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Robust H,, filtering of stochastic uncertain systems
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Abstract: The robust H,, estimation under parametric and stochastic uncertainties was studied. It was assumed that the
uncertain parameter was norm bounded, the exogenous disturbance was stochastic uncertain and the systems were expressed by
Itd’ s stochastic differential equations. The H,, filtering was constructed via solving a linear matrix inequality, and an example

was presented to illustrate the developed theory.
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1 Introduction

This paper deals with the robust H,, state estimation
problem of stochastic uncertain systems. Stochastic H,,
control and design (including discrete and continuous
systems) have recently received a great deal of attention
(see [1 ~4], etc, and at the references therein). In
[2], a stochastic bounded real lemma was developed,
based on which, the output feedback H. estimation has
been derived for continuous-time stochastic uncertain
systems, the solution depends on two coupled nonlinear
matrix inequalities, the model in [2] does not include
uncertainty in measurement equation, and the state equa-
tion does not include uncertain parameters in system ma-
trix. In [4], the robust H,, control was discussed in-
terms of complete state measurement.

Recently, [ 1] deals with a very general robust H.,
filtering estimation problem of stationary continuous-time
linear systems with stochastic uncertainties appearing
both in state and measurement equations. A necessary
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and sufficient condition for H,, filtering was obtained via
linear matrix inequalities (LMIs), and at the same time,
for mixed H,/H,, filtering, a suboptimal solution was
presented. This kind of model is often applied in filtered
estimation .

The main contribution of this paper is as follows:
First, the model we employ is more general than that of
[1]. Here we futher allow the state matrix to be uncer-
tain with norm bounded. Because in practice, an exact
dynamical model is not easily obtained, this kind of as-
sumption has been made by many authors in determinis-
tic models (see [5,6] and the reference therein). Sec-
ond, a robust H, filtering is designed by solving an
LMI. In contrast to [1], we can design not only a full-
order but also a reduced-order observer. Third, com-
pared with the results in terms of algebraic Riccati equa-
[4,7]

tion'™’’, our approach is more applicable to practical

computation'8] .

Foundation item: supported by the Natural Science Foundation of Shandong Province (Q99GO01) .

T



http://www.cqvip.com

742 Control Theory & Applications Vol.20
2 Problem setting 5 [ 0 0] : - el (o)
For the sake of convenience, we adopt the following 2= B,F 0 ’ - r 7 bl

notations ;

A’ represents the transpose of a matrix or vector A ;

A = 0(A > 0) means A a positive semidefinite ( pos-
itive definite) matrix;

L*(R,, R'): the space of nonanticipative stochastic
processes y(t) € R with respect to filter F, satisfying

Iy 1 = E [T 1500 s < =,
I': identity matrix.
In addition, we make the following assumption:
Assumption 1 All matrices appeared in this paper
are real constant.
Consider the following linear uncertain system
dx = ((A + AA)x + Byw)dt + Dxdp,
dy = (Cx + Dyw)dt + Fxdé, (1)
z = Ix,
where x € R" is the system state, x(0): = x is any
norm bounded vector, w € L2(R,, R?) is the exoge-
nous stochastic disturbance signal, y(t) € R’ is the
measurement output, z € R™ is the state combination to
be estimated. AA is any uncertain matrix with norm
bounded satisfying
AA = DF ()G, FI()F () < I, ¥Vt =0.
pB(t),&(t) are mutually uncorrelated, nommal scalar
Wiener processes, defined on the probability space ({2,
F, P) relative to an increasing family ( F,) ¢, -
Taking the filter equation for the estimation of z(¢) as
d2 = A;2dt + Bydy, £0 = 0, 2 = C2, (2)
where £ € R, n; < n,2 € R™. Let
g =[x £']1,zZ=2z-2%. (3)
Based on the above representation, the filter estima-

tion error can be seen as the output of the augmented

system
de = Aedt + D,&dB + D,£d¢ + Bwdi, z = C¢
(4)
where
A+DA 0} B, . [D O
= [ 3 B= 2 Dl = { ] ’
B,C A B; Dy 0 0
(5)

Remark 1 [1] demanded n; = n, i.e., (2) isa
full-order observer. Here, we drop this restriction.
For any given disturbance attenuation level ¥ > 0, de-

fine the H, performance index as
Jo= Iz 1L - 7w g, (D

We give the following definitions:
Definition 1 We say that system
dx(t) = (A + AA)xdt + Dxdf (8)
is robustly exponentially two-stable, if for any admissi-
ble uncertain matrix F(¢), there exist some positive
constants o, e
Elx(t) 1< pl 2(0) IPexp (- et).
It is well known!®! that (8) is robustly exponentially
two-stable for ¢ = 0 if there exists V(¢,x) € CI({t >
0} x R") such that
FilalPs V(t,a) s ko | 12,
FV(t,x) <— ki | x1?
for some positive constants k, k;, k3, where £'is so-
called the infinitesinal generator of (8).
Definition 2 Stochastic uncertain system
dx = ((A + AA)x + Byw)dt + DxdB, xo € R
(9)
is said to be robustly internally stable, if (9) with
w = 0is robustly exponentially two-stable.

As in [1], stochastic H,, filtering estimation problem
can be formulated as follows: Given 7 > 0, find an
asymptotically stable linear filter of the form (2) leading
to a mean square stable estimation error process z such
that J, < O for all nonzero w € Z(R, ,R) with xy = 0.
3 Robust H,, filtering

In this section we deal with robust #, estimation
problem. Note that our system is actually tiine—varying,
s0 stochastic bounded real lemma derived by [2] can not
be used to cope with this case. First give two lemmas as
follows:

Lemma 11! For any real matrices of appropriate
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dimensions X and Y, we have
XY+ YXg XX +YY.
Lemma 2(Schur’ s complement'®!)  For real matri-
ces N.M =M ,R = R >0, the following two condi-

tions are equivalent:

1) M+ NR'N' < 0;
M N

2) [ ]< 0.
N -R

Our main result is as follows

Theorem 1 For any given disturbance aftenuation
¥y > 0and the filter of (2), if the following matrix in-
equality

PA” + A]’]P + biPT)l + 55Pb2 + C'C +

}%PBB'P + PT)]]T)]’]P + Clll a“ <0 (10)
has a solution P > 0, then (4) is intemally stable and
the H,, filtering performance J, < O, where

i [A 0] B [D'] & =[G 0]
11 = ch Af ’ 11 = 0 ] 11 = 1 .
(1)

Proof We first prove (4) is internally stable. Take
the Lyapunov function V(&) = £ P£ with P > 0 a solu-
tion to (10), let % be the infinitesimal operator of (4)
with w = 0, then

HV(E) =
g(PA + A'P + DiPD, + DiPD,)€ =
g (PAy + AWP + PAAy + DAP +

DiPD, + D5PD,) €, (12)
where
[D,Fl(t)G, 0]
1 = 0 0 -
By means of Lemma 1, we have
PAAy + AAG P =

PbuFl(t)z;u + Z;l,l Fl’(t)bﬁp =
Pbllbl’lp + Cl’l G

HV(E) <
E'(P/~1”+;4'“P+I)i Pb]+
Bépbz + Pbuf)l,lp + &1,] 2;11)5-

Obviously, if (10) holds, then there exists k3 > O, such
that % V(&) < - k3 | € 12, which yields that (4) is ro-
bustly internally stable.

Second, we prove J, < O for all nonzero w €
#(R, ,R7) with £(0) = 0. Let % be the infinitesimal
operator of (4), note that

T
J(T): = E IO(E'Z - Yw'w)dt =

E [ [(6CTe-rw'w)de+ d(§PE)-d(§PE)] =
-E&(T)PE(T) +

T -~
E | (6T - rww) + ZV(D)]de <

E J:[(s'?:'?:s - Yw'w) + HV(E) +
w'B'Pt + € PBwldt <
E ﬂ[e’(m,, + AyP + D|PD, + D4PD, +
PDyDLP + GGy + C'C)E - Y*w'wlde +
E K(W'B'Pe + &PBw)dt =

{PA, +AP+D{PD+ 5

béPI)2+Pb”b{1 P+
G{] G”+C’C}

=[]

Therefore, if
iPle+Z,11P+T)fP§1+ PB
DéPDz + PD]]D]’]P +
Gl,l G“ + C,&‘

9

B'P - 71

< 0, (13)
B'P -7
T
then there exist ¢ > 0,J,(T) <- ¢’E jo | w 12de

< 0, which yields J, <- ¢’E I: | w12dt < 0. By
Lemma 2, (13) is equivalent to (10). This ends the
proof.

Remark 2 (10) is a nonlinear matrix inequality, so
it is difficult to solve. Next, we will show that, in some
special case, it can be transformed into an LMI, which
is easily computed by the existing software'!!! .

Theorem 2 If the follwing linear matrix inequalities

B
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[ PyA + APy + GG, C'Z{ DP, FZ;, P,B, P,D, L
Z,C Z+Z 0 o0 zZp, 0 -C
PyD 0 - Py 0 0 0 0
Z\F 0 0 - Py 0 0 0 |<0 (14)
BiP,, Dz 0 0 -7 0 0
DiPy 0 0 0 0 -1 0
L L - ¢ 0 0 0 0 .
have solutions Py; > 0,P»n > 0,Cy, Z,, Z, then (4) is intemally stable and J, < 0, while
d2 = Py Zgdt + P3'Z\dy, Z = Cs% (15)
is the corresponding H., filter.
Proof By Lemma 2, (10) is equivalent to
rPA, + AP + GGy DP D PR PD, C 1
PD, -P 0 0 0 o0
PD, 0 -P O 0 o0
< 0. (16)
B'P 0 0 -7’21 0 O
D\ P 0 0 0 -1 0
L C 0 0 0 0 -
Take P = diag ( Py, Px), substituting (5),(6),(11) into (16), we have
T PyA+A'Py+GiG, CB/Py, DP,; 0 0 FBPy, PyB, PuD L 1
P»BC PuAs+AfPyn 0 0 0 0 PxyBD, 0 -(
P,.D 0 -P, O 0 0 0 0 0
0 0 0 -Pp O 0 0 0 0
0 0 0 0 - Py 0 0 0 0 (<0, 7
Py B F 0 0 0 0 -Pyp 0 0 0
BiPy DoB/P 0 0 0 0 -7 0 0
D{Py, 0 0 0 0 0 0 -1 0
L L - ¢ 0 0 0 0 0 0 -1
which is equivalent to
[ PLA + A'Py + GG, GiBP» p'Py FBPy, PyB  PyD L ]
P B,C PpA; + AiPyp 0 0 PuBD, 0 - Cf
PyD 0 - Py 0 0 0 0
PynBF 0 0 - Py 0 0 0 |<o. (18)
BiPy, D,{BiPx 0 0 -7 0 0
DiPy 0 0 0 0 -1 0
L L -C 0 0 0 0 -1

etk ks

T
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Let PpA; = Z,PyBy = Z,, then (18) becomes (14) .
(15) is easily seen from our assumption and Theorem 2
is proved.

The following example illustrates how to design the
reduced-order observer (2).

Example 1 In (1), we take

_75 0 2.1
4= =[]
0 -14.2 1.8

-1.6 1.4 1.3
o o= [M).
0.1 -2.5 2.1
G =1[1.4 1], L=[-1 1], C=[1.0 -1],

Dy =13, F=[1.5 2.6], IF(t)I<1, 7=0.8,
then by software packages such as LMI optimization
toolbox in Matlab''"}, we can easily solve (14) and ob-
tain

Py = 0.5869, Py = 21.0725,

Z =-12.1315, Z, = 0.1214, C; = 1.6673.
So

Ar = PR'Z =-6.0658, By = P3 Z; = 0.0607.
Accordingly, the reduced-order H,, filtering (2) can be
constructed as

d£ = - 6.0658£d: + 0.0607dy, 2 = 1.6673%.
4 Conclusion

This paper has discussed robust H, estimation prob-
lems of stochastic uncertain systems. By comparison
with [1], we allow the system parameter to be uncertain
with norm bounded. Especially, we show that robust
H,, filtering can be acheived if linear matrix inequality
(14) is solvable. Since the design of H,, filtering is of-
ten encountered in some fields, such as signal process-
ing , our results not only have practical value but also
have feasibility. When AA = 0, our models degenerate
into those of [1].
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