文章编号: 1000-8152(2004)03-0373-06

冗余度机器人运动模型的神经网络辨识及实现

姜春福1,余跃庆2,刘迎春2

(1. 北京信息高技术研究所 北京 100085; 2. 北京工业大学 机电学院,北京 100022)

摘要:为提高网络学习速度,提出了一种新的动态神经网络结构——状态延迟输入动态递归神经网络.以德国 PowerCubeTM模块化机器人为研究对象,将机器人系统返回的关节位置信息和 OPTOTRAK 3020 3 维运动测量系统 测得的机器人末端位置信息作为神经网络的学习样本,对包含各种影响因素的机器人运动模型进行了辨识,所得 结果及误差分析,说明了 SDIDRNN 在学习能力上的优越性.

关键词: 冗余机器人; 神经网络; 辨识

中图分类号: TP24 文献标识码: A

Kinematic model identification and implementation of redundant robot based on neural networks

JIANG Chun-fu¹, YU Yue-qing², LIU Ying-chun²

(1. Beijing Institute of Advanced Information Technology, Beijing 100085, China;

2. College of Mechanics and Applied Electronics, Beijing University of Technology, Beijing 100022, China)

Abstract: In order to increase the computational efficiency of neural networks, a new network model named state delay in-

put dynamical recurrent neural network is presented in this study. This new neural network is also applied to the model identification of PowerCubeTM modular robot system. The data of joint positions retrieved from the robot and the position of the end-effector measured by the OPTOTRAK 3020 are used as learning sets for neural network. The learning superiority of the new neural network is illustrated.

Key words: redundant robot; neural networks; identification

1 引言(Introduction)

冗余度机器人在工业生产和航天航空领域都有 着独特而重要的作用.更多的自由度可以改善机器 人的运动特性,如提高灵活性、改善动力学性能、增 大工作空间等.工业机器人是一个高非线性、强耦合 的多输入多输出系统,存在许多未知因素,同时机器 人本身的复杂性,如惯性负载、关节间耦合、重力效 应与机器人位姿位置相关等,使自由度较多的冗余 机器人在工作过程中的定位及运动轨迹可能与理论 值有较大的出入.为了提高机器人的工作性能,建立 一个能正确反映机器人运动关系的模型是机器人研 究中首要任务.在这一问题上,很多学者一般都采用 误差补偿策略^[1],对运动学方程作适当的修正,将机 器人的误差影响考虑到机器人的数学表达式中.但 这种策略的困难之处在于:一是难以考虑非几何因 素的影响,二是待辨识参数随机器人关节数的增加 而增加,三是修正方程过于复杂,难以计算,或计算 耗时过多,降低了实用意义.

神经网络由于其逼近任意非线性系统的能力、 分布式信息存储与处理结构所具有的独特的容错性 以及可方便地应用于多变量系统的能力,使其在现 代控制中引起越来越多学者的关注,逐渐成为非线 性系统辨识与解决冗余机器人运动学问题的有力工 具^[2,3].尽管估计机械关节之间的干扰及影响机器 人运动的不可测扰动十分困难,实时得到这样的干 扰和扰动的定量估计实际上不可能,整个机器人的

收稿日期:2002-08-01;收修改稿日期:2003-07-17.

基金项目:国家自然科学基金项目(59975001);北京市自然科学基金项目(3012003)。

运动学,包括那些未知的干扰和扰动,当机器人重复 相同运动时却是可以再现的,因此,期望运动可利用 机器人运动的再现得到改进,这也为采用神经网络 辨识机器人这些不可测扰动提供了可能,本文可以 通过实验测得数据,利用神经网络建立起关节空间 和笛卡尔空间之间的映射关系,实现机器人的模型 辨识.这样做的好处是可以避免直接求解机器人的 正、逆运动学方程,不必知道机器人的运动学参数, 故而成为确定机器人运动模型的颇具吸引力的一种 方法.相比于静态网络、动态神经网络在系统辨识问 题上提供了一种极具潜力的选择,代表了神经网络 建模、辨识与控制的发展方向^[4].本文在动态递归 Elman 网络的基础上,采用一种新的动态递归神经 网络结构,称为状态延迟输入动态递归神经网络,在 实验数据的基础上,将该网络应用到德国 PowerCube™模块化平面冗余机器人运动模型辨识的问题 中,获得机器人的非线性运动学模型.

2 状态延迟输入动态递归神经网络(State delay input dynamical recurrent neural net-work)

状态延迟输入动态递归神经网络(简称 SDIDRNN)拓扑结构如图1所示.SDIDRNN将输入 输出状态向量作为单独一组输入,称其为状态结构 单元(state context). 若网络只取3层结构,则这一组 输入在结构上与 Elman 网络的输入层相同,但为一 般性,并不将其作为输入层单元,而是作为结构单元 的平行结构,它与隐含层的连接权矩阵有自己的含 义,称为前向滤波权矩阵^[5].状态结构单元的个数是 网络输入输出神经元数目之和,分别对应输入输出 前一时刻状态的值,状态结构单元的输入是网络输 入输出层神经元前一时刻的状态信息,这一状态信 息在输入到状态结构单元时,可作预处理以获得满 意的收敛速度,即每一单元输入值都乘以一个滤波 因子 λ.λ 作为经验值,其取值范围与网络的学习速 率 η 和惯性系数 α 有所不同,根据任务的具体情况, λ 可以小于1,也可以不小于1. λ 小于1时,削弱前一 步输入输出信息在网络中的作用,反之,λ大于1 时,增强状态结构单元输入对隐含层输出的影响. Elman 网络可以看作 SDIDRNN 的特例,如果 $\lambda = 0$, 图1所示即 Elman 网络的拓扑结构.算法过程参阅 文献[6].经过改进,网络的收敛速度及稳态精度与 其他常用网络结构相比,均有明显提高,下面以一非 线性系统为对象说明.

图 1 状态延迟输入动态递归网络的拓扑结构 Fig. 1 Topology of state delay input dynamical recurrent neural network

考虑参数慢时变非线性系统

$$y(k+1) = \frac{5(1-0.8e^{-0.1k})y(k)}{1+y(k)^2} + u(k),$$

以其在区间[-0.5,0.5]上随机产生 800 个数据样 本作为训练样本集;训练准则为输出的均方根(r. m.s)误差,本文对 BP 网络、改进的 Elman 网络以及 SDIDRNN 作一比较.在3种网络训练过程中,所需 的相同参数都取相同值,如输入层与隐含层之间的 权值矩阵 ₩⁽²⁾,隐含层与输出层之间的权值矩阵 $W^{(3)}$,自反馈系数矩阵 A,反馈系数矩阵 B 等.其中 A = 0.6I, B = I, I为单位矩阵.3种网络的训练均 采用带惯性项的 BP 算法,学习速率 $\eta = 0.15$,惯性 系数 $\alpha = 0.3$, 滤波因子 $\lambda = 1.5$, 训练次数取 1000 次,各网络经训练后,得到的均方根误差变化曲线如 图 2 所示.可以发现, BP 网络在 1000 次的训练过程 中,均方根误差变化很小,与其他两种动态网络相比 几乎不变,暴露出 BP 网络学习速度缓慢的缺点;而 SDIDRNN 的学习速度和收敛精度明显高于静态 BP 网络和 Elman 动态递归网络.其中在前 300 次的学 习过程中,SDIDRNN 收敛速度快的特点尤为突出.

3 实验设备(Experiment setup)

实验装置如图 3(a)和图 3(b)所示.其中, 图 3(a)为德国 AMTEC 公司生产的 PowerCube™模 块化机器人.它具有制造精度高、运行平稳、噪声低 等优点.每个模块内部都设有增量编码器,对关节位 置和速度进行实时监控和测量,可根据实验需要提 取所需数据实时处理,也可存成数据文件备用.图 3(b)为 OPTOTRAK 3020 的 3 维运动测量系统,该系 统广泛应用于机器人学、运动控制、3D 数字化、逆向 工程等方面的研究.它包含一个由 3 个 CCD 组成的 位置传感器(图中镜头部分)、一套控制系统及若干红 外 MARKER.该系统具有自动定标、实时测量物体的 3 维运动参数、数据分析处理以及反馈控制等功能.

图 3(a) PowerCube[™]模块化机器人 Fig. 3(a) PowerCube[™] modular robot

图 3(b) 3 维动态测试系统 Fig. 3(b) 3D motion measurement system

4 实验结果及分析(Experimental results and analysis)

实验设定机器人末端执行从点(0,0.717)到点 (0,0.4),点(-0.1,0.6)到点(0.2,0.6)的两项直线 型任务.将机器人设定成平面3杆机器人,不考虑末 端连杆的方向,机器人具有一个冗余自由度.每一任 务的总执行时间为4s,在采样间隔分别取0.005s, 0.01s,0.02s,0.04s的情况下对机器人末端运动轨 迹进行测量,共测得 16 组数据.辨识时采用批处理 方式,对机器人末端轨迹 X, Y分量采用独立的辨识 器.神经网络各项参数为:学习速率 $\eta = 0.02$,惯性 系数 $\alpha = 0.2$,滤波因子 $\lambda = 1.5$,训练次数根据辨识 分量不同而分别取为 1500 次和 5000 次.在此以采样 间隔为 0.02 s 时的实验数据为例,对结果进行分析.

图 4~图 7 是 SDIDRNN 辨识器对机器人末端 运动轨迹 X,Y方向分量的辨识曲线及相应的辨识 误差曲线.各图(a)中,曲线1为期望的末端轨迹;曲 线2 是采用最小范数法求得机器人关节位置后,在 假设机器人为完全刚性的情况下再直接反算所得到 的机器人末端轨迹;曲线3 为根据返回的机器人实 际关节角求得的刚性机器人的末端运动轨迹;曲线 4,5 为机器人的实际末端轨迹和 SDIDRNN 辨识器 的辨识输出.

分析各图(a)中的曲线1与曲线2.从理论上说, 曲线 2 与曲线 1 应该是重合的,因为二者只是数学 上的变换关系,还没有经过机器人环节,因此不可能 有机器人系统中各种因素的影响.但实际上两条曲 线并没有重合,这种误差,只能产生在由笛卡尔空间 向关节空间的求解过程中.当然,可能导致误差的另 一原因是机器人连杆长度的测量误差,但这种测量 误差可以通过多次测量取平均值的方法来减小其影 响,产生的误差属于静态误差.所以,曲线2出现误 差的主要原因在于求最小范数解及求曲线 2 时 a 的积分过程.可以观察到曲线2随着时间的变化而 呈线性增大趋势,这是由于算法误差,导致所求的输 入到机器人中的关节位置并非理想的关节角,这一 误差是累积的,导致曲线2与曲线1间的线性增大 误差.针对这一问题,本文也做过平面非冗余三杆机 器人的相关实验进行比较,结果表明,在非冗余机器 人实验中,由于没有求最小范数解和积分过程,曲线 2与曲线1是能够重合的,其中理想轨迹由于计算 精度的影响,其变化范围的数量级为 10⁻⁷ m,远远 小于本实验 10⁻³ m 的算法误差.因此,曲线 2 与曲 线1间的误差说明了影响冗余机器人末端运动精度 的原因之一是算法误差.

再来分析曲线 3.曲线 3 也是将机器人看作完 全刚性的机器人所得到的末端轨迹.不同的是,此时 的关节角为每一时刻由增量编码器返回的机器人关 节角的实际值.由于关节电机的实际输出角不能理 想地实现关节期望值,故它与输入值间的误差反映 了关节电机对输入信号的响应能力.观察图 4、图 7 中的(a)图,可以发现曲线3的变化趋势与曲线2基 本相同,也说明前述算法误差对机器人运动精度的 影响.如果关节电机完全刚性,能够完全实现每一时 刻的关节角信号,那么曲线3与曲线2应该是重合 的.因此,曲线3与曲线2间的误差说明,影响机器 人末端运动精度的原因之二是关节电机的电机特 性,即柔性机器人中考虑的关节柔性问题.

曲线4、曲线5分别为机器人末端的实际运动 轨迹及神经网络辨识器的辨识结果,可以发现,随着 机器人的运动,机器人末端实际运动轨迹与理想的 期望轨迹有比较大的偏离.各图(a)中的机器人实际 运动曲线(曲线 4)说明了这一现象.这种偏离产生 的原因是多方面的.除了机器人本身运动学、动力学 所包含的复杂性及连杆刚性等因素的影响外,还有 其他因素的影响,这其中既有能够公式化表示的因 素,如机器人构件的几何误差、摩擦、外部干扰等;也 有难以用确定表达式表示的因素,如伺服电机的磁 场、空气阻尼、齿轮间隙、基座稳定性以及其他不可 预测的扰动等等,都可能导致机器人末端轨迹误差 的发生,前面曾提到过,如果按传统的误差补偿思 想,在机器人运动解释表达式中考虑这些影响因素, 就必须在机器人运动方程中以参数的形式表示出 来,但不可避免的困难是如何表达影响因素中难以 公式化表示的部分;同时,将误差影响通过参数补偿 到机器人运动方程中,参数个数要随着机器人关节 数的增加而增加,导致计算过程复杂,计算耗时延 长,对于自由度较多的冗余机器人来说更是如此.因 此在实用中,这种策略的实现存在着本质上的局限 性.另外,在考虑包括机器人关节柔性和连杆柔性时 的柔性机器人研究中,所采用的弹性关节和柔性连 杆的数学模型,为了处理问题的方便,都要对方程进 行合理的线性化,不可避免地引起建模误差.而采用 神经网络,可以不考虑这些细节问题,直接利用神经 网络对非线性关系逼近的能力来对实际系统模块进 行辨识,理论上可以达到所需的任意精度,由图4~ 图7可以发现,经过学习,神经网络的辨识输出(曲 线 5)更接近于机器人末端的实际运动轨迹.

图 4(b)~ 图 7(b)表示神经网络辨识输出与机器人实际运动轨迹的误差曲线.可以发现,在完成设定任务的整个过程中,除了少数几点外,大部分样本点的辨识误差可保持小于 2 mm,相对于行程来说,该辨识结果具有相当的精度.值得一提的是,这里神

经网络辨识器只经过 1500 次或 5000 次训练,与采 用 BP 网络动辄就需上万次、甚至十几万次的训练 次数相比具有相当高的学习效率[3].如果有更高的 精度要求,可以通过调整 SDIDRNN 的各项学习参 数,增加其训练次数,使这一误差值进一步减小,从 而实现机器人运动模型的建立.另外需要解释的是, 虽然直观上看来,图4(b)~图7(b)的误差曲线没 有明显的收敛,图7(b)甚至有发散的趋势,但这并 不说明辨识网络和辨识策略的失效.出现这一结果 的原因之一,是在训练讨程中,所有训练样本以批处 理方式输入网络,权值的每一次调整过程都是针对 所有训练样本进行的,其评价函数,即网络输出与期 望输出的均方根误差是关于整个训练样本的性能指 标,因此,在保证整体均方根误差下降的情况下,不 排除个体样本误差存在类似的现象.原因之二,由于 机器人实际运动过程中,机器人关节间存在耦合,每 一模块的重力效应与位置相关,关节电机在运行过 程中的负载变化很大,使机器人成为一个时变系统。 又由于关节电机不是理想的刚性电机,对输入关节 位置信号的响应存在滞后,不能及时响应输入信号, 机器人末端要发生振动,导致运动轨迹产生"锯齿", 而神经网络输出的逼近曲线是对整体数据样本的拟 合,相对来说较平滑,如果机器人运动中某一时段振 幅较大,则二者之差会在这些点处出现增大现象,如 图 4(b)中的初始阶段和图 7(b)中的结束阶段.观察 各图(b)曲线,可以发现误差曲线的变化并无明显的 规律可循,因此,对误差的分析也无法用传统观点进 行分析.在建立机器人运动模型时,作者只需关心辨 识结果的全局特性,如果全程辨识误差在设定精度 以内,就可以停止学习,导出神经网络的各项参数和 权值矩阵,以此构成机器人运动的神经网络模型,为 对机器人实施控制作准备.

在介绍 SDIDRNN 时,本文曾对其与 Elman 网络 的学习性能作了比较.为进一步说明问题,在机器人 运动模型辨识时,本文也分别采用了两种结构的神 经网络辨识器.对 X, Y 方向进行模型辨识时, SDIDRNN 和 Elman 网络所需的初始矩阵、学习参数 及训练次数等共用参数取值都相同,以任务 2 为例, 最后得到的 X, Y 方向辨识均方根误差为:Elman 网 络分别为 0.628×10^{-2} m, 6.151×10^{-2} m; SDIDRNN 分别为 0.332×10^{-2} m, 6.145×10^{-2} m, 均表明 SDIDRNN 的学习能力要优于 Elman 网络.

图 5(a) Y方向位移比较曲线(任务 1) Fig. 5(a) Comparison curves of the displacement in the Y-axis direction (task 1)

图 6(a) X方向位移比较曲线(任务 2) Fig. 6(a) Comparison curves of the displacement in the X-axis direction (task 2)

图 7(a) Y方向位移比较曲线(任务 2) Fig. 7(a) Comparison curves of the displacement in the Y-axis direction (task 2)

图 4(b) X 方向位移辨识误差(任务 1) Fig. 4(b) Identification error curve of the displacement in the X-axis direction (task 1)

图 5(b) Y方向位移辨识误差(任务 1) Fig. 5(b) Identification error curve of the displacement in the Y-axis direction (task 1)

图 6(b) X 方向位移辨识误差(任务 2) Fig. 6(b) Identification error curve of the displacement in the X-axis direction (task 2)

图 7(b) Y 方向位移辨识误差(任务 2) Fig. 7(b) Identification error curve of the displacement in the Y-axis direction (task 2)

5 结论(Conclusion)

文中对神经网络的拓扑结构作了研究,提出了 一种新的动态神经网络结构 SDIDRNN,提高了神经 网络的学习速度.利用 PowerCube[™]模块化机器人及 OPTOTRAK 3020 获得实验数据作为神经网络辨识 器的学习样本,针对冗余机器人建模时有许多不确 定性因素影响的问题,利用 SDIDRNN 对机器人的 输入输出关系进行辨识,建立起了机器人的运动学 模型,得到了满意的结果.对辨识结果及误差的分析 说明了该神经网络的有效性.

参考文献(References):

- [1] 夏凯,陈崇端,洪涛,等.补偿机器人定位误差的神经网络[J]. 机器人,1995,17(3):171 - 176.
 (XIA Kai, CHEN Chongduan, HONG Tao, et al. Neural networks for position error compensation of robot [J]. *Robot*, 1995,17(3):171 -176.)
- [2] NARENDRA K S. Identification and control for dynamic systems using neural networks [J]. IEEE Trans on Neural Networks, 1990, 1(1):4-27.
- [3] WU Chiaju, HUANG Chinghuo. Back-propagation neural networks for

identification and control of a direct drive robot [J]. J of Intelligent and Robotic Systems, 1996, 16(1):45 - 64.

- [4] 孙增圻,张再兴,邓志东.智能控制理论与技术[M].北京:清华 大学出版社,1997.
 (SUN Zengqi, ZHANG Zaixing, DENG Zhidong. Theory and Technology of Intelligent Control [M]. Beijing: Tsinghua University Press, 1997.)
- [5] 何玉彬,李新忠.神经网络控制技术及其应用[M].北京:科学 出版社,2000.

(HE Yubin, LI Xinzhong. Technolgy and Application of Neural Network Control [M]. Beijing: Science Press, 2000.)

[6] 姜春福,余跃庆.状态延迟输入神经网络及其在机器人定位监督控制中的应用[J].机械科学与技术,2003,22(2):229-232.
(JIANG Chunfu, YU Yueqing. SDIDRNN and its application to the position supervisory control of robots [J]. Mechanical Science and Technology,2003,22(2):229-232.)

作者简介:

姜春福 (1974 一),男,博士,已发表论文 10 余篇,研究领域为 神经网络在机器人中的应用,E-mail:jiangchf@sohu.com;

余跃庆 (1958—),男,教授,博士生导师,研究领域为机器人 机械学,双臂机器人协调操作;

刘迎春 (1975 一),女,博士研究生,已发表论文 10 余篇,研究 领域为双臂柔性机器人协调操作.