BEESMHA
2003 4 10 A

¥ B L A
Control Theory & Applications Oct. 2003

Vol.20 No.5

Article ID: 1000 - 8152(2003)05 - 0749 - 04

Output feedback stabilization
for stochastic time-delay nonlinear systems
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Abstract: A class of stochastic time-delay nonlinear systems was studied. A controller designed such that the closed-loop
system was exponentially stable. It was shown that the stabilization via output feedback could be solved by a Lyapunov-based

recursive design method.
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1 Introduction

Stochastic modelling has played an important role in
many branches of science and industry. An area of par-
ticular interest has been devoted to the automatic control
of stochastic systems, with consequent emphasis placed
on the analysis of stability in stochastic models. Time
delay is commonly encountered and is often the resource
of instability . It should be noted that the exponential sta-
bility of stochastic differential delay equations have been
studied by many authors, e. g., Kushner'!! and
Mao'?3! | In this paper, we shall investigate an expo-
nential stabilization problem for a class of stochastic
time-delay nonlinear systems. Inspired by the recent
work of stochastic free-delay nonlinear control*%!, we
show that the stabilization can be achieved for the
stochastic time-delay nonlinear systems by employing a
Lyapunov-based recursive controller design method. The
output feedback control is considered. Our results extend
existing stabilization results for stochastic systems with-
out delay to control of stochastic time-delay nonlinear
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systerms .
2 Preliminaries

Consider the stochastic time-delay nonlinear system

d=(t) =

St x(t),x(t-7))de+g(2,x(t),2(t-7))dow

(2.1)

ont = 0, where x € R" is the state with initial data
x{(t) = E(t) for- 7 < t < 0, w is an r-dimensional
Brownian motion defined on a complete probability
space (2, F, P) with a natural filtration { F,},_o(i.e.,
F, = 61w(s):0< s < t}),r > Ois the time lag. and
f:R*—>R"and g:R" — R"**" are locally Lipschitz con-
tinuous functions. Assume also that f(¢,0,0) = 0 and
g(t,0,0) = 0, so the equation admits a trivial solution
x(,0) = 0. Moreover, denoted by L%, ([ - =,0],R")
there exists the family of R™ valued stochastic processes
£(s), - 7 < s < Osuch that £(s) is Fyp-measurable for

0
every second andJ‘ E || &(s) || Pds < = forp > 0.
Definition 1!/ The system (2.1) is said to be p-th
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moment exponentially stable if there exists a pair of con- -k

stants A > O and 7 > O such that for all & where A = : I ,g(y(e))T =
E || x(¢,8)I” < 7E sup [ €(8) ||?e™, ¢ =0, -k, O - 0

-rglgl
T
(2.2) gi1(y(t)) ‘
where p > 0. When p = 2, it is usually called the expo- T » and A is designed to be asympiotically
&.(y(1))

nential stability in mean square. Moreover, (2.2) im-

plies
lim sup %log (E |l x(£,8) l|?) <-4 a.s.

(2.3)
This left hand side term is called the p-th moment Lya-
punov exponent of the solution.
Throughout this paper, we let

_9dv.,. 1 13*V
LV(x) = axf+ St lg ang}, (2.4)

where ir { A} is the trace of matrix 4.
3 Output feedback control

In this section, we consider the following system:

dx;(2) = (x1(2) + fily(£)) + hi(y (2 - 7)))de +
g(y)dw, i = 1,-,n -1,

dw, (2) = (u(e)+£,(y () + b, (y(£-7)))di + £,(y) dw,

y(1) = x1(e),

3.1)
where x;, u and y represent the systen states with inmtial
datax;(t) = &(t) for - 7 << ¢t < 0, control input and
to-be-controlled output, respectively, w and £(¢) =
[El(t)
section. Given this system structure (3.1), we assume
that the output y is measurable, and f;, h; and g; with
£,(0) =0,k;(0) = 0and g;(0) = 0 are smooth nonlin-
ear functions, so the equation admits a trivial solution
x(t,0) = 0.

Since the states x,,**, x, are not measured, we first
design an observer which would provide exponentiaily
convergent estimates of the unmeasured states in the ab-
sence of noise. The observer is designed as

—'éi =%£,,1 + ki()’ - :ﬁ]) +f,-(y(t)) +
hi()’(t - T))’ l = 1"“1"‘1

£,(¢)]" are the same as in the previous

(3.2)

where é,,,rl = u. The observation errors £ = x — £ satis-

fy .
dz () = Az(e)de + g(y(£))dw, (3.3)

stable. Now the entire system can be expressed as
(dz(t) = Az(e)de + g(y(£))dw,
dy(t) = (£,(2) + 7,(2) + fi(y(2)) +
hi(y(e - 2)))de + g1 (y(£)) dw,
1d22(2) = (£3+ ko (y-21)+f2(y(2)) +
ho(y(t-7)))de,

(d2, = (u+k, (y=2) +£o (y(£)) + hy(y(2-7)))ds.
(3.4)
Our output feedback design will involve applying a back-
stepping procedure to the system (y,£,,**,£,), which
also takes care of the feedback connection through the %
system. In the backstepping design, the emor variables
z; are given by
2L =Y,
- (3.5)
zi=f—a; ((£,21,7), i=2,",n,
where ii = [£2
(7]

£;]". According to Ito’ s differ-

entiation rule'’!, we have

le =(£2 + 532 +fl(y(t)) + hl(y(t - T)))dt +

gl(y(t))wa, (3.6a)
dz; =(£i+l + k% + fi+ hi -

il g, )

lz:; §£11(£l+l + klxl +ﬁ + hl) _

da;

;;l("zz + % +f| + hl) -

1 Pa;_

2 at;zlgl(y)Tgn(y))dt -

da:

g'y—lg'(y)wa’ i=1,",n. (3.6b)

We start by an important preparatory comment. Since
f(0) =0, h(0) =0and g(0) =0, f(y(t)), h(y(t
- 7)) and g(y(¢)) can be expressed, respectively, as
fly(0)) = y(£)f(y(2)),
h(y(t - 7)) = y(t - D)h(y(t - 7)),
gly ()" = y()g(y(e))T,
(3.7)
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where
fl(y(t))
fly(1)) = : ;
Fly(2))
}_l](y(t -17))
h(y(t - 1)) = : ;
h(y(t - 1))
g1y’
gly(eNT = .
2. (y(e))T

Now, we are ready to start the backstepping design pro-
cedure. We employ a Lyapunov function of a form

n
T
i=2

(3.8)

V(%,y,2) = ‘(xTPi)z 4y+

J:_Tq(y(r))dr,

where P is a positive definite matrix which satisfies A™ P
+ PA = - I, and ¢q(y) is a positive function yet to be
determined.

Now we start the process of selecting the functions a;
to make LV negative definite. Along the trajectories of
(3.3) and (3.6), we have

LV =
—ax™Pxllz %+
2atr {g(y)(2Pxz"P+x"PP)g(y)T} +

y(aj+z+ 72+ f1(y) +

MGy (=0)) 42 (1) g (y)+

n

Ez%(ai + Z;. + k,‘i] +fi + h,‘ -

i=2

i—1 a .
2 al_l(f1+1+k151+fl+h1)—
1=2 3:91

301_

Y(fp+Tp+fi+hy) -

% ay';'gmy)Tgl(y)n
A

%;zf( ;’y")zgn(y)Tgl(y) +

g(y(1))-q(y(t-1)) <

-l z 1% + ¥(ay + ) +

n-1

> a; + II) + 2u + 1) + g(y(2)) -

q(y(t—r))+(4e4+2 +2 A"+

n i-l

DY ﬁ)ﬂ: S ARG = e 1%,

where
~My = -aApn+3anin el || P"“+—1—+i S 1
- ’ 4t 4L Y
(3.9)
3 4 3 4 3 .4
Iy = 83y + e}y + &0y +
3 n
228y @ N () + fily) +
i=2
3a vr' _ _
Zylg(y 1%+ 2ygl(y)Tgl(y),
(3.10)
3 . 4
I; = 5 83z + 48 2ot + k% + f -
-1
aa 1 3
. = (%101 + iy + ) -
g:z 3% I+1 1X1 ﬁ y
1 Pa;. 3 Ja;_y 4
> (y)g(y)+ 3(==)3 +
2 ay ! 7; d
3 4 3 4 a a;_1. 4
A3z + 53 3z +
4% 4 l( 3}’ ) 4
3 1,%;_ 3a, 4
z?( l)4l+z24yd l)
3.11)
I, = 1 Zy + koxy + fo -
n = 48:_1 n n X1 n
n-1
aan— -
lz:; aﬁ 1(32“_1 + k[xl +f1) -
da,_) 1 Pa,_
Jy % ) ayz 2 (9)Tgi(y) +
3 4%yt 3.4
47]n( ay )3 n + 4Anzn+
i 4 aan-—l £ i_L An_1\4
T e g (D
n-1
3 2 aan—l a4
= .3
z, “ 4#"1( aﬁl ) y (3.12)

where A,;, > 0is the smallest eigenvalue of P, and &,
€;58;,7;,A;, pg and ¥; are positive constants to be chosen
by the designer. The inequality comes from Young’s in-
equality in Appendix B and the result of [4]. Due to the
limit of the paper space, the details are omitted. At this
point, we can see that all the terms can be cancelled by
g,u and a;. If we choose a,&,,&; and 7; to satisfy

-1, <0, (3.13)
and ¢,a; and u as
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1"L"1

¢ 1
q(y(t)) = E'l‘ + 2t 2 et
n P-4
24 )y () Ry () 114,
i=2 1=2 #
(3.14)
1
= - - I, - —— t)),
ay Y 1 yg(t)Q(Y( )
a; = - ¢z — I, (3.15)
u =-cpz, - I,,

where ¢; > 0, then the infinitesimal generator of the
closed-loop systems (3.3), (3.6) and (3.15) is nega-
tive definite.

LV<-Il %Il Zcz (3.16)
[R(y(eN | <

Assumption 1 < ;, where g, is a
positive constant.
Along the trajectories of the system (3.4), by Ito’s
differentiation rule!”’ we have
dV = Lvd:t + (2a z"Piz"Pg" + y*g])dw.
3.17)
With (3.16) and (3.17), we have

d(e*V) = e (eVde + dV) <

n

ety QE 12 - 14, € 4 £ 4
e(zAmax “x” +4_'y+4l i -
n [}
Holl 3 14— D cat + e 5*(6)d0)dt +
i=1 -7

(26 z"Pzz"Pg" + y’g])dw <

e'(a,,eZz - cEz + O)E i 24(6)d6)d: +

-7 ;-0
(2az"3z"Pg" + y’g])dw, (3.18)
where = (— + — 4 +
o 45“ ,2474 ,24A4 22,22
f)dhe = min lenlloh,sd = 15 1%0 =

max {%Afm,—li and A > O the biggest eigenvalue

of P.
For any given T > 0, integrating both sides of (3.18)
from O to T and then taking expectation we obtain that

eE Vga+ (0f - c)EJ-OTeHZZ‘}(t)dt +
i=0
ea,,Ef f >124(0)dode,  (3.19)

=T =0
n
where « = (o, + 7e0;) sup E 2, z%(0).
-rgdg0 T i=0

Compute

[l 2 atcord0a -

-7 j=0

T-t [((0+7)AT L
j- ] (LVO e“dt)g_:,zt(ﬁ)dﬁ <

[ ([ eman ) 40740 <
r Jé i=0 )

T n
J res(0+0) E:z‘:(g)dg <
- i=0

n

T & 0
z'e“J-O e Z Z(e)de + z'e"J- 2 24()de.

i=0 -Tico
(3.20)
If c = 0 + eopre™, substituting (3.20) into (3.19)
we obtain that
ESEVgas+f, (3.21)
where 8 = eoyr’e sup E E 24(9).

-r<f<0
In consequence, since T > 0 is arbitrary, we have
Ellz() 3 <7 sup Il z2(8) l 4=, ¢t = 0,

~rg g0

(3.22)
0, + €O}, + eahrZe"
nly > Ain: 4}
With (3.22), we have the following stability result.

Theorem 1 Consider the stochastic time-delay non-
linear system (3.1) satisfying Assumption 1. If a,¢;,

S 1
where | zIl, = (D) )4 and =
i=0

€2, 7;,¢; and € are chosen such that
c = 0 + eopre’’
then the fourth-moment exponential stability is guaran-
teed via output feedback.
4 Conclusion
The problem of exponential stabilization was studied
in this paper. It has been shown that the output feedback
nonlinear control problems for a class of stochastic time-
delay nonlinear systems can be solved by using a Lya-
punov-based recursive design approach. Our results ex-
tend the existing stabilization of stochastic nonlinear sys-
tems without delay to the control of stochastic time-delay
nonlinear systems. The proposed method can be extend-
ed to the control of stochastic multi-time-delay nonlinear
systems .
(Continued on page 757)
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Appendix B
In this appendix, we use Young’s inequality®’
& 1
xys;lxl”+q€,lyl",
where e > O, the constants p > 1and ¢ > 1 satisfy (p — 1)(g —
1) =1, and (x,y) € B2,
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