH M, ROGERS E. Nonlinear iterative leaming by an adap-
tive Lyapunov technique [A]. Proc of the 37th IEEE Conference on
Decision and Control [ C]. Tampa, FL: Piscataway, 1998: 175 —
180.

[7] CHOLJ Y, LEEJ S. Adaptive iterative leaming control of uncertain
robotic systems [J]. IEE Proc— Control Theory and Applications,
2000, 147(2):217 - 223.

[8] XU Jianxin, VISWNATHAN B. Adaptive robust iterative leaming
control with dead zone scheme [J]. Awomatica, 2000,36(1):91 —
9.

Appendix
The dynamic model of the two-links robot system shown as

Fig.1 can be written as
M(q)g + D(q,q)[Z'] +G(g)+d+f=u.
2

Where d and f are repetitive and non-repetitive disturbances respec-

tively;
mp ]
’
my

m
M(q) _ [ 1
my
1 2 L 2
my =3 mli + myli + 3 malf + mylilycos (g2),
1 1
my = mp = “3—"”21% + ‘Emzlllzcos (q2),

2
my = 3 m212,

dy dp
D( ’ )= ’
74 [dq. dzz]
dy = - mylibysin (q2) 42,

1 .
dy = dyy = - —Em,zlllzsm (g2)42»
dzz = 01

CORIMIE

1 1
g1 =5 miglcos (q1) + - maglycos (g1 + g2) +
myglicos (q(),

1
g2 =5 magheos (g1 + q2).
In above equaltiy, g is the acceleration of gravity.
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