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Identification and chaotifying control
of a class of system without mathematical model
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Abstract: Fuzzy neural network (FNN) was proposed to identify the dynamics of a class of non-chaotic system without
mathematical model. The result of identification was then used in inverse system method, by which chaotifying control of the
system could be implemented. This method was independent of the exact mathematic model of the system to be controlled. It
was testified that error of control caused by the identification error was less than the identification error by properly designed con-
trol parameters. Simulation results for continuous and discrete systems show the effectiveness of the method.
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1 Introduction

In the last four decades, chaotic dynamics have been
intensively studied, and the traditional trend of analyzing
and understanding chaos has evolved to controlling and
utilizing chaos!'). On the one hand, chaos is weakened
or completely suppressed[z"‘” when it is harmful; on the
other hand, non-chaotic system is chaotified!® -8 ,
which means enhancing existing chaos or creating chaos
purposefully when it is useful, because of its great po-
tential in non-traditional applications in the field of me-
chanical, electronics, optical and especially the telecom-
munication system .

In this paper, a class of non-chaotic system without
mathematical model is identified using FNN and the re-
sult of identification is used in inverse system control
method, by which the non-chaotic system is forced to
track a chaotic reference input, namely chaotification.
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2 Identification of non-chaotic system us-
ing FNN
Consider a class of continuous non-chaotic system 2

as follows:
‘ (%) = %3,
X9 = X3,
|y (1)
% = f(21,%5,°,%,) + 1,
\y = X).

Where y is the output of the system, u is the input of
the system. x € R" is the state variable, f(+) is a linear
or nonlinear function of x, which dominates the dynamic
activity of the system. If f(-) can be identified the dy-
namics is determined.

From (1), we have

y(n) —u(t) = f(y,y('),“‘,y("")). (2)
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The input and output of the system can be used to i-
dentify the function f(-). FNN is intuitively considered
because of its function approximation ability and conver-
gence speed. The training process can be shown by
Fig.1. The details about the FNN and its training can be
found in [4].

|white noise amplifier hll—| system 3 FNN

learning
algrithm

Fig. 1 Training process scheme
The discrete counterpart of (1) can be described as
follows ;

r.’a\?[(k + 1) = xz(k),

x(k + 1) = x3(k),
¢

x,,(k + l) = ¢(x[(k),x2(k),"',x,,(k)) + u,(k),
Ly (k) = x(k),

(3)
The function $( <) can also be identified using the
same process described above.
3 Chaotifying control via inverse system
method
The inverse system of (1) can be described as

X1 = X2
Xy = %3,
(4)
£y =y,
‘U= y(") - flxi 22,0, %,).
The originally desired system[g] is
{¢ +ay" P e ra ¥V ey =1, (s)
é = y(").

It is difficult to obtain desired aim by using Eq. (5)
as the desired system. So the modified desired system is
shown as follows

$+ay" D+ ka D +ay =
Y toar Y b ka7 Y 4 oar, (6)
é = y(").

And assuming: 1) r(¢) and its derivatives up to

r{™ () are bounded for all ¢ = 0, and the n-th deriva-

tive r(™ (t) is at least a piecewise continuous function of

t52) r(2),rDe, (1) are available online.
From Eqs. (4) and (6), we have
u=

r(")+a1r("‘l)+"'+a,,_1r(l)+a,,r—a1y("‘l)—"'—

an—ly(l) = Qgy _f(xl9x29'"9xn) (7)
Definition 1 e = r — y is the tracking error.

According to Definition 1 we have

(™ (n-D) | ...

+ age + ap_1e” + a.e = 0. (8)

According to the pole placement rule, one can choose
proper a;(i = 1,°*, n) to make the system (8) asymp-
totically stable, so that the output y can track the refer-
ence input r.

For discrete system (3), the inverse system controller
can be derived from the similar procedure. It is given as
follows

u(k)= r(k+n)+dir(k+n-1)++d,r(k)-

diy(k +n—1) - —dy(k) - $(+).
(9)

From Egs. (7) and (9), if the function f(-) or $(-)
can be identified from the input and output of the sys-
tem, the control is free of the system model.

4 Theorem about tracking error

Definition 2 The identification model of f(+) is

¥ - = ). (10)
Definition 3 The identification error is
A= f(+) - f(+). (11)

Definition 4 7, is the tracking error caused by A.

Theorem 1 For the given system (1), the inverse
system controller Eq. (7) is used and the function f(-)
in Eq. (7) is replaced by f(-). If only the proper con-
troller parameters a;(i = 1,2,'*-,n) are selected, the
inequality 7, < A can be ensured.

Proof Replacing f(x,,) in Eq. (7) with f(x,), we

have

(n) (n-1) + et (n

u=r"+ar +a, 1 + a,;r -~
ary" = = ey - ey - FC.
(12)
Substituting Eq. (11)into Eq. (12), we have
w=r" 4 alr("") + vt + a,,_lr(l) + a,r -
ay" - —any V- ey - A-f().
(13)

According to Definition 1, we have

i
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(n) (n-1) +

e + ae m

+ ae = A.
(14)

Since the system (8) is asymptotically stable, the
system (14) has finite input and output.

A can be regarded as a series of pulse inputs with dif-
ferent amplitudes. So at the time ¢;, the A can be repre-
sented by A(1;)8(t - t;), where A(¢;) is the identifi-
cation model error at time ;. Then the zero-state re-

c+oa,_je

sponse of system (14) at ¢; is

e(t - ¢t;) = A(t,-)f‘_,AieP.-“-ﬁ’. (15)

Where 4; = 1/ 1T (s - p)|,_, ,pii = 1,-+,n) are.
k=1 i

ksei

the poles of Eq. (14), which can be determined by the
controller parameters a;(i = 1,2,-:-, n). If the distance
between two poles among all poles is big enough and the
poles are negative enough, A; is small enough and e (¢ —
t;) attenuates quickly enough to warrant that the error
caused by FNN model error is less than the FNN model
error. In other words, 7; < A.

Therefore the clockwork control precision can be en-
sured if the precision of the identification can be en-
sured.

Remark 1 The requirement of the inequality 7, <
A is coincided with the requirement that the instanta-
neous state of e attenuates very quickly. So we can de-
sign a;(i = 1,2,---, n) to make these poles be negative
and far away from each other.

Remark 2 The error caused by FNN model is dif-
ferent from the totat conu"ol error, the total control error
or the tracking error is larger than that caused by the
FNN model error.

Remark 3 There are some limitations in the param-
eter design. If the distance between any poles is too big,
it may cause the control variable u in Eq. (7) to be too
large to realize for a real controller. Therefore the pa-
rameters should be selected finely to balance the conflict
described above .

The counterpart theorem of Theorem 1 for discrete
system can be developed and testified using the method
similar to what is found in the context of Literature [4].

For both the continuous and the discrete systems, if
the reference input r(t) or r(k) is chaotic signal, the
inverse system method can be used to control non-chaot-

ic system to have chaotic output, namely chaotification.
5 Simulation examples
Example 1 The continuous case

X = %p,
2= T (16)
X3 =— %1 —2%2 — %3 + U,
y = x;.
When u = 0, the system (16) is non-chaotic.
The reference system
) = z,
Zy = Zz3,
23 = = bizs— 23— 2 (t = 7) = by(z (2 = 7)),
v = zq.
(17)

When b, = 0.5,b, = — 5,7 = 1, the output v is

chaotic.

Choose a; =21, a, = 129, a3 = 315in Eq. (7). The
forced output of the system (16) and the tracking error
are shown in Fig.2(a) and Fig.2(b) respectively.

From Fig.2, it can be seen that the output of non —
chaotic system (16) tracks the chaotic input and become
chaotic .
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Fig. 2 Output of system (16) and tracking error

Example 2 For discrete case
x(k + 1) = x,(k),
x(k +1) = - %, (k) - x,(k) + u(k), (18)
y(k) = x,(k).

The chaotic reference system is
y1(k +1) == ksin (y,(k)) + y,(k),
yolk +1) = y3(k) + y1(k + 1), (19)
w(k) = v, (k).

L ey
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When k = 1.16, the discrete system (19) is chaotic.
Setd, = 0.64and d, = 1.5in Eq. (9). The forced out-
put of the system (18) and the control error are shown in
Fig.3(a) and Fig.3(b) respectively.

From Fig.3, it can be seen that the method is also ef-
fective for discrete systems.
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Fig. 3 Output and control error of discrete system (18)

6 Conclusions

In this paper, a class of non-chaotic system without
mathematical model is identified by using FNN, the i-
dentification result is used in the inverse system method
for chaotifying control of the system. The method is in-
dependent of the analytical model because of the use of
FNN. Simulation results show that in order to obtain less
tracking error the parameters of the controller system are
large; as a result the control variable may be somewhat
large. In its application, a balance should be kept be-
tween the tracking error and controller parameters.
Moreover, this method has strong application potential
in secure communication. The control variable in this
method can be used as a key to chaos communication.
Because this key signal must be used to control the sys-
tem (1) to obtain the real chaos modulating signal at re-

ceiving end, thiskey signal is more secure.
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