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Abstract: Based on the ergodicity of chaos and the state Pl regulator approach, a new method was proposed for stabiliz-
ing unstable equilibria and for tracking set-point targets for a class of chaotic systems with nonlinearities satisfying a specific con-
dition. A criterion was derived for designing the controller gains, in which control parameters could be selected by solving a
Lyapunov matrix inequality. In particular, for piecewise linear chaotic systems, such as Chua’s circuit, the control parameters
can be selected via the pole placement technique in linear control theory. More importantly, this method has high robustness to
system parametric variations and strong rejection to external constant-disturbances. For verification and demonstration, the de-
sign method is applied to the chaotic Chua’s circuit, showing satisfactory simulation results.
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1 Introduction

In the past decade, much attention has been paid to
chaos control, and many methods have been proposed
for suppressing chaost!"?!. For instance, the delayed
feedback control (DFC) method™ is based on the dif-
ference between the current system output and the time-
delayed output signals, which does not require any
knowledge of the target points. However, this approach
in general cannot specify the target setting point and is
subject to the so-called odd number eigenvalue limita-
tionl*~6). On the other hand, the OGY method ",
which is a local control scheme, and the methods!#-%]
that are based on precise state feedback control usually
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fail with system parameters variation and are inconve-
nient for practical engineering systems.
In this paper, based on the ergodicity of chaos and

state PI regulator approach[ 10] | a feedback control design

method is proposed for stabilizing unstable equilibria and
for set-point tracking for a class of chaotic systems with
nonlinearities satisfying a specific condition. The pro-
posed method combines a state feedback and an integral
of the difference between the target output and the cur-
rent output signals. The output signal is a simple func-
tion (e.g., linear combination) of the state variables of
the chaotic system. In particular, if a suitable linear
combination is selected and used as the output feedback,
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the target output signal can become zero, and then no
information about the target equilibrium is needed in the
integral part of the controller. Moreover, this control
method has satisfactory control performance and robust-
It will also be demonstrated that this control
method can reject external bounded constant-disturbances
asymptotically .

Based on the Lyapunov stabilization theory, a criteri-
on is derived for choosing the proportional and integral
gains. The control parameters can be selected via solving
a Lyapunov matrix inequality. In particular, for piece-
wise linear chaotic systems, such as Chua’s circuit, the

ness.

control parameters can be chosen via the pole placement

technique in linear control theory .

2  Stabilizing unstable equilibria of a
class of chaotic systems

Consider a controlled chaotic system of the form

%= Ax + g(x) + u, (1)
where x € R" is the state vector, u € R" is the control
input to be designed, A € R"*" is a constant matrix,
and g(x) is a continuous nonlinear function satisfying
the following condition(!") ;

g(x) - g(&) = M, ;(x - %), (2)
where M, ; is a bounded matrix that depends on both x
and % .

Remark 1 Many chaotic systems can be described
by (1) and (2), such as the classic Chua’s circuit!'),
the modified Chua’ s circuit with a sine function, the
modified Chua’ s circuit with nonlinear quadratic func-
tion x | x |1, and the MLC circuit.

Let x, be an unstable equilibrium of (1) when u = 0,
that is,

Ax, + g(x,) = 0. (3)
The objective is to design a controller u such that the
states of system (1) are stabilized to x, , which is a con-
stant vector independent of time. Later, the objective
will also be extended to tracking a constant set-point.

According to the state PI regulator theory, a controller
is constructed as follows:

w= A[B(K(x - ) + k] (y - 2)d0)], (&)

where B € R"*! is a constant gain matrix, K € R!*" is
the proportional state feedback gain vector, k € R is the
integral gain, ¥ = Cx is the output with a constant ma-

trix CGRlxn, y, =
equilibrium x, , and
1, ifx € Q,,

e

Cx, is the observation of the target

(5)

0, else,
where .(2,’ denotes the neighborhood of the unstable equi-
librium «;.

Remark 2 Because of the ergodicity of chaos, the
trajectory will visit or access .(2,,, at times. When the tra-
jectory accesses 2, , the controller (4) is turned on, and
the trajectory will converge to x, asymptotically under the
controller (4), in which the control parameters will be
chosen to ensure the error dynamic system is asymptoti-
cally stable, as further described below.

Remark 3 If a matrix C € R'*" is chosen appropri-
ately such that y, = Cx, = 0, the controller structure (4)
can be further simplified, as further discussed later.

Now, it follows from Egs. (1) ~ (5) that the error
dynamics system is obtained as

(A+ABK)e+AkBJ;(y—y,)dr+g(x)—g(x,))=

t
(A+ABK)e+AkBJ0(y—y,)dz'+M,,,s(x—x,) =

t
(A + ABK + M,_,J)e + AkBJO(y - y,)dt, (6)

wheree = x — «,.

[
Let ¢ Jo(y— y,)dt, theng = y — 5, = Ce, so

that (6) can be reformulated as the following incremen-
tal error state equation:

é (A+M,, +ABK) ABklfe

N 9. o

q C 0 q

or

é:(Z+AE’I_()é,
e _ A+M,,I 0 _
],A=[ * ]9B

wheree = [
q C 0

=[K k]
Theorem 1 If there exists a positive definite and
symmetric constant matrix P such that
(A+AB-K)'"P+ P(A+AB-K) < pul < O
(9)
uniformly for all x in the phase space, where x denotes a
negative constant and 7 is the identity matrix, then the
zero solution of the error dynamics system (8) is global-
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ly exponentially stable. Consequently, the chaotic sys- 2 = aly - x - f(x)),
tem (1) can be stabilized at the equilibrium x, by con- Yy =% -y + 2z, (12)
tro].ler(4). F4 =—B}’,

Proof Choose the Lyapunov function
V = éTPé, (10)
where P is a positive definite and symmetric constant
matrix. Then, its derivative is
V = éTPé + éTPé =
((A +2AB +K)ée)"™Pe + é"P(A + AB - K)e =
e'((A+AB - K)"P + P(A + AB-K))e <
plell? <o, (11)
where || - || denotes the Euclidean norm. Based on the
Lyapunov stability theory, system (8) is globally expo-
nentially stable.
Remark 4 In Theorem 1, condition (9) can be
further simplified to be
(A+B-K)'"P+ P(A+B-K)< pul <O,
A+M,, O
C 0
constant matrix when x € .(2,’ , denoted by M, then A is
a constant matrix. Hence, the feedback gain matrix K =
[K k] can be selected by the pole placement tech-
nique. In this case, B and C are selected such that

wherex € 0, andZ:[ ].IfM,,, is a

A+M B
[ z‘ 0] is nonsingular and (A + M, B) is con-

trollable. As a result, (A4,B) is controllable, and the
eigenvalues of (A + B + K) can be arbitrarily placed by
selecting appropriate values for K and k. Here, note that
[B AB (A)B (A)"B] =
[A +M B] [0 B(A+MB - (A+M)"'B
c oll1o 0 0 '

Remark 5 In control law (4), if we choose y, =
r, where r is a constant set-point for tracking, then the
output y can track this set-point asymptotically.

Remark 6 If there exists an external bounded con-
stant-disturbance w , whose value is unknown but bound-
ed, in the system (1), then we can easily prove that the
chaotic system can be stabilized at the targeted unstable
equilibrium point by using the similar procedure above.
3 Application to Chua’s circuit

To illustrate the controller design method outlined
above and to show its advantages, the well-known
Chua’s circuit is used here as an example.

‘The chaotic Chua’s circuit is described by!'!

where a > 0,8 > 0,a <-1< b <0,f(+) is a piece-
wise linear function defined by

flx) = bx+%(a—b)(|x+ll—lx—ll).

(13)
For the piecewise-linear function f(+) in (13), we
have

fx) - f(Z) = k, :(x - %), (14)

where k, ; is the slope of the linear segment, depending

on both x and %, and varies within the interval [a, b ]

forall: =0,i.e., isboundedbye < k, ; < b < O.

Letx, = [x, y, 2z ]"be an unstable equilibrium of
(12), satisfying '
a(y, - x, - f(x,)) =0,

X = ¥s + 2z, = 0’ (15)
- Bys = 0.
By solving (15), three equilibria can be found:

a-2> a-1b
P1(1+b)0)_ 1+b), P2(0’0)0))

and
a-—b a-1b
P3(_ 1+ b’0’1+b)'
The chaotic Chua circuit, under the control of the
state PI regulator, is described by
£ =Ax + g(x) + AB(K(x - x,) +

t
kfo(cx _ Cx)dr), (16)
-a a 0 . b
where A = 1 -1 1},B = b2 ,C =
0 - 0 b,

x
[Cl Cy C3],K = [kl kz k3],x = [ ], and
z

- af (%)
g(x) = [ 0 ] We have

0
- a(f(x) - f(x,))
g(x) - g(x,) = [ 0 ]:
0

—ak,,',,s 0 0] e,

0 0 0}| &
0 0 QdLe,

= Mx,x,e) (17)
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- ak,, 5, 00
where M,,,J = 0 0 0|- According to
0 00

Eq.(8), the corresponding error dynamics system state
equation is

¢= (A + 2B - K)e, (18)
el - A+M, ., O
where e = [ ,A = [ ] =
q c 0
-—a(l+k,,) a 0 O b,
1 -1 1 0|5 _ [B _| o ,
0 -8 0 0 0 by
¢ ¢, ¢ 0 0
K=[K k]l=1[k k k k]
ForPl(‘ll;_ll;,O,—‘ll:_ll:),wehavexs = ‘ll;g
<_1'Let‘QP1 = {x:1x-1l.Ifx € .Qpl,then
-ab 0 O
ke = b, My, = [ 0 0 0]
0O 00O
and
—a(l+b) a 0 O
_ 1 -1 1 0
= 0 -8 0 o
¢ ¢, ¢3 0

According to Theorem 1 and Remark 6, we have:
Corollary 1 If B, C,K and k are selected such that

0

0 5 10 15 20
!

(A + B - K) is Hurwitz stable for all x € Qp , then the
zero solution of the error dynamics system (18) is glob-
ally stable, and consequently the chaotic system (12)
can be stabilized at the first equilibrium x; .

Using the same procedure, we can also obtain the
similar results for P, and P;.
4 Simulations

In this section, the stabilization of-the first equilibri-

a-2>b a-»5 .
um, P'(—l N ,0, - 1+ b)’ is demonstrated. The

parameters of Chua’s circuit (12) used are « = 9.78, 3
= 14.97,a = - 1.31,b = - 0.75, so the system ex-
hibits chaotic behavior!'?! .
Based on the chosen equilibrium and Corollary 1, af-

ter calculation, we selected

B=[0 o0 1]",c=[0 1 0],

K = [-1.4045 0.9755 - 3.8550]
and k =-4.4761,
so that the eigenvalues of matrix (A + B « K) are - 1.6,
-~1.9,-2.0and -1.8. The controlled Chua’s system is
stabilized at the intended equilibrium, as shown in Figs. 1,

2 and 3 for different initial conditions” In Fig. 1, the initial

value is xo(- 1.6, — 1.2, - 1.5), which belongs to Opl
while the initial value %5(0.1,0.12,0.5) in Fig. 2 belongs
to.()p2 instead; in Fig. 3, the initial value x0(1.6,1.2,
1.5) belongs to.sz.

0.5

0

A =05

-1

=15

0 5 10 15 20

15

10

Fig. 1 Stabilization of Chua’s circuit with xy € Qp,
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Fig. 2 Stabilization of Chua’s circuit with x, € Qp,
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Fig. 3 Stabilization of Chua’s circuit with x, € Qp,

To demonstrate the robustness of the control perfor- variation in system (12), the system parameters are
mance, let there be an external bounded disturbance, w , in changed to, say, « = 9.0,8 = 14.87,a = - 1.27,b = -
the third equation of Chua’s circuit, with w = 0.2. The
system, although with the disturbance, can still be stabi-
lized at the targeted equilibrium by the same controller, as mnstillbestabilizedattheﬁrstequilibﬂmnbythesaxm
shown in Fig. 4. To verify the robustness to parameters controller, as expected.

0.68. It is demonstrated in Fig.5 that the modified system
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Fg. 4 Suabilization of Chua’s circuit with w = 0.2
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Fig. 5 Stabilization of Chiua’s circuit with different parameters

5 Conclusion and discussion

In this paper, a new method for stabilizing unstable e-
quilibria has been developed for a class of chaotic systems
based on the state PI regulator method. The proposed
method is robust to a certain level of extemal distursbances
as well as system parameters variation. Based on the Lya-
punov stabilization theory, a precise criterion is derived to

accomplish the stabilization of the target unstable equilibria
of the chaotic system. The control parameters can be se-
lected via solving a Lyapunov matrix inequality. Particular-
ly, for piecewise linear chaotic systems such as Chua’s cir-
cuit, they can be selected via the simple pole placement
technique. This new design method is better than the state
feedback control method in the sense that even the given
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chaotic system has significant parameters variation, the de-
signed controller remains to be effective for stabilizing its
orbit to the desired target equilibrium. This method is also
better than Pyragas’ delay feedback control method since it
is guaranteed to control to a specified target point.

In principle, the method and criterion proposed here can
be applied to various chaotic systems with nonlinear ﬁ}nc-
tions satisfying condition (2) given in this paper. There-
fore, similar designs can be carried out for the chaotic sys-
tems such as the modified Chua’s circuit with a sine func-
tion, the modified Chua’s circuit with the quadratic func-
tion x | x |, the MLC circuit, etc.
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