文章编号:1000-8152(2008)02-0344-04

矩阵式变换器的双电压控制策略及其仿真

陶以彬,杨 苹,钟国基,郭顺智

(华南理工大学电力学院,广东广州 510640)

摘要:讨论了基于双电压瞬时值控制的矩阵变换器的开关状态及控制函数,并在源开关的理论基础上推导出开 关状态控制函数表,最后通过仿真分析,给出了电压、电流的波形,验证了理论分析的正确性,为矩阵式变换器的软 硬件设计和实现提供了理论基础.

关键词: 矩阵式变换器; 双电压控制; 开关状态表 中图分类号: TM464 文献标识码: A

Double line-to-line voltage control strategy and simulation for matrix converters

TAO Yi-bin, YANG Ping, ZHONG Guo-ji, GUO Shun-zhi

(Electric power college, South China University of Technology, Guangzhou Guangdong 510640, China)

Abstract: The switch state and control function of matrix converters based on double line-to-line voltage control method are studied in this paper. The control table of switch state is then proposed based on "original key". Finally, the simulation results of voltage and current waveform are given to validate the theoretical analysis, it thus provides a theoretical basis for the design and realization of matrix converter.

Key words: matrix converter; double line-to-line voltage control; table of switch state

1 引言(Introduction)

矩阵式变换器,是一种具有优良的输入输出特性的交交直接变换器.具有传统交-直-交变换器无法比拟的优良特性^[1,2]:输出电压低次谐波含量少;输出频率不受输入频率影响;具有四象限运行能力;输入功率因数高等.近年来,由于其简单的拓扑结构(如图1)及其优良特性,而成为变换器研究的热点、

目前,对矩阵式变换器的研究主要集中于控制策略,其控制策略主要有直接变换和间接变换两大类. 而双电压瞬时值控制策略^[3]属于直接控制,它在改善变换器开关频率的限制,提高输出输入电压比等 方面有独到之处;当输入电源不对称或含有高次谐 波时,控制函数可以自动修正而不需额外的计算量, 因而非常有利于实时控制.因此,本文根据本实验室 研制无刷双馈风力发电系统的要求,对双电压瞬时 值控制策略进行研究,,得出开关状态表.最后通过 仿真,验证了理论分析的正确性.

2 双电压控制原理(Principle of double lineto-line voltage control)

2.1 控制原理(Control principle)

双电压合成是指当输入电压和输出电压处于某时间段内时,在每个开关周期内,利用两个输入线电压与一个零电压向量的线性组合来合成两个满足三相对称的输出线电压,其一般方程如下:

$$\begin{cases} u_{o1} = b_0 u_{i0} + b_1 u_{i1} + b_2 u_{i2}, \\ u_{o2} = c_0 u_{i0} + c_1 u_{i1} + c_2 u_{i2}. \end{cases}$$
(1)

基金项目:国家自然科学基金重点资助项目(60534040);广东省科技计划资助项目(2005A10505005, 2007B010400080).

收稿日期: 2007-09-05; 收修改稿日期: 2007-12-05.

式中: u_{o1}, u_{o2} 表示两个输出线电压的局部平均值; u_{i1}, u_{i2} 表示用来合成输出线电压的两个输入线 电压; u_{i0} 表示在一个开关周期内的电压零向量, $\mu u_{aa}, u_{bb}, u_{cc}$. $b_0, b_1, b_2, c_0, c_1, c_2$ 表示对应的开关占 空比^[3]. 其中:

$$b_0 + b_1 + b_2 = 1, \begin{cases} 0 \leq b_0, b_1, b_2 \leq 1, \\ 0 \leq c_0, c_1, c_2 \leq 1, \end{cases}$$

$$(2)$$

$$\begin{cases} b_1 = \frac{u_{i1} - u_{i3}}{\Delta} u_{o1}, \\ b_2 = \frac{u_{i3} + u_{i2}}{\Delta} u_{o1}, \\ b_0 = 1 - b_1 - b_2, \end{cases} \begin{cases} c_1 = \frac{u_{i1} - u_{i3}}{\Delta} u_{o2}, \\ c_2 = \frac{u_{i3} + u_{i2}}{\Delta} u_{o2}, \\ c_0 = 1 - c_1 - c_2. \end{cases}$$
(3)

式中: $\Delta = u_{i1}^2 + u_{i2}^2 + u_{i3}^2$, u_{i3} 是指在利用式子(1)合成 输出线电压时除式子中出现的两个输入线电压之 外的第3 个输入线电压(如 u_{ab} , u_{bc} , u_{ca}). 当输入三相 对称时, $\Delta = 4.5u_{im}^2$, u_{im} 为输入相电压幅值. 由此可 见, 这种占空比计算方法的一个优点是在输入三相 对称时, 其分母为一常量, 不需实时计算.

2.2 电压扇区的划分(Sector divisions of voltage)

为了使占空比满足式(2),通常选择式(1)中的两 个输入电压与输出电压极性相同.因此,在每个周期 内,把输入、输出电压按照某种规律划分成几个扇 区.常用做法是将输入输出电压分别划分为6个扇 区^[4],如图2.输入扇区划分的原则是:三相相电压中 只有一相出现极值,而另两相电压与之异号,且保持 单调变化.输出扇区划分的原则是:三相相电压均 保持单调变化,其中一相始终为正值,一相始终为负 值,第三相从正到负(或从负到正).

2.3 控制函数(Control Function)

当输入电压和期望输出电压位于某扇区时,在每 个开关周期内,由该输入电压扇区的两个输入线电 压,来线性合成期望输出线电压,对应的开关占空比 与输入输出电压的关系,称之为控制函数.

由于输入电压和输出电压在一个周期内均被划 分为6个扇区,它们共有36种组合.但是在每个采样 周期中,有一个开关一直是导通的,这个开关就称为 源开关^[5].它将输入电压扇区中出现正向最大值的 相与输出电压扇区中始终保持正值的相连接起来, 或者把输入电压扇区中出现负向最大值的相与输出 电压扇区中始终保持负值的相连接起来.

引入"源开关"之后,并根据式(2)(3)将36种情况归结为9种状态,得开关状态表如表1.

表中: on表示在一个采样周期内该开关始终处 于导通状态, 即为源开关; off表示在一个采样周期内 该开关始终处于关断状态.

	Ι	II	III
状	$L_1 = 2, L_2 = 2, 3$	$L_1 = 4, L_2 = 2, 3$	$L_1 = 6, L_2 = 2, 3$
	或 $L_1 = 5, L_2 = 5, 6$	或 $L_1 = 1, L_2 = 5, 6$	或 $L_1 = 3, L_2 = 5, 6$
	S_{11} - on, $S_{12} - b_0$, $S_{13} - c_0$	$S_{11} - \text{off}, S_{12} - b_2, S_{13} - c_2$	$S_{11} - \text{off}, S_{12} - b_1, S_{13} - c_1$
态	$S_{21} - \text{off}, S_{22} - b_1, S_{23} - c_1$	S_{21} - on, $S_{22} - b_0$, $S_{23} - c_0$	$S_{21} - \text{off}, S_{22} - b_2, S_{23} - c_2$
	$S_{31} - \text{off}, S_{32} - b_2, S_{33} - c_2$	$S_{31} - \text{off}, S_{32} - b_1, S_{33} - c_1$	S_{31} - on, $S_{32} - b_0$, $S_{33} - c_0$
	$u_{AB} = b_0 u_{aa} + b_1 u_{ab} + b_2 u_{ac}$	$u_{AB} = b_0 u_{bb} + b_1 u_{bc} + b_2 u_{ba}$	$u_{AB} = b_0 u_{cc} + b_1 u_{ca} + b_2 u_{cb}$
控	$u_{AC} = c_0 u_{aa} + c_1 u_{ab} + c_2 u_{ac}$	$u_{AC} = c_0 u_{bb} + c_1 u_{bc} + c_2 u_{ba}$	$u_{AC} = c_0 u_{cc} + c_1 u_{ca} + c_2 u_{cb}$
制	$b_1 = \frac{(u_{ab} - u_{bc})}{\Lambda} u_{AB}$	$b_1 = \frac{(u_{bc} - u_{ca})}{\Lambda} u_{AB}$	$b_1 = \frac{(u_{ca} - u_{ab})}{\Lambda} u_{AB}$
函	$b_2 = \frac{(u_{bc} + u_{ac})}{\Lambda} u_{AB}$	$b_2 = \frac{(u_{ca} + u_{ba})}{\Lambda} u_{AB}$	$b_2 = rac{(u_{ab} + u_{cb})}{\Lambda} u_{AB}$
数	$c_1 = \frac{(u_{ab} - u_{bc})}{\Lambda} u_{AC}$	$c_1 = \frac{(u_{bc} - u_{ca})}{\Lambda} u_{AC}$	$c_1 = \frac{(u_{ca} - u_{ab})}{\Lambda} u_{AC}$
	$c_2 = \frac{(u_{bc} + u_{ac})}{\Delta} u_{AC}$	$c_2 = \frac{(u_{ca} + u_{ba})}{\Delta} u_{AC}$	$c_2 = \frac{(u_{ab} + u_{cb})}{\Delta} u_{AC}$

表 1 9种开关状态及控制函数 Table 1 Nine kinds switch state and control function

	IV	V	VI
状	$L_1 = 2, L_2 = 4, 5$	$L_1 = 4, L_2 = 4, 5$	$L_1 = 6, L_2 = 4, 5$
	或 $L_1 = 5, L_2 = 1, 2$	或 $L_1 = 1, L_2 = 1, 2$	或 $L_1 = 3, L_2 = 1, 2$
	$S_{11} - c_0, S_{12} - \text{on}, S_{13} - b_0$	$S_{11} - c_2, S_{12} - \text{off}, S_{13} - b_2$	$S_{11} - c_1, S_{12} - \text{off}, S_{13} - b_1$
态	$S_{21} - c_1, S_{22} - \text{off}, S_{23} - b_1$	$S_{21} - c_0, S_{22} - on, S_{23} - b_0$	$S_{21} - c_2, S_{22} - \text{off}, S_{23} - b_2$
	$S_{31} - c_2, S_{32} - \text{off}, S_{33} - b_2$	$S_{31} - c_1, S_{32} - \text{off}, S_{33} - b_1$	$S_{31} - c_0, S_{32} - \text{on}, S_{33} - b_0$
	$u_{BC} = b_0 u_{aa} + b_1 u_{ab} + b_2 u_{ac}$	$u_{BC} = b_0 u_{bb} + b_1 u_{bc} + b_2 u_{ba}$	$u_{BC} = b_0 u_{cc} + b_1 u_{ca} + b_2 u_{cb}$
控	$u_{BA} = c_0 u_{aa} + c_1 u_{ab} + c_2 u_{ac}$	$u_{BA} = c_0 u_{bb} + c_1 u_{bc} + c_2 u_{ba}$	$u_{BA} = c_0 u_{cc} + c_1 u_{ca} + c_2 u_{cb}$
制	$b_1 = \frac{(u_{ab} - u_{bc})}{\Lambda} u_{BC}$	$b_1 = \frac{(u_{bc} - u_{ca})}{\Lambda} u_{BC}$	$b_1 = rac{(u_{ca} - u_{ab})}{\Lambda} u_{BC}$
函	$b_2 = rac{(u_{bc} + u_{ac})}{\Lambda} u_{BC}$	$b_2 = \frac{(u_{ca} + u_{ba})}{\Lambda} u_{BC}$	$b_2 = rac{(u_{ab} + u_{cb})}{\Lambda} u_{BC}$
数	$c_1 = \frac{(u_{ab} - u_{bc})}{\Lambda} u_{BA}$	$c_1 = \frac{(u_{bc} - u_{ca})}{\Lambda} u_{BA}$	$c_1 = \frac{(u_{ca} - u_{ab})}{\Lambda} u_{BA}$
	$c_2 = \frac{(u_{bc} + u_{ac})}{4} u_{BA}$	$c_2 = \frac{(u_{ca} + u_{ba})}{4} u_{BA}$	$c_2 = \frac{(u_{ab} + u_{cb})}{4} u_{BA}$
	Δ	Δ	Δ
	VII	VIII	IX
状	$VII L_1 = 2, L_2 = 6, 1$	$VIII L_1 = 4, L_2 = 6, 1$	$ IX L_1 = 6, L_2 = 6, 1 $
状	$VII L_1 = 2, L_2 = 6, 1 I_1 = 5, L_2 = 3, 4 UI UI UI UI UI UI UI $	$VIII L_1 = 4, L_2 = 6, 1$ $IIL_1 = 1, L_2 = 3, 4$	IX $L_1 = 6, L_2 = 6, 1$
状	VII $L_1 = 2, L_2 = 6, 1$ $III = 5, L_2 = 3, 4$ $S_{11} - b_0, S_{12} - c_0, S_{13} - on$	$VIII$ $L_1 = 4, L_2 = 6, 1$ $IIL_1 = 1, L_2 = 3, 4$ $S_{11} - b_2, S_{12} - c_2, S_{13} - off$	IX $L_1 = 6, L_2 = 6, 1$
状态	$ \begin{array}{c} \forall \mathbb{I} \\ L_1 = 2, L_2 = 6, 1 \\ \underline{x} L_1 = 5, L_2 = 3, 4 \\ S_{11} - b_0, S_{12} - c_0, S_{13} - \mathrm{on} \\ S_{21} - b_1, S_{22} - c_1, S_{23} - \mathrm{off} \\ a = b - c \\ a = c \\ a$	$VIII$ $L_1 = 4, L_2 = 6, 1$ $IIL_1 = 1, L_2 = 3, 4$ $S_{11} - b_2, S_{12} - c_2, S_{13} - off$ $S_{21} - b_0, S_{22} - c_0, S_{23} - on$	IX $L_1 = 6, L_2 = 6, 1$
状态	VII $L_1 = 2, L_2 = 6, 1$ $IIL_1 = 5, L_2 = 3, 4$ $S_{11} - b_0, S_{12} - c_0, S_{13} - on$ $S_{21} - b_1, S_{22} - c_1, S_{23} - off$ $S_{31} - b_2, S_{32} - c_2, S_{33} - off$	$VIII$ $L_1 = 4, L_2 = 6, 1$ $IIL_1 = 1, L_2 = 3, 4$ $S_{11} - b_2, S_{12} - c_2, S_{13} - off$ $S_{21} - b_0, S_{22} - c_0, S_{23} - on$ $S_{31} - b_1, S_{32} - c_1, S_{33} - off$	IX $L_1 = 6, L_2 = 6, 1$ $ ext{id} L_1 = 3, L_2 = 3, 4$ $S_{11} - b_1, S_{12} - c_1, S_{13} - \text{off}$ $S_{21} - b_2, S_{22} - c_2, S_{23} - \text{off}$ $S_{31} - b_0, S_{32} - c_0, S_{33} - \text{on}$
状态	$\begin{split} & \forall \mathbb{I} \\ L_1 = 2, L_2 = 6, 1 \\ & \not \boxtimes L_1 = 5, L_2 = 3, 4 \\ S_{11} - b_0, S_{12} - c_0, S_{13} - \text{on} \\ S_{21} - b_1, S_{22} - c_1, S_{23} - \text{off} \\ S_{31} - b_2, S_{32} - c_2, S_{33} - \text{off} \\ \hline u_{CA} = b_0 u_{aa} + b_1 u_{ab} + b_2 u_{ac} \end{split}$	$VIII$ $L_1 = 4, L_2 = 6, 1$ $III, L_2 = 3, 4$ $S_{11} - b_2, S_{12} - c_2, S_{13} - off$ $S_{21} - b_0, S_{22} - c_0, S_{23} - on$ $S_{31} - b_1, S_{32} - c_1, S_{33} - off$ $u_{CA} = b_0 u_{bb} + b_1 u_{bc} + b_2 u_{ba}$	IX $L_1 = 6, L_2 = 6, 1$ $\vec{x}L_1 = 3, L_2 = 3, 4$ $S_{11} - b_1, S_{12} - c_1, S_{13} - \text{off}$ $S_{21} - b_2, S_{22} - c_2, S_{23} - \text{off}$ $S_{31} - b_0, S_{32} - c_0, S_{33} - \text{on}$ $u_{CA} = b_0 u_{cc} + b_1 u_{ca} + b_2 u_{cb}$
状 态 控	$ \begin{array}{c} \forall \mathbb{I} \\ L_1 = 2, L_2 = 6, 1 \\ \vec{\mathfrak{I}} \\ \vec{\mathfrak{L}} \\ L_1 = 5, L_2 = 3, 4 \\ S_{11} - b_0, S_{12} - c_0, S_{13} - \text{on} \\ S_{21} - b_1, S_{22} - c_1, S_{23} - \text{off} \\ S_{31} - b_2, S_{32} - c_2, S_{33} - \text{off} \\ \end{array} \\ \begin{array}{c} u_{CA} = b_0 u_{aa} + b_1 u_{ab} + b_2 u_{ac} \\ u_{CB} = c_0 u_{aa} + c_1 u_{ab} + c_2 u_{ac} \end{array} $	$\bigvee \blacksquare$ $L_1 = 4, L_2 = 6, 1$ $i \not \equiv L_1 = 1, L_2 = 3, 4$ $S_{11} - b_2, S_{12} - c_2, S_{13} - off$ $S_{21} - b_0, S_{22} - c_0, S_{23} - on$ $S_{31} - b_1, S_{32} - c_1, S_{33} - off$ $u_{CA} = b_0 u_{bb} + b_1 u_{bc} + b_2 u_{ba}$ $u_{CB} = c_0 u_{bb} + c_1 u_{bc} + c_2 u_{ba}$	IX $L_1 = 6, L_2 = 6, 1$
状 态 控制	$ \begin{array}{c} \forall \mathbb{I} \\ L_1 = 2, L_2 = 6, 1 \\ \vec{\mathfrak{R}} L_1 = 5, L_2 = 3, 4 \\ S_{11} - b_0, S_{12} - c_0, S_{13} - \text{on} \\ S_{21} - b_1, S_{22} - c_1, S_{23} - \text{off} \\ S_{31} - b_2, S_{32} - c_2, S_{33} - \text{off} \\ \end{array} \\ \begin{array}{c} u_{CA} = b_0 u_{aa} + b_1 u_{ab} + b_2 u_{ac} \\ u_{CB} = c_0 u_{aa} + c_1 u_{ab} + c_2 u_{ac} \\ u_{CB} = c_0 u_{aa} + c_1 u_{ab} + c_2 u_{ac} \\ b_1 = \frac{(u_{ab} - u_{bc})}{\Lambda} u_{CA} \end{array} $	$\bigvee \blacksquare$ $L_{1} = 4, L_{2} = 6, 1$ $\exists \vec{\chi} L_{1} = 1, L_{2} = 3, 4$ $S_{11} - b_{2}, S_{12} - c_{2}, S_{13} - \text{off}$ $S_{21} - b_{0}, S_{22} - c_{0}, S_{23} - \text{on}$ $S_{31} - b_{1}, S_{32} - c_{1}, S_{33} - \text{off}$ $u_{CA} = b_{0}u_{bb} + b_{1}u_{bc} + b_{2}u_{ba}$ $u_{CB} = c_{0}u_{bb} + c_{1}u_{bc} + c_{2}u_{ba}$ $b_{1} = \frac{(u_{bc} - u_{ca})}{\Lambda}u_{CA}$	IX $L_{1} = 6, L_{2} = 6, 1$ $\vec{x}L_{1} = 3, L_{2} = 3, 4$ $S_{11} - b_{1}, S_{12} - c_{1}, S_{13} - \text{off}$ $S_{21} - b_{2}, S_{22} - c_{2}, S_{23} - \text{off}$ $S_{31} - b_{0}, S_{32} - c_{0}, S_{33} - \text{on}$ $u_{CA} = b_{0}u_{cc} + b_{1}u_{ca} + b_{2}u_{cb}$ $u_{CB} = c_{0}u_{cc} + c_{1}u_{ca} + c_{2}u_{cb}$ $b_{1} = \frac{(u_{ca} - u_{ab})}{\Lambda}u_{CA}$
状 态 控制 函	$ \begin{array}{c} \forall \mathbb{I} \\ L_1 = 2, L_2 = 6, 1 \\ \exists \mathbb{Z}L_1 = 5, L_2 = 3, 4 \\ S_{11} - b_0, S_{12} - c_0, S_{13} - \text{on} \\ S_{21} - b_1, S_{22} - c_1, S_{23} - \text{off} \\ S_{31} - b_2, S_{32} - c_2, S_{33} - \text{off} \\ \end{array} \\ \begin{array}{c} u_{CA} = b_0 u_{aa} + b_1 u_{ab} + b_2 u_{ac} \\ u_{CB} = c_0 u_{aa} + c_1 u_{ab} + c_2 u_{ac} \\ u_{CB} = c_0 u_{aa} + c_1 u_{ab} + c_2 u_{ac} \\ b_1 = \frac{(u_{ab} - u_{bc})}{\Delta} u_{CA} \\ b_2 = \frac{(u_{bc} + u_{ac})}{\Delta} u_{CA} \end{array} $	$\bigvee \blacksquare$ $L_{1} = 4, L_{2} = 6, 1$ $\exists \vec{\chi} L_{1} = 1, L_{2} = 3, 4$ $S_{11} - b_{2}, S_{12} - c_{2}, S_{13} - \text{off}$ $S_{21} - b_{0}, S_{22} - c_{0}, S_{23} - \text{on}$ $S_{31} - b_{1}, S_{32} - c_{1}, S_{33} - \text{off}$ $u_{CA} = b_{0}u_{bb} + b_{1}u_{bc} + b_{2}u_{ba}$ $u_{CB} = c_{0}u_{bb} + c_{1}u_{bc} + c_{2}u_{ba}$ $b_{1} = \frac{(u_{bc} - u_{ca})}{\Delta}u_{CA}$ $b_{2} = \frac{(u_{ca} + u_{ba})}{\Delta}u_{CA}$	IX $L_{1} = 6, L_{2} = 6, 1$ $\vec{x}L_{1} = 3, L_{2} = 3, 4$ $S_{11} - b_{1}, S_{12} - c_{1}, S_{13} - \text{off}$ $S_{21} - b_{2}, S_{22} - c_{2}, S_{23} - \text{off}$ $S_{31} - b_{0}, S_{32} - c_{0}, S_{33} - \text{on}$ $u_{CA} = b_{0}u_{cc} + b_{1}u_{ca} + b_{2}u_{cb}$ $u_{CB} = c_{0}u_{cc} + c_{1}u_{ca} + c_{2}u_{cb}$ $b_{1} = \frac{(u_{ca} - u_{ab})}{\Delta}u_{CA}$ $b_{2} = \frac{(u_{ab} + u_{cb})}{\Delta}u_{CA}$
状态 控制函数	$ \begin{array}{c} \forall \mathbb{I} \\ L_1 = 2, L_2 = 6, 1 \\ \exists \mathbb{X} L_1 = 5, L_2 = 3, 4 \\ S_{11} - b_0, S_{12} - c_0, S_{13} - \text{on} \\ S_{21} - b_1, S_{22} - c_1, S_{23} - \text{off} \\ S_{31} - b_2, S_{32} - c_2, S_{33} - \text{off} \\ \hline \\ u_{CA} = b_0 u_{aa} + b_1 u_{ab} + b_2 u_{ac} \\ u_{CB} = c_0 u_{aa} + c_1 u_{ab} + c_2 u_{ac} \\ u_{CB} = c_0 u_{aa} + c_1 u_{ab} + c_2 u_{ac} \\ b_1 = \frac{(u_{ab} - u_{bc})}{\Delta} u_{CA} \\ b_2 = \frac{(u_{bc} + u_{ac})}{\Delta} u_{CA} \\ c_1 = \frac{(u_{ab} - u_{bc})}{\Delta} u_{CB} \end{array} $	$\bigvee \blacksquare$ $L_{1} = 4, L_{2} = 6, 1$ $\implies L_{1} = 1, L_{2} = 3, 4$ $S_{11} - b_{2}, S_{12} - c_{2}, S_{13} - \text{off}$ $S_{21} - b_{0}, S_{22} - c_{0}, S_{23} - \text{on}$ $S_{31} - b_{1}, S_{32} - c_{1}, S_{33} - \text{off}$ $u_{CA} = b_{0}u_{bb} + b_{1}u_{bc} + b_{2}u_{ba}$ $u_{CB} = c_{0}u_{bb} + c_{1}u_{bc} + c_{2}u_{ba}$ $b_{1} = \frac{(u_{bc} - u_{ca})}{\Delta}u_{CA}$ $b_{2} = \frac{(u_{ca} + u_{ba})}{\Delta}u_{CA}$ $c_{1} = \frac{(u_{bc} - u_{ca})}{\Delta}u_{CB}$	IX $L_{1} = 6, L_{2} = 6, 1$ $\overrightarrow{\text{gl}}L_{1} = 3, L_{2} = 3, 4$ $S_{11} - b_{1}, S_{12} - c_{1}, S_{13} - \text{off}$ $S_{21} - b_{2}, S_{22} - c_{2}, S_{23} - \text{off}$ $S_{31} - b_{0}, S_{32} - c_{0}, S_{33} - \text{on}$ $u_{CA} = b_{0}u_{cc} + b_{1}u_{ca} + b_{2}u_{cb}$ $u_{CB} = c_{0}u_{cc} + c_{1}u_{ca} + c_{2}u_{cb}$ $b_{1} = \frac{(u_{ca} - u_{ab})}{\Delta}u_{CA}$ $b_{2} = \frac{(u_{ab} + u_{cb})}{\Delta}u_{CA}$ $c_{1} = \frac{(u_{ca} - u_{ab})}{\Delta}u_{CB}$

由以上分析可知,直接受控量为两相输出线电 压,另一相则为间接受控,于是,输出线电压uAB的 合成可能出现极性相反的电压^[5].

图 4 输入电流仿真结果 Fig. 4 The input current

为验证以上分析的正确性,并为该算法的软 硬件实现提供参考和依据. 本文在SIMULINK环 境下,编写理想开关函数,搭建了系统仿真模型. 模型参数设置为:开关频率为5000Hz;输入电压 为220V,50Hz对称电源,输出为110V,30Hz对称 交流输出,得的仿真波形如图3、图4所示.

以上仿真结果验证了理论分析的正确性,获得 良好的输出线电压正弦波形和输入电流波形,低 次谐波含量少.由于在输入侧未加滤波,输入电流 中含有高次谐波.

4 结论(Conclusions)

采用双电压瞬时值控制的矩阵式变换器,可获 得优良的输出电压品质.由于采用高频开关,输入 电流含有高次谐波,因此,在电路设计中需考虑引 入输入滤波器.另外,采用开关的优化组合,可有 效减小输出电压的谐波.引入闭环反馈,可改善电 压电流的畸变.

随着电力半导体器件如IGBT性能的不断提高, 具有优良控制性能又有优良输入电流品质的矩 阵式变换器已成为当前的发展趋势,本文针对矩 阵式变换器双电压控制所做的分析及仿真,对矩 阵式变换器件设计将有一定的意义,而矩阵式变

(上接第343页)

参考文献(References):

- NIELSEN P, BLAABJERG F, PEDERSEN J K. Space vector modulated matrix converter with minimized number of switches and feedforward compensation of input voltage unbalance[J]. *Proceedings of Power Electronics, Drives and Energy Systems for Industrial Growth*, 1996, 2(1): 833 – 839.
- [2] 陈希有,陈学允.基于PARK变换的空间矢量调制矩阵变换器的暂态分析[J]. 中国电机工程学报, 2000, 20(5): 80 84. (CHEN Xiyou, CHEN Xueyun. Park transformation based the transient analysis for the space vector modulated matrix converter[J]. *Proceedings of the Chinese Society for Electrical Engineering*, 2000, 20(5): 80 – 84.)
- [3] QOI B T, KAZERANI M. Voltage-source matrix converter as a controller in flexible ac transmission systems[J]. *IEEE Transactions on Power Delivery*, 1998, 13(1): 247 – 253.
- [4] ZHANG L, WATTHANASARAN C, SHEPHERD W. Control of AC-AC matrix converter for unbalanced and/or distorted supply voltage[C]//Proceedings of the 2001 IEEE Electronics Specialist Conference. Vancouver, Canada: The Institute of Electrical and Electronics Engineers, Inc, 2001: 1108 – 1113.

换器的实现则将解决在风力发电系统中一个关键 问题.

参考文献(References):

- [1] WHEELER P, CLARE J, EMPRINGHAM L, et al. Matrix converters[J]. *Power Engineering Journal*, 2002, 16(6): 273 – 282.
- [2] ALESINA A, VENRUTINI M G B. Analysis and design of optimumamplitude nine-switch direct AC-AC converters[J]. *IEEE Transation* on Power Electronics, 1989, 4(1): 101 – 112.
- [3] ISHIGURO A, FURUHASHI T, OKUMA S. A novel control method for forced commutated cycloconverters using instantaneous values of input line-to-line voltages[J]. *IEEE Transation on Industrial Electronics*, 1991, 38(3): 166 – 172.
- [4] 陈希有, 丛树久, 陈学. 双电压合成矩阵变换器特性与电压扇区的 关系分析[J]. 中国电机工程学报, 2001, 21(9): 63-67. (CHEN Xiyou, CONG Shujiu, CHEN Xueyun. Analysis Of the relationship between the voltage sectors and the performances of matrix converter based on two voltage synthesis[J]. *Proceedings of the Chinese Society for Electrical Engineering*, 2001, 21(9): 63-67.)
- [5] 穆新华, 庄心复, 陈怀亚. 双电压控制的矩阵变换器的开关状态与 仿真分析[J]. 电工技术学报, 1998, 13(1): 46 – 50.
 (Mu Xinhua, ZHUANG Xinfu, CHEN Huaiya. The switch state analysis and simulation of matrix converter using two-voltage control technique[J]. *Transation of China Electrotechnical Society*, 1998, 13(1): 46 – 50.)
- [5] WEI Lixiang, MATUSHITA Yoichi, LIPO T A. A compensation method for dual-bridge matrix converters operating under distorted source voltages[C]//Proceedings of the 2003 IEEE Industrial Electronics Society. Roanoke, Virginia, USA: The Institute of Electrical and Electronics Engineers, Inc, 2003: 2078 – 2084.
- [6] 邓文浪,杨欣荣,朱建林.不平衡负载情况下基于双序dq坐标系 双级矩阵变换器的闭环控制研究[J].中国电机工程学报,2006, 26(19):70-75.
 (DENG Wenlang, YANG Xinrong, ZHU Jianlin. Study of closed loop control based on double synchronous rotating frame for two-stage matrix converter under unbalanced load[J]. *Proceedings of the Chinese Society for Electrical Engineering*, 2006, 26(19): 70-75.)
- [7] 杨国顺, 吴捷, 陈渊睿. 矩阵变换器的自抗扰控制技术[J]. 电机与 控制学报, 2005, 9(4): 311 – 15.
 (YANG Guoshun, WU Jie, CHEN Yuanrui. Auto-disturbance rejection control technique of matrix converter [J]. *Electric Machines and Control*, 2005, 9(4): 311 – 15.)
- [8] YANG J M, JIN X, WU J, et al. Passivity-based control incorporating trajectory planning for a variable-reluctance finger gripper[J]. Proceedings of the Institution of Mechanical Engineers, PART I: Journal of Systems and Control Engineering, 2004, 218(3): 99 – 109.