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Exponential stability for stochastic interval
delayed Hopfield neural networks
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(Department of Control Science & Engineering, Huazhong University of Science and Technology, Hubei Wuhan 430074, China)

Abstract: A type of stochastic interval delayed Hopfield neural network had been studied. By using It6 formula and Lya-
punov function, some new delay-dependent and delay-independent sufficient conditions of its global exponential stability had
been given. All the results obtained were generalizations of some recent results reported in the literature for stochastic neural net-
works with constant delays or their certain cases with variable-delays.
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1 Introduction

The theoretical research on neural network has made
great progress since it was bom. In many networks,
such as in electronic neural networks, time delay can not
be avoided. In fact, the stochastic perturbations can not
be avoided eithert' “'*!. On the other hand, the system

Where A;: = {A = diag (a;) s E R A < A <
/_1, i.e. a; € a; < ai,‘,i = 1,2,"',n},W7; = {Wt
= (W ER": Wi Wig W*©,i.e. wp < wy

< #§,i,j = 1,2,-,n} denote weight matrix, w(t)

= (w,(£),wy(2),,w,(£))"(m < n) is an m-di-

is unavoidable uncertainty, which is due to the existence
of modeling errors, can also destroy the stability of the
neural networks. So it is very important to discuss the
stability and robustness of network against such error and
fluctuation!*7-8! . To overcome this difficulty, we will
propose the stochastic interval delayed Hopfield neural
networks ( SIDHNN ), and derive some robust stability
criteria for the networks.
Consider an SIDHNN state equation as follows:
du(t) = [- Au(e) + Wif(u"(2))]de +
o(t,u(e), u(t))dw(t), t =0,
u(s) = &(s), —r<s<O.
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mensional Brownian motion defined on a complete prob-
ability space ({2, F, P) with a natural filtration { F, .0
(i.e. F, = o{w(s):0<s<t}),andé€ C([-2r,
0];R"), ¢ € L} ([- 27,0];R") is Fy -me-asurable,
0

"B e 125 < @ u() = (ml0), w0,
un(t))rut(t) = (ul(t_T](t))1u2(t_72(t))1'"1
u,(t - v,(¢)) (where - r <- 7;(t) <0,i = 1,2,
w,n),0:t x R® x R*—>R™™, that iso(z,u,u’ ) =
(04(t,u,u")),xm (where 7} (¢) be similar to z,(z)).

Define f(u(z)) = (filw(2)),fo(ua(2)), £ (un(2))),
similar to f(u"(t)). Assume, in the whole paper, tho-
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se a(t, +, +) and f(+) (nonlinear sigmoidal activation
function) satisfy
H1) There exist constants L;,0 < L; < ©,j = 1,2,
**, n such that the incremental ratio for f;: R — R satis-
fies
0 < fi(x) - fi(5) < Li(x; - ),V x;, 7, € R.
H2) There exist constants by ,cz,i = 1,2, ,n,
k = 1,2, m satisfy
o (t,2(), % (¢ =7 ())) < baxi(8)+en 47 (1-7i(0)).
It is known!® that Eq. (1) has a unique global solution
on ¢t = 0, which is denoted by u( ¢; £). Moreover, as-
sume also that ¢(¢,0,0) = O for the the sake of stabili-
ty. Thus system (1) admits an equation solution u( ¢;0)
= 0.

Let wj = max || ufl, Ly 1t,i=1,2,,n

lgjgn
Similarly we can define wj-,-*
2 Delay-dependent sufficient criteria

Tlleorenl 1 Iﬁt W = (max ,ﬂfj,w;'})nxn' As-

sume that
n max la7? | W2
l<i<n 2
0 = 2(mm laLl}—“W“) 2)
€ =

a = min {l - (‘_l + 8L,-)2 - ;(i‘ 8L,—)bg,},
B = max {3enL22 w]l + 2(— + OL; )cd,}

Ifa > B3, then for § € C([-2z,0];R") the zero-solu-
tion of system (1) is global 2nd moment exponential
stable and almost surely exponential stable.

Proof Define the Lyapunov function as follows

V(eu) = 2 (At + 28] fi()ds),
LV(t,u,u’) =

23 Qan(®) + 8 D)) x

(- au(t) + Zw,,f(u,(t -7 ()))) +

n m

D020+ 8% (e, u(8), ue - (1)) <

i=1 k=1

=

Eul(1)+ D, (3€nL%Z w}i‘2+(i+8L,~) > c,-k)x
j=1 4; k=1

i=1

_ 2(1_(;1 +8L,-)2_(i +8L,')§bu‘)x

sup Eui(t+9) <

2rgd<0

- aZE ul(t) +,3§\ sup

D1 -2r<d <0
By the Razummkhm—type theory in { 14] and condition
> 8, we can conclude that for every £ € C([ -27,0];
R"), the zero-solution of system (1) is globally 2nd
moment exponential stable and almost surely exponential
stable.

Corollary 1 Let w** = max {wj" |,

lgjgn
n max {ai?t || W2

8 = S min Tal = TWI) >
lgign

E u?(: + 9).

assume that

€= 22 {(ﬁi;‘+n%w’*14i+\/m;i(bik"'cik))z}’

k=1

min {1 - (gi N 8L,-)2_ (gi N aL,-)i)bﬂ,},

a =
lgign k=1
f = max {3e:n2L2;w’“2 + (l + 8L,~) Z cg,}.
lgign a;

k=1
Ifa < B, for& € C([- 27,0];R") the zero-solution
of system (1) is globally 2nd moment exponential stable
and almost surely exponential stable

Example 1 Let

ri=r,=0.5,7=0.01, L = L, =0.5,

1.3 0 _ 2 0
IR ]
- 0 1.3 0 3

(0.1 _0.1) _ (0.33 0.14)

W= = , W& = ,

- 0.05 -0.15 0.1 0.15
(0.01 o.oa) (0.03 0.04)
~10.05 0.001 “10.05 0.2/

By Corollary 1, it is easy to find that ¢ = 0.3342,8 =
0.2471. Obviously, a > (3, so this system is globally
exponentially robust stable when £ € C([ - 0.02,0],
R?).

Remark 1 As far as the existing papers are con-
cemed, [15 ~ 17] have discussed constant time delay,
and those systems are special case of our systems. [17]
has studied stochastic Hopfield neural networks with two
variable delays, and the delays are single respectively in
the certain part and uncertain part. Though this paper
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has discussed the same problem with multi-delays, when

o(t,u,u”) = 0, we have generalized those certainty

systems such as [18,19].

3 Delay-independent sufficient criteria
Theorem 2 Assume those A;,A3,""", A, are non-

negative numbers and, r € [0,1], let

a>B+7, (3)

{24 - Zl)(wg.*L,?' + b)) }(b; =

min
lgign

where a =

isn

0.j = k+1k+2,,n),7 = max {Dcu}.f=
k=1

LZ(]—r) m
v [E505

lgicn '\i
C([ - 7,0];R"), zero-solution of system (1) is glob-
ally 2nd moment exponential stable and almost surely

A wi } Then for every & €

j=1

exponential stable.
The proof is omitted.

Corollary 2 Define w* = max {w}™ | and
=ishn
o= min {20 -w D + b},
lgign j=1
L%(l-r) . m
B = 1212‘:;{ A, w j—ZlAj},
Y = max {chk}

I<isn =4y

If (3) is satisfied, Theorem 1 is also true.
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