文章编号:1000-8152(2009)03-0299-06

含有参数不确定性的挠性航天器姿态跟踪滑模控制

靳永强, 刘向东, 侯朝桢

(北京理工大学自动控制系,北京100081)

摘要:对有不确定参数的挠性航天器姿态跟踪控制,提出了一种基于滑模控制的姿态跟踪控制律.挠性航天器动力学采用混合坐标法进行建模;构造挠性模态观测器对挠性模态变量进行观测.基于Lyapunov稳定性原理得到含有挠性模态观测器的滑模控制律,并给出了全局渐近稳定性的证明.对各个仿真结果进行比较,显示出本文提出的 滑模控制律针对航天器惯量阵不确定性具有良好的鲁棒性,而且具有较强的扰动抑制能力.

关键词: 滑模控制; 挠性航天器; 姿态跟踪; 参数不确定性; 观测器

中图分类号: V448.2 文献标识码: A

Sliding-mode attitude tracking control for a flexible spacecraft with parametric uncertainty

JIN Yong-qiang, LIU Xiang-dong, HOU Chao-zhen (Department of Automatic Control, Beijing Institute of Technology, Beijing 100081, China)

Abstract: For the attitude tracking control of a flexible spacecraft with parametric uncertainty, an attitude tracking control law is presented based on the sliding-mode control. The dynamic model of the flexible spacecraft is built by the hybrid coordinate method; and a flexible modal-observer is developed for observing the flexible variables of this model. A sliding-mode control law containing the flexible modal-observer is then obtained by using Lyapunov approach; the closed-loop system under this control is proved to be global asymptotically stable. Comparison of simulation results also shows that this control law provides high robustness to the inertia-matrix uncertainty of the spacecraft and attenuates the external disturbance well.

Key words: sliding-mode control; flexible spacecraft; attitude tracking; parametric uncertainty; observer

1 引言(Introduction)

随着空间技术的进步和空间活动的频繁,航天器 经常需要跟踪一个给定姿态来完成某些空间任务, 因此航天器姿态跟踪动力学与控制问题是国际航天 领域的一个前沿问题^[1,2].姿态跟踪控制问题的难点 主要表现在以下几个方面:航天器具有大型复杂的 挠性附件,不能再将航天器看作刚体模型,姿态动力 学非常复杂;航天器附件展开收缩造成星体转动惯 量的变化和在轨运行受到各种扰动力矩的影响;航 天器大角度机动跟踪时动力学和运动学的强烈非线 性等等.因此,姿态跟踪控制要求姿态控制系统能针 对挠性航天器惯量不确定性和外部扰动具有良好的 鲁棒性.在挠性航天器的姿态跟踪控制方面,现已 存在主动振动抑制^[3],自适应模糊滑模控制^[4,5]等方 法.文献[6,7]设计了基于挠性模态观测器的姿态跟

本文针对带挠性附件航天器的姿态跟踪控制问题,提出基于挠性模态观测器的滑模控制律.控制律的设计充分考虑了工程应用的实际问题,计算量小, 不需要在挠性附件上额外添加传感器,并保证控制 律针对参数不确定性和外部扰动力矩具有足够鲁棒 性.该方法利用混合坐标法对挠性航天器动力学进 行建模,构造挠性模态观测器.利用Lyapunov稳定性 原理得到含有挠性模态观测器的滑模控制律,并且

踪控制律.该方法计算量小,不需要在挠性附件上附加任何传感器,适合工程应用,缺点是控制律建立在动力学方程中陀螺非线性项精确抵消基础之上,针对惯量不确定性无法取得好的效果.滑模变结构控制由于对系统参数不确定性和外部扰动具有较强鲁棒性^[8],近些年在挠性航天器控制方面得到了广泛应用^[3,4,9,10].

收稿日期: 2007-07-09; 收修改稿日期: 2008-07-04.

证明该控制律全局渐近稳定. 仿真结果的比较表明, 本文提出的控制律针对惯量不确定性和外部扰动力 矩都有良好鲁棒性,具有工程应用价值.

2 问题描述(Problem statement)

考虑惯量不确定性时,一类挠性航天器姿态动力 学方程为

$$J\dot{\omega} + [\omega \times] J\omega + C\ddot{\eta} = T_{\rm c} + T_{\rm d}.$$
 (1)

其中: $J = (I_3 + \Delta)J_0 \in \mathbb{R}^{3\times 3}$ 为航天器的惯量 张量矩阵, J_0 为惯量标称值, Δ 为惯量的不确定系 数, I_3 为三维单位阵, $\omega \in \mathbb{R}^3$ 为航天器姿态角速度, $T_c \in \mathbb{R}^3$ 为控制力矩, $T_d \in \mathbb{R}^3$ 为有界扰动力矩, η 为 挠性附件模态坐标矢量, C为挠性附件与星体的耦 合系数矩阵, $[\omega \times]$ 表示 ω 的反对称矩阵, 定义为

$$[\omega \times] = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix}.$$

为避免姿态描述中的奇异点,采用修正罗德里格参数(modified Rodrigues parameters, MRP)作为姿态描述参数. $令\sigma_{di}$ 表示惯性空间中的给定姿态, σ_{bi} 表示航天器绝对姿态. 定义航天器本体相对于给定姿态的相对姿态 σ_{c} 为^[11]

$$\sigma_{e} = \sigma_{bi} \otimes \sigma_{di}^{-1} = \frac{\sigma_{di}(\sigma_{bi}^{T}\sigma_{bi}-1) + \sigma_{bi}(1-\sigma_{di}^{T}\sigma_{di}) - 2[\sigma_{di}\times]\sigma_{bi}}{1+(\sigma_{di}^{T}\sigma_{di})(\sigma_{bi}^{T}\sigma_{bi}) + 2\sigma_{di}^{T}\sigma_{bi}}.$$
(2)

相对姿态运动学方程为

$$\dot{\sigma}_{\rm e} = M\omega_{\rm e}.\tag{3}$$

其中

$$M = \frac{1}{4} [(1 - \sigma_{\rm e}^{\rm T} \sigma_{\rm e}) I_{3 \times 3} + 2[\sigma_{\rm e} \times] + 2\sigma_{\rm e} \sigma_{\rm e}^{\rm T}], \quad (4)$$

 ω_{e} 为航天器本体相对于给定姿态的相对姿态角速度, $\omega_{e} = \omega - \omega_{di}^{b}$, $\omega_{di}^{b} = R_{bd}\omega_{di}$ 为 ω_{di} 在航天器本体系下的表示, ω_{di} 为给定姿态的角速度, R_{bd} 为给定姿态到航天器本体的方向余弦阵.采用混合坐标法建立挠性附件动力学方程为^[6,12]

$$\begin{bmatrix} \dot{\eta} \\ \dot{\psi} \end{bmatrix} = A \begin{bmatrix} \eta \\ \psi \end{bmatrix} - ABC^{\mathrm{T}}\omega_{\mathrm{e}} - BC^{\mathrm{T}}\dot{\omega}_{di}^{b}.$$
 (5)

其中:

$$A = \begin{bmatrix} 0 & I \\ -K - D \end{bmatrix}, B = \begin{bmatrix} 0 \\ I \end{bmatrix},$$

I为适当维数的单位阵, 0为适当维数的零矩阵, $D = 2\xi\Lambda, K = \Lambda^2, \psi = \dot{\eta} + C^{T}\omega_{e}, \xi$ 为挠性附 件模态阻尼比矩阵, *A*为挠性附件模态频率矩阵. 设 *D*, *K*均正定, 即挠性结构含有非负的惯性阻尼.

采用w。描述的相对姿态动力学方程

$$J_{\rm m}\dot{\omega}_{\rm e} = T_{\rm c} + T_{\rm d} - [\omega \times] J\omega + C \left(D\psi + K\eta\right) - CDC^{\rm T}\omega_{\rm e} - J_{\rm m}\dot{\omega}^{b}_{di}.$$
(6)

其中 $J_{\rm m} = J - CC^{\rm T}$.式(3)(5)和式(6)构成了挠性航 天器姿态跟踪的数学模型.姿态跟踪的任务是实现 航天器本体系无差跟踪给定姿态.因此,姿态跟踪控 制问题就是寻找控制律 $T_{\rm c}$ 把($\sigma_{\rm e}, \omega_{\rm e}$)控制到(0,0).

3 滑模跟踪控制律设计(Design of sliding mode tracking control law)

3.1 状态反馈的滑模控制律(Sliding mode control law using state feedback)

对于式(3)(5)和(6)描述的挠性航天器姿态跟踪控制, 假设状态($\sigma_{e}, \omega_{e}, \eta, \psi$)完全可测量, 在这种情况下, 可以得到基于状态反馈的滑模控制律.

定理1 当采用下式的滑模控制律:

$$T_{\rm c} = [\omega \times] J_0 \omega - C \left(D\psi + K\eta \right) + CDC^{\rm T}\omega_{\rm e} + J_{m0}\dot{\omega}^b_{di} - J_{m0}M^{-1}\dot{M}\omega_{\rm e} - cJ_{m0}\omega_{\rm e} - J_{m0}M^{-1}\lambda {\rm sgn} S,$$

$$(7)$$

其中: *c*是滑模面斜率,为正定对角矩阵,*S*为滑 模面函数, λ sgn*S*为切换控制量, λ 为切换控制量 增益,是一正定对角阵; sgn*x*为符号函数; *J*_{m0} = *J*₀ - *CC*^T = *J*_m*G*,*G* = *I* - *J*_m⁻¹ Δ *J*₀ 是*J*_m的不确 定系数, $\Delta \neq -J_m J_0^{-1}$ 时,*G*是可逆的.

若λ取值为

$$\lambda = (u_{\max} + \alpha)MG^{-1}M^{-1},\tag{8}$$

其中:
$$\alpha$$
为大于零的标量, $u_{\max} \ge ||u||_{\infty}$,
 $u = MJ_{m}^{-1}T_{d} - MJ_{m}^{-1}[\omega \times] \Delta J_{0}\omega + MJ_{m}^{-1}\Delta J_{0}M^{-1}(cM + \dot{M})\omega_{e} - MJ_{m}^{-1}\Delta J_{0}\dot{\omega}_{di}^{b}$
(9)

是由惯量不确定性和外部扰动力矩带来的不确定部分,则挠性航天器姿态跟踪控制系统式(3)(5)和(6)是 全局渐近稳定的.

证 选取滑模面

$$S = c\sigma_{\rm e} + \dot{\sigma}_{\rm e},\tag{10}$$

其中c是滑模面的斜率,取候选Lyapunov函数为

$$V(t) = \frac{1}{2}S^{\mathrm{T}}S.$$
 (11)

对V(t)沿状态轨迹求导,得

$$\dot{V}(t) = S^{\mathrm{T}}\dot{S} = S^{\mathrm{T}}(cM\omega_{\mathrm{e}} + \dot{M}\omega_{\mathrm{e}} + M\dot{\omega}_{\mathrm{e}}).$$
 (12)

将式(6)和(7)代入式(12)中得到

$$\dot{V}(t) = -S^{\mathrm{T}}(MGM^{-1}\lambda \operatorname{sgn} S + u).$$
(13)

其中u见式(9). λ按式(8))取值,则可得

$$\dot{V}(t) \leqslant -\alpha \sum_{i=1}^{3} |S_i|, \tag{14}$$

则V(t)是Lyapunov函数,由Lyapunov稳定性定理可 以判断系统是渐近稳定的^[13].若 $||S|| \rightarrow \infty$,则V(t) $\rightarrow \infty$,进一步可知系统全局渐近稳定.但由于系统 中存在不确定部分u,因此系统只能是渐近有界的.

注 1 假设系统的初值为 $\sigma_{e}(0)$ 和 $\omega_{e}(0)$,一定有界,同 时 Δ , *G*, *J*₀, *J*_m, *J*_{m0}, ω_{di} 均有界,因此u(0)必有界,则一定 存在 u_{m} ,使 $||u(0)||_{\infty} \leq u_{m}$ 成立,若 $\lambda = (u_{m} + \alpha)MG^{-1}M$, 则 $\dot{V}(0) < 0$,系统在初始时刻附近是稳定的,不难得知 $\dot{\sigma}_{e}(0) < 0$ 和 $\dot{\omega}_{e}(0) < 0$,那么, $||u(t)||_{\infty} < ||u(0)||_{\infty} \leq u_{m}$,存 在 u_{max} , 使 $u_{max} \geq ||u||_{\infty}$ 成立.

注 2 状态反馈控制律需要所有状态全部可测, 在实际应用中, 这是一个非常苛刻的条件. 一般来说, 通过姿态确定算法可以得到状态(σ_e, ω_e), 但挠性模态变量(η, ψ)的测量比较困难, 因此状态反馈控制律在实际中的应用范围有限.

注 3 滑模控制的控制量不连续导致系统存在抖振现象.为减弱抖振,式(7)中的符号函数可以用饱和函数sat(*S_i*, ε)近似,滑模面变成了滑模边界层

$$\operatorname{sat}(S_i, \varepsilon) = \begin{cases} \operatorname{sgn} S_i, \ |S_i| > \varepsilon, \\ S_i/\varepsilon, \quad |S_i| \leqslant \varepsilon, \end{cases}$$

ε为滑模边界层的厚度. 在这种近似下,只能保证姿态跟踪 误差收敛到原点附近的一个小邻域,姿态跟踪系统也只能 是渐近有界的.

3.2 输出反馈的滑模控制律(Sliding mode control law using output feedback)

针对实际应用中(η,ψ)难以测量的问题, 避免采 用状态反馈而采用输出反馈;并且设计观测器对挠 性模态变量进行观测. 这样就得到了输出反馈的滑 模控制律.

定理2 当采用下式的滑模控制律:

$$T_{\rm c} = [\omega \times] J_0 \omega - C (D \hat{\psi} + K \hat{\eta}) + C D C^{\rm T} \omega_{\rm e} + J_{m0} \dot{\omega}^b_{di} - J_{m0} M^{-1} \dot{M} \omega_{\rm e} - J_{m0} c \omega_{\rm e} - J_{m0} M^{-1} \lambda_{\rm Sgn} S, \qquad (15)$$

采用下式的挠性模态观测器:

$$\begin{bmatrix} \dot{\hat{\eta}} \\ \dot{\hat{\psi}} \end{bmatrix} = A \begin{bmatrix} \hat{\eta} \\ \hat{\psi} \end{bmatrix} - ABC^{\mathrm{T}}\omega_{\mathrm{e}} - BC^{\mathrm{T}}\dot{\omega}_{di}^{b} +$$

$$\Gamma^{-1} \begin{bmatrix} (S^{\mathrm{T}} M J_{m0}^{-1} C D)^{\mathrm{T}} \\ (S^{\mathrm{T}} M J_{m0}^{-1} C K)^{\mathrm{T}} \end{bmatrix},$$
(16)

其中: *c*是滑模面斜率, *Γ*为正定对角的观测器增益 矩阵, 且满足*ΓA* < 0. 由前文挠性附件具有非负惯 性阻尼的假设可知, 这样的*Γ*是存在的.

若λ取值为

$$\lambda = (u_{1\max} + \alpha)MG^{-1}M^{-1},$$
 (17)

其中:

$$u_{1 \max} \ge \|u_{1}\|_{\infty},$$

$$u_{1} = MJ_{m}^{-1}T_{d} - MJ_{m}^{-1}[\omega \times]\Delta J_{0}\omega +$$

$$S^{T}MJ_{m}^{-1}\Delta J_{0}M^{-1}(cM + \dot{M})\omega_{e} -$$

$$MJ_{m}^{-1}\Delta J_{0}\dot{\omega}_{di}^{b} +$$

$$[e_{\eta}^{T} e_{\psi}^{T}] \begin{bmatrix} (-S^{T}MJ_{m}^{-1}\Delta J_{0}J_{m0}^{-1}CD)^{T} \\ (-S^{T}MJ_{m}^{-1}\Delta J_{0}J_{m0}^{-1}CK)^{T} \end{bmatrix} (18)$$

是由惯量不确定性和外部扰动力矩带来的不确定部 分.则挠性航天器姿态跟踪控制系统式(3)(5)和(6)是 全局渐近稳定的.

证 仍选滑模面如式(10). 取候选Lyapunov函数 为

$$V_1(t) = \frac{1}{2}S^{\mathrm{T}}S + \frac{1}{2}\begin{bmatrix}e_{\eta}^{\mathrm{T}} & e_{\psi}^{\mathrm{T}}\end{bmatrix}\Gamma \begin{bmatrix}e_{\eta}\\e_{\psi}\end{bmatrix}, \quad (19)$$

其中 $\begin{bmatrix} e_{\eta} \\ e_{\psi} \end{bmatrix} = \begin{bmatrix} \eta \\ \psi \end{bmatrix} - \begin{bmatrix} \hat{\eta} \\ \hat{\psi} \end{bmatrix}$ 为挠性模态的观测误差. 对 $V_1(t)$ 沿状态轨迹求导,得

$$\dot{V}_{1}(t) = S^{\mathrm{T}}(cM\omega_{\mathrm{e}} + \dot{M}\omega_{\mathrm{e}} + M\dot{\omega}_{\mathrm{e}}) + [e_{\eta}^{\mathrm{T}} \ e_{\psi}^{\mathrm{T}}]\Gamma\left(\begin{bmatrix}\dot{\eta}\\\dot{\psi}\end{bmatrix} - \begin{bmatrix}\dot{\eta}\\\dot{\psi}\end{bmatrix}\right). \quad (20)$$

将式(3)(6)(15)和(16)代入式(20)中得到

$$\dot{V}_{1}(t) = -S^{\mathrm{T}}(MGM^{-1}\lambda\mathrm{sgn}\,S + u_{1}) + [e_{\eta}^{\mathrm{T}} \ e_{\psi}^{\mathrm{T}}]\Gamma A \begin{bmatrix} e_{\eta} \\ e_{\psi} \end{bmatrix}, \qquad (21)$$

其中u见式(18). λ按式(17)取值,则可得

$$\dot{V}_{1}(t) \leqslant -\alpha \sum_{i=1}^{3} |S_{i}| + \begin{bmatrix} e_{\eta} & e_{\psi}^{\mathrm{T}} \end{bmatrix} \Gamma A \begin{bmatrix} e_{\eta} \\ e_{\psi} \end{bmatrix}. \quad (22)$$

由于 $\Gamma A < 0$, $\dot{V}_1(t) < 0$, 则 $V_1(t)$ 是Lyapunov函数, 由Lyapunov稳定性定理可知系统是渐近稳定的^[13]. 若 $\|S^{T} e_{\eta}^{T} e_{\psi}^{T}\| \to \infty$, 则 $V_1(t) \to \infty$, 进一步可知 系统是全局渐近稳定的. 同样由于系统中存在不确 定部分u, 因此系统只能是渐近有界的.

301

4 仿真结果(Simulation results)

进行仿真实验验证提出的控制律.采用文[12]中 给出的航天器和挠性附件参数,考虑到状态反馈控 制律在实际应用中的限制,仿真结果主要针对输出 反馈控制律.

$$\omega_{di} = \begin{bmatrix} 0.001 \sin(0.126t) \\ 0.0008 \sin(0.094t) \\ 0.0015 \sin(0.113t) \end{bmatrix} \operatorname{rad/s},$$

$$T_{d0} = \begin{bmatrix} 0.001 \sin(0.1t) \\ 0.001 \sin(0.1t) \\ 0.001 \sin(0.1t) \end{bmatrix} \operatorname{Nm},$$

$$\sigma_{di}(0) = \begin{bmatrix} -0.154 \ 0.220 \ 0.141 \end{bmatrix}^{\mathrm{T}}.$$

设 $\sigma_{bi} = [0 \ 0 \ 0]^{\mathrm{T}}$,则由式(2)得 $\sigma_{\mathrm{e}}(0) = -\sigma_{di}$.

假设航天器姿态角速度初值 $\omega(0) = 0, \omega_{e}(0) = -R_{bd}\omega_{di},$ 为保证在初始时刻挠性附件不发生形变, 即 $\eta(0) = 0, \dot{\eta}(0) = 0,$ 可得 $\psi(0) = C^{T}\omega_{e}(0).$

控制器和观测器参数 $c = 0.05I_{3\times3}, \lambda = 0.5I_{3\times3},$ $\Gamma = 10I_{3\times3}, \varepsilon = 0.002.$

1) 状态反馈控制律.

图1给出了在 $J = J_0$ 时状态反馈控制律的欧拉角和角速度的响应曲线.

由图1可以看出,采用状态反馈控制律能够使系 统渐近有界.图中, θ₁, θ₂, θ₃分别表示滚动、俯仰和 偏航角.稳态时姿态控制精度和姿态稳定度分别 为0.001°和0.0002°/s,

2) 输出反馈控制律针对惯量不确定性的鲁棒性.

将文献[6]中输出反馈控制律与本文输出反馈控制律的仿真结果进行对比. 在 $J = J_0$, $J = 5J_0$ 时分别进行仿真来考察两种控制律针对惯量不确定性的鲁棒性. 图2中给出了在 $J = J_0$ 时挠性模态坐标及其变化率的观测误差,因挠性模态阶数越高,其振幅也越小,这里只给出了前两阶挠性模态及其变化率的观测误差. 两种控制律下欧拉角和角速度的响应曲线分别如图3和4.

由图2可以看出,挠性模态及其变化率的观测误差随着时间的增加迅速衰减.由于此处航天器跟踪 一个角速度为正弦规律的给定姿态,稳态时挠性附 件仍然存在周期性的弹性形变,稳态时挠性模态及 其变化率的观测误差分别为0.002和0.001.

比较图3和图4可以看出在相同的扰动力矩下惯 量改变对控制品质的影响. 将图3(a)和图4(a)进行比 较,可以看出在惯量发生剧烈变化的情况下,采用 文献[6]中控制律时, *J* = *J*₀时能获得较好的响应品 质,约100s进入稳态,稳态姿态控制精度和姿态稳定 度分别为0.002°和0.0002°/s. *J* = 5*J*₀时,稳态姿态 控制精度和姿态稳定度分别为0.02°和0.001°/s. 将 图3(b)和图4(b)进行比较,可以看出在相同条件下, 采用本文输出反馈控制律前后过渡过程时间都是大 约100 s,图3(b)图中姿态控制精度和姿态稳定度分 别为0.001°和0.0002°/s,图4(b)中姿态控制精度和姿 态稳定度分别为0.006°和0.0003°/s,通过比较可以看 出本文控制律具有较高的控制精度,针对惯量不确 定性有较好的鲁棒性.

图 3 $J = J_0$ 时欧拉角和角速度响应比较 Fig. 3 Comparison of response of Euler angles and angular velocity when $J = J_0$

3) 输出反馈控制律的扰动抑制能力.

取 $J = J_0, T_d = 10T_{d0},$ 将文献[6]中控制律和本 文控制律的仿真结果进行比较,欧拉角和角速度的 响应曲线如图5.

t / s

(b) 本文的控制律

图 5 $J = J_0$, $T_d = 10T_{d0}$ 时欧拉角和角速度响应比较 Fig. 5 Comparison of response of Euler angles and angular velocity when $J = J_0$ and $T_d = 10T_{d0}$

比较图3和图5可以看出在相同的惯量下扰动力 矩改变对控制品质的影响.将图3(a)和图5(a)进行 比较,可以看出在扰动力矩增加后,图5(a)中姿态 控制精度和姿态稳定度分别为0.03°和0.002°/s.将 图3(b)和图5(b)进行比较,可以看出在相同条件下, 图5(b)中姿态控制精度和姿态稳定度分别为0.004° 和0.0003°/s,通过比较可以看出本文输出反馈控制 律针对扰动力矩具有较好的抑制能力.

5 结论(Conclusion)

本文针对含有参数不确定性挠性航天器姿态 跟踪控制问题,提出一种滑模姿态跟踪控制律. 采用混合坐标法建立挠性航天器动力学模型,基 于Lyapunov稳定性原理分别设计了状态反馈控制律 和输出反馈控制律,并证明了控制律全局渐近稳定. 状态反馈控制律适用于状态量全部可测量的情况, 应用范围相对较小,输出反馈控制律构造挠性模态 观测器对挠性模态变量进行观测,不需要测量挠性 模态变量,这一优点使输出反馈控制律应用范围更 加广范.仿真结果的比较显示,本文提出的滑模控制 律具有针对航天器惯量不确定性的良好鲁棒性和较 强的扰动抑制能力.

参考文献(References):

- RAJNISH S, ASHISH T. Optimal nonlinear tracking of spacecraft attitude maneuvers[J]. *IEEE Transactions on Control Systems Tech*nology, 2004, 12(5): 677 – 682.
- [2] CHEN Y P, LO S C. Sliding mode controller design for spacecraft attitude tracking maneuvers[J]. *IEEE Transactions on Aerospace and Electronic Systems*, 1993, 29(4): 1328 – 1333.

- [3] 胡庆雷, 刘亚秋, 马广富. 挠性航天器姿态机动的变结构主动振动 抑制[J]. 控制理论与应用, 2007, 24(6): 329 – 336.
 (HU Qinglei, LIU Yaqiu, MA Guangfu. Active vibration suppression in flexible spacecraft with mismatched uncertainty via variable structure control[J]. *Control Theory & Applications*, 2007, 24(6): 329 – 336.)
- [4] 管萍, 刘小河, 刘向杰. 挠性卫星的变结构姿态控制[J]. 控制理论与应用, 2007, 24(3): 480 484.
 (GUAN Ping, LIU Xiaohe, LIU Xiangjie. Viariable structure attitude control of flexible spacecraft[J]. *Control Theory & Applications*, 2007, 24(3): 480 484.)
- [5] SHAHRAVI M, KABGANIAN M. Attitude tracking and vibration suppression of flexible spacecraft using implicit adaptive control law[C] //Proceedings of the American Control Conference. Portland: IEEE Press, 2005: 913–918.
- [6] GENNARO S D. Output attitude tracking for flexible spacecraft[J]. Automatica, 2002, 38(11): 1719 – 1726.
- [7] GENNARO S D. Tracking control using attitude measurements for flexible spacecraft in presence of disturbances[C] //Proceedings of the 43rd IEEE Conference on Decision and Control. New York: IEEE Press, 2004: 2123 – 2128.
- [8] 刘金琨,孙富春. 滑模变结构控制理论及其算法研究与进展[J]. 控制理论与应用, 2007, 24(3): 407 418.
 (LIU Jinkun, SUN Fuchun. Research and development on theory and algorithms of sliding mode control[J]. Control Theory & Applications, 2007, 24(3): 407 418.)
- [9] HYOCHOONG B, CHEOL K H, JIN H K. Flexible spacecraft attitude maneuver by application of sliding mode control[J]. Acta Astronautica, 2005, 57(5): 841 – 850.
- [10] GOEREE B B, FASSE E D. Sliding mode attitude control of a small satellite for ground tracking maneuvers[C] //Proceedings of the American Control Conference. New York: IEEE Press, 2000: 1134 – 1138.
- [11] SHUSTER M D. A survey of attitude representations[J]. *The Journal of the Astronautical Sciences*, 1993, 41(4): 439 517.
- [12] FANG Y L. Dynamic modeling and attitude control of flexible satellite[D]. Beijing: Beijing Institute of Technology, 2007.
- [13] SLOTINE J E, LI W. Applied Nonlinear Control[M]. Beijing: China Machine Press, 2006: 65 – 66.

作者简介:

靳永强 (1981—), 男, 博士研究生, 研究方向为航天器的姿态 确定与姿态控制, E-mail: jyq413@bit.edu.cn;

刘向东 (1971—), 男, 教授, 博士生导师, 研究方向为航天器大 角度姿态机动控制与姿态确定, E-mail: xdliu@bit.edu.cn;

侯朝桢 (1938—), 男, 教授, 博士生导师, 研究方向为复杂系统 建模与仿真, E-mail: hcz38@bit.edu.cn.