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Adaptive high order differential feedback control
for inverted pendulum system
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Abstract; Making full use of high order differential information extracted, an adaptive high order differential feedback con-
troller is proposed , which does not depend on the model of SISO nonlinear affine system to a certain extent. Stability and robustness
of the closed-loop system were analyzed. Through considering the position acceleradion in dynamic equation of angle of pendulum
as control input, the inverted pendulum system was then converted into interactional double nonlinear SISO affine systems. The
pendulum system was thus successfully stabilized and regulated by using double adaptive high order differental feedback controller in
series . Numeric simulations showed that the controller reaches satisfied effect for the benchmark model, and importantly had strong
robustness for nonlinear friction term, parameter variations including length and mass of pendulum and mass of carriage ,and external
disturbance as well.
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1 Introduction

As a typical unstable nonlinear plant, the problems of
stabilizing and regulating an inverted pendulum system
have been a benchmark example in demonstrating and
motivating various control design gechniques[l 4] For ex-
ample, based on the model Chung and johnm presented
nonlinear controller to regulate the swing energy of the
pendulum using L, small-gain approach and Lin et al. 2]
provided linear state feedback controller that balances the
pendulum. Kawatani et al.% linearized nonlinear mathe-
matical model of a parallel-type double inverted pendulum
system, and then designed a stable controller by state feed-
back gain vector and full state observer. Yao et al. [4] firstly
identified dynamic linearizing model through using fuzzy
method, then based on the model design poles assignment
controller to stabilize the system. All the controllers of
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these literatures rely on the nonlinear benchmark model or
linearized model of the inverted pendulum. Some design
approaches consider robust control for friction term
etc.!"3) but the uncertainty is smaller than benchmark
model. In fact, it is the important characteristic of modem
control theory that the controller relies on model of con-~
trolled plant according to a criterion.

We find that the measurable information and their dif-
ferentials up to nth-order are significant in the affine sys-
tem. The differentals not only are the changing rates of
the output of the system, but also are the inner states of
the system. Han'®! proposed auto-disturbance-rejection
congroller using high order differentials. But there is no
analysis of stability and convergence for the closed-loop
systen with the controller.

We designed high order differentiator (HOD) being
independent of the controlled plant and only relying on
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the signal itself in literature'® . The HOD is able to ap-
proximate the real signal and extract its differentials up to
nth-order. Stuability and convergence of the HOD are
proved.

Making use of the most of the information of the ex-
tracted differentials, we design adaptive high order differ-
ential feedback controller ( HODFC) that does not rely
on the model of the system, but depend on the differen-
tials up to nth-order. Theoretical analysis shows that the
HODFC achieves stability and convergence for the closed-
loop system.

If we consider the acceleration as control input in dy-
namic equation of angle of pendulum,and do it as control
objective in dynamic equation of position of carmage, then
the pendulum system is converted into double nonlinear
SISO affine system.

Therefore, using two HODFC, we can stabilize and
regulate the inverted pendulum. The angle of the pendu-
lum converges to zero and the position of the cart reaches
to given aim using the controller. Because the controller
does not rely on the model of inverted pendulum in some
extent, the HODEFC is robust for the disturbance and all
the parameters varations. Simulations demonstrate the va-
lidity of the proposed theory. Furthermore, the HODFC
does not rely on the velocity of position and that of an-
gle ,but only relies on the position and angle of the pen-
dulum. Therefore, the controller is adaptive.

This paper is orgamized as follows: Section 2 presents
the adaptive HODFC for SISO affine system based on the
HOD . Section 3 converts the inverted pendulum system
into affine system, and stabilizes and regulates it using the
adaptive HODFC. In section 4 numerical experiments are
performed to show the validity of control for inverted
pendulum system,

2 Adaptive high order differential feed-
back control

Consider SISO affine system with disturbance, its differ-
ential equation is depicted as
Oy = f(x,0) + d(¢) + u. (1)
where v is the control input, y is the measured output,
y(” denotes the ith differential of y,x = [x;,%,,"",
%, T = [y, y(l) , e ,y(n—l)]T € A" denotes output dif-
ferential vector, and is also state vector of the system.
f(+) is unknown smooth nonlinear bounded time-varying
function. d(¢) is unknown bounded smooth distur-
bance. Initial conditions x{(ty) = Xx,.
The given target trajectory y, exists differentials up to

nth-order, and y'*' is continuous. If y, does not satisfy
these conditions, we soften it to meet the conditions . Set-
ting given input differential vector x, = [y,, y(,” A
y{#=P]T € =7, and given input extended differential
vector ¥ = [yr ,y(r” ), y(r") 1T, r € 37*! extended
output differential vector 7 = [y,y(” eyt e
=+ and error extended differential vectore = r - 7 =
[errensren]t = [e, e e M7 = mrel
where e = y, ~ y.

In general, the output y and the given input y, are
known, but the output extended differential vector z and
the given input extended differential vector r are un-
known . Literature [ 6] proposed a class of HOD which
extracted differentials up to n-th order for any measurable
signal y(t) which possesses nth-order differential. Setting
5 = [y , )A,(l)
the extended differential vector z = [y, y(” st

AN y(") 1" to express estimating vector of
, y( n) T
(note that y(” denotes estimate of y(” , is not the ith
differential of ¢ ).

The presented HOD is represented as combined expres-
sion, i. e. connecting n, order dynamic system (2) with
n + 1 order algebra equation (3).

£, =% +aly-%), lsign, -1,
s, {
ﬁnu = anu(y—fl)'
(2)
J = £
{ (l) A . (3)
§°7 = i +aly - £),i =2,,n,

where n, is the order of the system Z, generally, setting n,,
=n+1,£,%£,,",£,, are the states of the system X,
a;(i = 1,~*,n,) are the parameters. The problem is
how to obtain filtering signal ¥ based on the measured sig-
nal y(t), furthermore, to obtain estimating signal §‘"
. y( )

Obviously, the stability of the HOD is identical to the
system 2. Making Laplace transformation for Eq. (2), we
easily obtain transfer function from y to £,

b

ars®™ '+ 4 oa, s + Qp,
@(3) = n —1 : ‘
s% + aps™T T+t 4+ a5 + a,,
If the parameters a¢;(i = 1,*-,n,) are not correctly

given, all the extracted differentials by the HOD are possi-
bly not ideal, even the system 2 is unstable. We analyzed
the parameters design of the system = based on root-locus
in literature [6] . The parameters are given by the follow-
ing form;

{ai = KCLa' K = nfa/(n, - DN,

| ()
a € [2,30]’L = 1,21"'1"'0-
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Note that the HOD has been simplified into two ad- 0 1 0 0
justable parameters n, and a. 0 0 1 0
We had the following remark for the HOD under the A, = : : A
parameters formula (4) (see literature [6]): 0 0 0 1
1) The HOD does not rely on the model of the esti- -k, —k,y -k, - -k

mated system ||, and it is an additional system based on
signal y(1); 2) The HOD is an asymptotically stable sys-
tems; 3) The HOD holds higher convergence,and satis-
fies

11:;:y“’ = y(i),i =0,,n. (5)
where 79 denotes §, where @ —> ® is strictly in mathe-
matics. In practice only taking a € [2,30], the HOD has
higher precision.

In the following, we study the control problem based
on the differentials up to n-th order.

Assumption 1 The extended differential vector of
the output z and extended differential vector of reference
input r are known, and y'*’ is continuous.

Theorem 1 For the time-varying nonlinear system
(1) with unknown model and with unknown distur-
bance, the HODFC is represented as

u = Ke + 1, (6)
where K = [k, ky_y, o, ky, 11 € 30D [ the poly-
nomial s* + k;s""' + ++* + k, is a Hurwitz polynomial,
and & is the filtering value of the control u, which satisfies

1=- 20 + Au, (7)
where A is a large positive number, %y = 0, ug = 0. The
HODFC makes the closed-loop system asymptotically sta-
ble, and has strong robustness for parameters and distur-
bance changing of the system, and meets convergence

lim limx = x,. (8)

> o

Proof From Eq.(1) and definition of e, we have
& = 3" -y =
Yo~ (flx, ) + d(t) +u) =
yi =y ey (e t) + d () + ),
Furthermore, the following form holds
€y = €2,

éz = €3,

én = ¥ =y oy (fx ) + dCE) + ).

(9)
Setting& = x - x, = [el,ez,"',en]TE A
o 1 0 - 0 0
o 0 1 - 0 0
A=+ 1 D|EE™r h = |0|C E"
O 0 0o - 1 0
0O 0 O 0 1

From Eq. (9),we have
E=Ae+b(yV -y iy (Hx, ) +d()+u)) =
A €+b(Ke+y ™ =y Wy (flx, ) +d (1) +u)) =
A,,,£+b(Ke+y(")—(f(x,l)+d(£)+u)).
(10)
where K' = [k,okooyo k] € 710 makes A, is a
Hurwitz matrix, it means that there exists matrix P = PT
> 0, for any positive matrix @, satisfies
PA, + AP = - Q.
Identically, K makes s" + kys"™' +
Hurwitz polynomial. In Eq.(10), Let
Ke + v — (f(x,t) +d(t) + u) = 0, (11)
We have the control law
u=Ke+y"™ - (flx,1) +d1)). (12)
Because the sum term f(x,t) + d(t) is unknown, the
control law is unable to be realized . From the system (1),
we have

- + k, become a

y' ~ (flx, 1) + d(1)) = u. (13)
But u is the control law which required to be gained, so it
is also unable to be realized. We consider the filtering val-
ue & of u is able to be realized because the filtering has lag
property from formula (7). Use & to replace u, and it
means

2~y - (flx,t) + d(1)). (14)
Substitute (14) into (12), we gain controller (6). Sub-
stitute (6) into (10), we have the following important
expression of the closed-loop system

€ = A& + b(u-1u)). (15)

In the following we prove stability, convergence and ro-
bustness for the closed-loop system (15) . From (7), the
equation is a filtering expression. The fltering £ is realized
via integrator, so the filtering 4 is necessarily continuous
no matter whether u is continuous . It means that the con-
tinuity of the filtering # does not rely on that of u, as
long as u is integrable. Furthermore, from the assumption
1 that ¥’ and y{" are continuous,so y'* and y' (i =
0, >, n — 1) must be also continuous, because of i < n.
Hence we obtain that e is continuous. Therefore we have
the control law u which must be continuous from (6) .
From (7) again, we have

g = Au/(s + A). (16)
From (16) and continuity of u, we obtain
limé = u. (17)

A+

Because A, is a Hurwitz matrix, the closed-loop control
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system is asymptotically stable, and from (15) and (17)
again, we have
lim limg = 0. (18)

PR
Hence we obtain convergent remark (8). Because the
controller (6) does not rely on the model of the system,
and only rely on signals of given input and output and
their differentials and high order differentials, the controller
is strong robust for the function f(-) and disturbance
d{t).

Explanation

1) Where A —> ® is only rigorous for mathematics
meanings . Because the control law u is continuous, taking
A € [5,100], filtering 7 can excessively approximate u .
The filtering & can be completely gained by other filtering
equation expect for Eq.(7) .

2) The HODFC not only realizes that the output of
the closed-loop system y track given input y,, but also
does that the differentials up to (n — 1) th of the output
y( D track the differentials up to (n — 1) th of given input
y4, which is different from the general objective that the
output of the closed-loop system track given input.

3) The HODFC has distinct physical meanings. The
control law has two terms, in which one term 4 over-
comes or counteracts sum term f(x,¢) + d(t), another
term Ke makes the closed-loop system asymptotically
stable which can be seen from Eq.(11) to Eq.(18).We
call the sum term f(x,t) + d(t) as generalized distur-
bance.

4) From the Assumption 1,the HODFC is non-adap-
tive for z, and r. From (1), output y possesses differen-
tials up to nth-order, which sadsfy the condition of mea-
surable input signal for HOD, therefore we estimate z and
r via the HOD to obtain Z and # based on the output y
and given input y,. Furthermore from (2), n

hence 7™ is continuous . The controller (6) is converted

into the following form:
u = Ké + 4 , (19)
where é = F — Z, hence we yield adaptive HODFC.
Fig. 1 shows the realized diagram of the adaptive
HODFC for nonlinear system based on HOD.

=n+1,

o =

l4®
) . (¢
Fr HOD % u Nonlinear J(_)_
H system
HOD
Fig. 1 Realized diagram of adaptive high order differential

feedback control based on the HOD
for nonlinear system

3 The inverted pendulum system analy-
sis, stabilization and regulation

Consider the benchmark model of the inverted pendu-
lum system with linear smooth friction!”!
(J+ml?) 50(2) == mLcosgo)y(z) +mlLgsing,

(20.1)
(M + m)ym = - by“) - (mLcos¢)gD(2) +
mLsing(")? + u,  (20.2)

where ¢ denotes the angle of the pendulum with respect
to vertical line, y denotes the position of the carriage, J
denotes inertia of the pendulum, L denotes distance be-
tween center of mass of pendulum and tip attached to the
carriage, M and m respectively denotes mass of the car-
niage and the pendulum, g denotes the acceleration due to
gravity, b denotes the linear coefficient of friction for the
carriage, u denotes the external force applied to the car-
riage .
3.1 Stabilization problem of pendulum

Design the closed-loop feedback control to achieve the
following double objectivesm

hmgo(t) = @ = 0, (211)
limy(t) =y = 0. (21.2)

This is synchronously stabilization problem for the angle of
pendulum and the position of carmage . Furthermore, if we
take y, s« 0, the stabilization problem is also the regulation
problem. Therefore, we mostly study the stabilization
problem.

From Egs.(20.1) and (20.2), the pendulum system is
a class of single input and two output system. Hence, we
can’ t directly apply the adaptive HODFC to control it.
But we can convert the system into two SISO affine sys-
temns, and use two controllers to control it.

In order to control a system, we should grasp its given
objective , output, control force and controlled plant. From
Eq.(20.1) of angle of pendulum, the output is angle ¢,
and the given objective is expression (21.1), and the
drive force is '» whose second integral is also the output
y of the carriage with pendulum. For Eq. (20.2) of the
carriage, it is activated by extemal force u, and produces
output acceleration y'?, the term — (mLcosg) @'? +
)25 couple term which can be taken into as
generalized disturbance, and the given objective is expres-
sion (21.2).

According to the above analyses, Eq.(20.1) and Eq.
(20.2) can be considered into double SISO affine sys-
tem. For Eq. (20. 1), to achieve the objective Eq.
(21.1),we can use one outer-loop adaptive HODFC to
obtain control law y%? . For the Eq.(20.2) ,we look the

¥,, (i.e second integral of y{?) as given objectives (its

mLsingo( @
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extended differential vector is r; = [y, , yw , yﬁ) 1M,

and design one inner-loop adaptive HODFC to obtain
control law u , then the control law u can achieve objec-

(2)
Mr

M\—-

o, €p

tive (21.1) . The whole system makes up of a control one
in series. The structure diagram of the closed-loop inverted
pendulum system is shown in Fig.2.

é @)

Hopl | AHODFC1

pendulum

AHODFC2

——— e —————— o — ———

HOD2

Fig. 2 Realized diagram of double adaptive HODFC based on the HOD for inverted pendulum system

Notice that the control law u possibly does not meet
the objective (21.2).To achieve objective (21. 2), we
give another constrained objective y,, = 0 for the inner-
loop control HODFC, and its extended given input is
r, = [yzmyél) ,yé? T [0,0,0]T (the dotted line in
the Fig.2) . To synthesize (21. 1) and (21.2),we define
a weighted given input extended vector for inner-loop
control HODFC

r = erl + Wzrz.

(22)
where W| and W, are weights. In the following, we give
weighting scheme:

If control is only stabilization problem,i.e y,, = 0,
weighing is not any significant, because of r, [0,0,
0], take r = ry or identcally take W, = [1,1,1],
W, = [0,0,0]. If control is regulation problem i.e, ¥,
#0,r = [y2,, 73, y32 17 2 [0,0,0]", take W, =
[1,1, 1]. From the above analyses, we know that the
most important objective fractional value is yﬁ)

In vector
r|, because y%%) is also control law in outer-loop HOD-
FC,so take W, = [0,0,w],w € [0.7,2]. In general,
the pendulum system is disturbed more severe, and the
parameters change bigger, w is taken bigger.

In order to unify the stabilization and regulation
problem, and make the formula simpler, we consider stabi-
lization problem as regulation problem. It means that we
take W, = [0,0,w],w € [0.7,2],W, = [1,1,1]in
both stabilization and regulation.

From (6) and (7), for the outer-loop HODFCI, the
control law y{2' is depicted as

. IR P RYRT )

(23)

= K¢e¢ +

The error differential vector is represented as
b = 1~ 2p =~ (9.9 g
where 250, [0,0,0]".
For inner-loop HODFC2, and the control law u is de-
picted as

(24)

u=-Ké +a,0=-20+Au. (25
inwhiché, =7 -2, F =W + Wofy,r| = [yirs
y”),yﬁ)]T,fz - [0,0,0]T,2_, - [y,y(l)’y(2)1T_ We
consider coefficient of control term ym being negative (i.
e reverse action) in Eq. (20.1), hence take - K, (not
K, ) to counteract the reverse action in Eq. (25).
3.2 Regulation problem of the position of pen-
dulum
During the time range t € [0,t;], to design feedback
controller which satisfies section 3.1 requirement of stabi-
lization problem,and t € [t;, T], where T > ¢4 = 0is
another given time, the system satisfies
o(t) >0, (26.1)
y(t) =y, = 0. (26.2)
where y, is a softened variable by given objective of posi-
tion yy (see literature (7).
The regulation problem is the same as stabilization
problem except for y, s« 0, hence the control scheme is

the same as that of Section 3.1 except for

r, = [)’z”}’g) ,)’éz)JT 7 [O,O,OJT-

Notice 1 1) The controller HODFC1 and HOD-
FC2 are all adaptive, because they are only based on out-
put variables ¢ and y of system, not based on the states
oD ) M p@ 4ng
}7(1) ,yfm , based on ¢ and y using the HOD.

2) The double adaptive HODFC does not rely on the
parameters and function relations of the models (20. 1)
and (20.2) . Therefore, the controller has strong robust-

ness for parameters and function relation changing.

and y*"/. We can obtain estimation ¢

4 Simulation and robustness verification
for penduluin system

4.1 Stabilization problem

We take the benchmark parameters (see literature (7D
of (20.1) and (20.2), M = 1.320kg,L = 0.25 m,
m=0.109kg,b=0.1N(m-s""),J = mL*/3,g =
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9.8 m/s?, and take initial values ©(0) = ¢V (0) =
y(0) = (0) = 0, and impulse force 406(:) N.
Design controller to make the closed-loop systemn satisty
the following requirement:

(1) < 0.02rad, t = 0.5s, (27.1)
[y(1)! <0.0lm, t = s, (27.2)
lu(t) < 10V (27.3)

6
and give the cost | = Jﬁ(pz( r)dr.

Firstly, we research stabilization of the system. The con-
troller is double adaptive HODFC, i. e Egs. (23),(24)
and (25) . Take the same parameters for the HODI, the
HOD?2,and the HOD3 as n, = 5,a = 5, and take the
parameters of the HODFC1 as K, = [16,8,1]7.4, = 10
in Eq. (23), and that of the HODFC2 in Eq.(25) as
K, = [25,10,1]".%; = 6, W, = [0,0,0.75], W, =
(1,1,1], the sample time 7 = 0.005. Fig.3 (a),(b),
(c) show the angle of pendulum ¢(t), position of the
carriage y(t) and driving force u(t) (includes impulse
force) respectively. To observe clearly initial transient pro-
cess, we plot u(t) in ¢t € [0,1]. Obviowly, ¢(1),
y(t) and u(t) satisfy requirement (27.1),(27.2) and
(27.3)respectively. In fact, the angle satisfies } ol t)| <
0.02 rad,t = 0.1 s; the position satisfies \ y(1) ‘ =< 0.
01 m; ¢t = 0 s3 because initial impulse force is 406( ) >
105 (), initial transient process appears | u(¢)| = 10V,
but only at ¢t = 0.01 s, satisfies Lu(t) | < 10V. Calcu-

6
late the cost I = L)(pz(r)dr = 0.0149,

0.04 T T T T T ™ T ———
0.02

0 H-\.

-0.02

—0.04
0

¢/ rad

0.02
0.01

y/m

—0.01
—0.02

—20

0 01020304 050607 0809 |
t/s

(c)

Fig. 3 Angle ¢, position y and force u in stabilization
4.2 Regulation problem

The parameters of the controlled pendulum system are

the same as that of section 4. 1. Designing a controller
satisfies the above requirement, and reaches another new
requiremnent that given objective of position y; = 0.2 m

after 15 = 5 s satisfies (1) = 0.2,¢(¢) =0, and does

lo(1) < 0.02rad, 1 = 65, (28.1)
[ y(1) - 74| <0.0lm,t = 7s, (28.2)
lu() i< 10V, (28.3)

10
and the cost [ = jo [ (1) + (y(1) = y¢)?hdr.
The controller is still the double adaptive HODFC, and

its parameters are taken the same as that of the above con-
troller in stabilization problem. The softened objective
curve is represented as

0, O<t < ty,

Yub = {0.2, >
16

2485+ 1677
Fig.4 (a),(b),and (c) show ¢(t),y{(t) and u(t)
respectively. The angle ¢(t) satisfies (28.1) at t =
5.525 s, the position y(t) does (28.2) att = 6.9 s,
and driving force u(¢) does (28.3).The cost

10
I = Jo Lo () + (y(1) — y)?tdr = 46.2761.

Las

Y2r =

@/ rad

y/m

u/V

BT
_20 | I T e 1 A1 1 L 1 1

Fig. 4 Angle ¢, position y and force « in regulation

The double adaptive HODFC in the above simulation
does not rely on the parameters of system and some func-
tion relation.
4.3 Verification of robustness under simulation

We consider complicated model with nonlinear smooth
friction or with disturbance, and parameters changing or
time-varying .
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4.3.1 Robust control for friction and parameter
changing

Consider the inverted pendulum system with nonlinear
smooth friction and that of node of pendulumm ,and pa-
rameters changing. The model is depicted as
(J + mL?) gom = —(mLcos¢) ym - Cgo“) +mlgsing,

(29.1)
(M+m)y? =-bl 3V [ (mLeoseg) ¢ +
mLE,ingo(gom)2 +u, (29.2)
where C = 0. 12 is coethcient of friction for node of pen-
dulum. Increase the coefficient of smooth nonlinear fric-
tdon b = 0.95, and magnify the value of m 4 times than
that in benchmark model,i.e m = 0.436, and take L =
0.625. Notce that the values of the three parameters go
beyond requirement in literature [8]. Other parameters
and initial condition are the same as that of benchmark
model (20.1) and (20.2).

a) We examine robust stabilization. The parameters of
the controller are completely the same as that of the above
controller except for the weight W, = [001.15]. The
control results are shown in Fig. 5. Obviously, ¢(t),
y(t) and u(t) respectively still satisfy requirement

6
(27.1),(27.2) and (27.3) . The cost I = Jogpz(r)dr
= 0.0151.

0_041 T T T T T T —
- 0.02
I
= 0
S 0,
——004. L I " s . 1 1 1 L
01 2 3 4 5 6 7 8 9 10
t/s
(a)
0.02 T T ™
c .
™ 0
-
|
02T 3 4 s 6 78 9 10
t/s
(b)
40 T T
> 20+
~~
= 0~
—20 L i L L A 1 1 1 L
01 2 3 4 5 6 7 8 9§ 10
t/s
(©)

Fig, 5 Angle ¢, position y and force u in robust stabilization

b) We examine regulation problem. The parameters of
controller are completely the same as that of the above ro-
bust stabilization a) . The control results are shown in the
Fig.6. The angle ¢(t), position y(¢) and driving force
u(t) respectively still satisfy requirements (28.1), (28.
2) and (28.3). The cost

I'= J;OW(T) + (y(2) = y)*tdr = 47.6302.

0.05

@/ rad

—0.02
—0.05 R S

y/m

40 f

17

_20 I |

t/s
(c)

Fig. 6 Angle ¢, position y and force u in robust regulation
4.3.2 Robust control for disturbed system and
parameters M being time-varying
The Eq.(29.2) is converted into the following form:

(M()+ m)y? = —b| 4V ‘—(mLcosgp)go(Z) +
mLsing( 90(1) Yiru+d(e), (30)

where
M(t) = sin(t) + My, My = 1.320,¢ € [0,20],
(31)
2, 10 <t < 11,
d(t) = {0, others. (32)

And other parameters are the same as that of system (29,
1) and (29.2).

a) We examine stabilization problem. Take W, = [0,
0,1.25], other parameters still do not change. The con-
trol resuls are shown in Fig.7. Obviously, ¢(t),y(t)

and u(t) respectively still satisfy requirements (27.1),
2

(27.2) and (27.3). 1 :J goz(z')dr = 0.0203. From
0

the figure we clearly see that the parameter time-varying
has little effectiveness, and the disturbance activate at time
10 < ¢t < 11, but the influence promptly disappear, which
demonstrate that the double adaptive has strong robustness
for the disturbance and parameter changing.

b) We examine regulation problem. The controller is as
the same as that of the above a) in section 4.3.2. The
control results are shown in Fig. 8. Obviously, go(t) R
y(t) and u(t) respectively still satisfy requirements
(28.1),(28.2) and (28.3) . Calculate the cost

I= ﬁowz(f) + (y(7) - yo)*lde = 47.9324.
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Fig. 7 Angle ¢, position y and force u in robust stabilization
(disturbed time-varying system )
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Fig. 8 Angle ¢, position y and force u in robust stabilization
( disturbed time-varying system)

Notice 2 The problem in section 4.3.2 goes beyond
studied scope in literature [ 8], we aim at demonstrating
the proposed adaptive HODFC that is valid and robust. In
fact, the adaptive HODFC is still robust for other parame-
ters changing and other bounded disturbance, and even for
functon relations changing ( certainly, if change function
relations, possibly the system is not a inverted pendulum
system, but we can demonstrate that the controller is
strong in robustness) .

5 Conclusion

This paper presents the adaptive HODFC for SISO
affine system, which does not rely on the model of the
controlled plant, and analyzes stability and robustness of
the closed-loop system. The stabilization and regulation
synchronously are studied as the same problem in the in-
verted pendulum system. The system is successfully stabi-
lized and regulated through converted it into double affine
one and using the proposed adaptive HODFC.

In fact,in further work, we present adaptive MHODFC
(multivariable HODFC), and are successfully applied in
control and synchronization for chaos system, and in con-
trol for AC tming system.
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