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摘要: 轮式移动机器人是典型的非完整约束系统. 本文基于滚动时域控制策略研究轮式移动机器人的路径跟踪

问题. 为了既能够保证移动机器人渐近收敛到期望轨迹, 又能够保证在线求解的优化问题的滚动可行性, 参考轨迹

被选为优化问题中的终端等式约束. 仿真结果验证了所提出的控制策略的有效性.
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Receding horizon control for path following problems of
wheeled mobile robots
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Abstract: A wheeled mobile robot is a system with nonholonomic constraints, which path following problems have
been studied intensively. Receding horizon control for path following problems of wheeled mobile robots is considered in
this paper, where the reference path is chosen as the terminal region. Both the asymptotic convergence to the reference path
and recursive feasibility of the involved optimization problem are investigated. The effectiveness of the applied control
strategy is verified by simulation results.
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1 Introduction
There are three fundamental motion control prob-

lems in the control field, namely the set-point stabiliza-
tion, trajectory tracking and path following. Set-point
stabilization, as a classical regulation problem, is to reg-
ulate the state of the system to a fixed target state[1].
Trajectory tracking (TT) aims at tracking a given time
varying reference trajectory, which is a time parame-
terized curve[2]. Path following (PF) is regarded as an
alternative problem formulation to trajectory tracking.
PF is also to guarantee the system to follow a reference
path, but the reference path is parameterized in its geo-
metrical coordinates instead.

The differences between the TT and PF are in the
following aspects: 1) TT problem has strict require-
ments on time, PF is allowed to determine velocity on-
line; 2) The reference trajectory is highly dependent on
the reference model in TT problem; 3) Following a pa-
rameterized reference path means to design a controller

which affects both the system behavior and the evolu-
tion of the reference path[3].

Path following is widely applied in (automobile,
ship or flight) course control[4], car-parking problem or
the control of robots[5–6], and batch crystallization[7].
Accordingly, many different PF control schemes have
been exploited. For example, path following was de-
veloped by feedforward control scheme in [8–9], trans-
verse feedback linearization techniques in [10], back-
stepping designs in [11–12], sliding mode control in
[13–14] and other advanced control algorithms in [15–
16]. These controllers are either restricted for applica-
tion or limited in the fact that the state and input con-
straints are not considered. Recent papers about control
of robots are concerned with the input saturation or out-
put constraint problem[17–18].

Since receding horizon control, also referred to as
model predictive control (MPC), can handle the control
problems for nonlinear systems subject to state and in-
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put constraints, it has become one of the most standard
and frequently used techniques recently. In general, at
each sampling instant, MPC scheme solves a finite hori-
zon open-loop optimization problem based on the cur-
rent state of system, and finds a control sequence, then
applies the first control action to the system. MPC has
achieved rich results in stability, robustness and opti-
mality analysis, and has formed mature scientific anal-
ysis and design methods[19–21]. Many exhaustive results
on MPC for regulation problems are available. Trajecto-
ry tracking control scheme with MPC has also been dis-
cussed, but quite a lot literatures only considered track-
ing the piecewise constant references, as in [22–23]. Al-
though many researchers have applied MPC framework
to solve the PF problems[24–26], these schemes are either
only fit for the given systems or rely on some certain
characteristics of systems, for example, the property of
differential flatness.

Normally, stability of MPC is achieved by adding
a terminal penalty to the cost function and restricting
terminal state to a terminal region. But it is usually
difficult or time-consuming to calculate the suitable ter-
minal ingredients. The terminal ingredients are locally
defined which will lead to a potentially restricted region
of attraction. Therefore many approaches for calculat-
ing the terminal region have been proposed as in [27]
and references therein. However, [28] has proved that
forcing the terminal state to equal zero can guarantee
stability. In this paper a receding horizon MPC scheme
is proposed to solve PF problem of a wheeled mobile
robot. Since the reference path is chosen as the termi-
nal region it can avoid the complex calculation of the
suitable terminal ingredients.

This paper is organized as follows. The kinematics
model of a nonholonomic mobile robot is described in
Section 2. Section 3 first introduces both the path fol-
lowing problem and MPC scheme for path following
problems which chooses the reference path as the ter-
minal region. Then, feasibility of the involved opti-
mization problem is presented. The simulation imple-
mentation of the mobile robot is provided in Section 4.
Finally, a brief summary is given in Section 5.

Notations and Definitions:
Rn is the n-dimensional Euclidean space of real

valued vectors. Let I denote the field of non-negative
integers, I+ the field of positive integers. The norm
∥x∥Q of x∈Rn denotes ∥x∥Q=

√
xTQx, Q∈Rn×n,

Q > 0. xk|k(k ∈ I) denotes the measured value of
variable x at time instant k. xk+i|k(i ∈ I+) denotes the
predicted value of x at future time instant k+i predicted
at real time instant k.

2 Path following problems of robots
The nonholonomic wheeled mobile robot has a

front castor and two rear driving wheels, which is shown

in the world coordinate system, cf. Fig.1. The corre-
sponding symbols are described in Table 1.

Fig. 1 The simplified model of a wheeled mobile robot

Table 1 The description for symbol definitions

Parameter Symbol

Track between front wheels 2b

Vertical distance between
centroid and front wheel

d

The radius of the wheel r

Instantaneous center of robot O

Distance between instantaneous
center and the front wheel

ρf

Distance between instantaneous
center and the centroid

ρ

Resultant velocity of the centroid v

Side slip angle β

Yaw angle ϕ

Steering angle δ

Steering angle wl

The velocity of the left wheel wf

According to the geometric relationship shown in
Fig.1, the distance between instantaneous center and
front wheel, and the distance between instantaneous
center and centroid are

ρf =
ωr + ωl

ωr − ωl

b, (1a)

ρ =

√
(ρf sin δ − d)

2
+ (ρf cos δ)

2
. (1b)

The yaw rate of the wheeled mobile robot is given by

φ̇ =
ωr+ωl

2
r

ρf
=

r

2b
(ωr − ωl). (2)

Thus the resultant velocity of the centroid is

v = ρφ̇ =

r(ωr − ωl)

2b

√
(ρf sin δ − d)

2
+ (ρf cos δ)

2
. (3)

The state of the robot is described by vector (x, y, φ)T,
which includes its position (x, y) and orientation φ.
Therefore, the kinematics equation, while the tire de-
formation is neglected, is as follows:
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ẏ
φ̇

 =

 v cos(β + φ)
v sin(β + φ)

r · (ωr − ωl)/2b

 , (4)

where

β = arctan
ρf sin δ − d

ρf cos δ
.

In order to verify the effectiveness of the proposed
robot model, let us consider the case of δ = 0. While
δ = 0, 

sinβ =
d

ρ
,

cosβ =
ρf
ρ
,

v =
ρ

ρf

(ωr + ωl)

2
r.

(5)

By means of trigonometric functions and Eq.(6), we
can get

ẋ =
cosφ

2
r(ωr + ωl)−

sinφ

2b
rd(ωr − ωl),

ẏ =
sinφ

2
r(ωr + ωl)−

cosφ

2b
rd(ωr − ωl),

φ̇ =
r

2b
(ωr − ωl),

(6)

which is the same as the kinematics equation of the mo-
bile robot without steering[29].

Equation (5) is too complex to design controllers.
Particularly, choose δ such that

ρf sin δ − d = 0. (7)

Thus, Eq.(5) can be transformed into ẋ
ẏ
φ̇

 =

v cosφv sinφ
w

 , (8)

where β = 0, v =
r

2
(ωr+ωl) cos δ, w =

r

2b
(ωr−ωl).

The term w can be seen as the angular velocity of the
yaw angle.

Remark 1 β = 0 in Eq.(9) will improve maneuver-
ability of robots. Furthermore, there is no any singular point
when ωr − ωl = 0.

Assume that there is a virtual mobile robot mov-
ing along the reference path, which position and ori-
entation represent the ideal state of the robot. Denote
(xR, yR, φR)

T as a reference state ẋR

ẏR
φ̇R

 =

vR cosφR

vR sinφR

wR

 . (9)

Denote (xe, ye, φe)
T as the error state which represents

the deviation of the current position to the reference.
Under the virtual reference robot coordinate system, the
error state is as follows:

xe

ye
φe

 =

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1


 xR − x

yR − y

φR − φ

 . (10)

Furthermore, the error dynamic is ẋe

ẏe
φ̇e

 =

wye − v + vR cosφe

−wxe + vR sinφe

wR − w

 . (11)

Note that when v and w approach vR and wR respec-
tively, the error state, (xe, ye, φe)

T, is close to the equi-
librium, c.f. Eq.(12).

Remark 2 Sometimes the control signal in the con-
trol for path following problems of wheeled mobile robots is
chosen as u′ = (wl, wr, δ)

T, see Eq.(5). Using Eq.(8), the re-
lationship between u and u′ is

r(ωr + ωl) cos δ = 2v,

r(ωr − ωl) = 2bw,

(ωr − ωl)

(ωr + ωl)

d

b
= sin δ,

(12)

where r, b, d are the given parameters of the wheeled mobile
robot, i.e., Table 1.

The task for path following problems of a wheeled
mobile robot can be described as: Given a reference
path, find an admissible control law u = (v, w)T which
drives the error state (xe, ye, φe)

T to zero.

3 Receding horizon control for path follow-
ing problems
Consider a discrete-time nonlinear system

xk+1 = f(xk, uk), k ∈ I, (13)

where xk ∈ Rn and uk ∈ Rm are the system state and
input at time instant k. The constraints of the system
state and input described by sets X and U are as fol-
lows:

xk ∈ X, uk ∈ U.

The nonlinear function f : Rn × Rm → Rn is locally
Lipchitz with respect to both xk and uk.

Assumption 1 U ⊆ Rm is compact and convex,
and X ⊆ Rn is closed and connected. The origin (0, 0)
contains in its interior.

The objective of path following problems is to make
system state xk to follow a parameterized reference
path, which is defined in the state space by a scalar θk

P = {rk ∈ Rn| rk = p(θk)} . (14)

The map p : R1 → Rn is a twice continuously differ-
entiable function. The scalar θk ∈ Θ ⊆ R1 is not given
a priori but specified by a virtual input

θk+1 = g(θk, vk), vk ∈ V ⊆ R1, (15)

where Θ and V are compact sets.

Assumption 2 The reference path P is con-
tained in the state constraint set, i.e., P ⊆ X .
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Assumption 3 g(θk, vk) in Eq.(16) has the same
requirements as f(xk, uk), i.e., g : R1 × R1 → R1 is
locally Lipchitz with respect to both θk and vk. Besides,
g(θk, vk) > 0 for all vk ∈ V and for all θk ∈ Θ.

Define the error state

x̃k := xk − p(θk). (16)

Then, the error state dynamic model is

x̃k+1 = f(xk, uk)− p(g(θk, vk)). (17)

So the path following problems can be reduced to find
admissible inputs uk, vk and θk such that the system s-
tate xk could converge to the reference, i.e., lim

k→∞
x̃k =

0, and the constraints xk ∈ X,uk ∈ U, θk ∈ Θ and
vk ∈ V are satisfied for all k.

Redefine a control input ũk ∈ Ũ ⊆ Rm and a func-
tion F (·, ·) of the error state dynamic model, Eq.(18)
can be rewritten as

x̃k+1 : = F (x̃k, ũk). (18)

Assumption 4 There exist admissible inputs
uk ∈ U and vk ∈ V such that the state xk ∈ X and
the path parameter θk ∈ Θ satisfy x̃k+1 = 0 while x̃k

equals to zero.

3.1 MPC scheme with terminal inequality con-
straints

To solve the above considered path following prob-
lem, a nonlinear model predictive framework is pro-
posed[30]. At each time instant k, the following opti-
mization problems are solved:

Problem 1

minimize
uk+i|k ,vk+i|k ,θk+i|k

J(xk|k , uk+i|k , vk+i|k , θk+i|k ),

(19a)

subject to

xk+i+1|k = f(xk+i|k , uk+i|k ), xk|k = xk, (19b)

xk+i|k ∈ X, uk+i|k ∈ U, (19c)

x̃k+i|k = xk+i|k − p(θk+i|k ), (19d)

x̃k+N |k ∈ Ω, (19e)

θk+i+1|k = g(θk+i|k , vk+i|k ), θk|k = θk, (19f)

θk+i|k ∈ Θ, vk+i|k ∈ V, (19g)

where

J(x̃k+i|k, ũk+i|k) =

E(x̃k+N |k)+
N−1∑
i=0

(∥x̃k+i|k∥2Q+∥ũk+i|k∥2R), (20)

with Q and R are positive definite weight matrices, and
N is the prediction horizon.

The terminal penalty E(x̃k+N |k ) and the terminal
region Ω are adopted to guarantee the recursive feasi-
bility of the optimization problem and asymptotic con-
vergence of the system dynamics to the reference path.
The terminal inequality constraint Eq.(19e) denotes that

the predicted state xk+i|k has to be restricted inside it at
the end of each prediction.

Besides the standard constraints (19b)–(19e), the
extra path following constraints (19f) and (19g) de-
scribe the evolution of the reference path P , which is
parameterized in its path parameter θk. The sequence
of θk will be determined online so as to make error as
small as possible. The virtual input vk controls the evo-
lution of the path parameter θk, which is an extra deter-
mined variable in the MPC scheme.

Remark 3 Note that the initial value of θk is anoth-
er determined variable of Problem 1. In other words, the ini-
tial condition θ0 is also determined online to make J(x, u, v, θ)
as small as possible. If no initial path point is given, another
method in[3] to get θ0 is proposed to find a path point close to
the initial state x0 by solving

minimize
θ0

∥x0 − p(θ0)∥ . (21)

In general, a suitable terminal penalty E(x̃) , a ter-
minal region Ω and a terminal control law uF(x̃) are
adopted to guarantee recursive feasibility and asymp-
totic convergence of the proposed MPC scheme. The
terminal control law is used to calculate E(x̃) and Ω,
but not directly applied to the system. In the standard
MPC framework, the specific form of E(x̃) is usually
defined as follows

E(x̃) = x̃TPx̃, (22)

where P is a terminal penalty matrix. P is a positive
definite solution of a Lyapunov equation for a given lin-
ear state feedback gain[31]. Then the corresponding ter-
minal region Ω is defined

Ω := {x̃ ∈ Rn
∣∣x̃TPx̃ 6 α}, (23)

where α is a positive scalar. These terminal ingredi-
ents should satisfy some sufficient conditions which are
shown in the following theorem.

Theorem 1 Suppose that
· Assumption 1 – Assumption 4 are satisfied.
· uF(x̃) ∈ Ũ for all x̃ ∈ Ω ⊆ X . Furthermore,

uF(0) = 0.
· For all x̃ ∈ Ω and k > 0, E(x̃) satisfies

E(x̃k+1+N |k+1 )−E(x̃∗
k+N |k ) +∥∥x̃k+N |k+1

∥∥2

Q
+

∥∥ũk+N |k+1

∥∥2

R
6 0, (24)

· Problem 1 is feasible at the initial time instant.
Then,

1) Problem 1 has a feasible solution for all k > 0.
2) The error x̃ can converge to zero as k → ∞,

i.e., system (14) can follow the given path as k → ∞.

Proof Suppose that at time instant k, Problem 1
has a feasible solution Ũ∗

k ∈ Ũ ,

Ũ∗
k = [ũ∗

k|k ũ∗
k+1|k · · · ũ∗

k+N−1|k ], (25)

the corresponding error trajectory is denoted as X̃∗
k ,
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X̃∗
k = [x̃∗

k|k x̃∗
k+1|k · · · x̃∗

k+N |k ]. (26)

The related cost function Vk(x̃, ũ) is
Vk(x̃, ũ) := Jk =
N−1∑
i=0

(∥x̃∗
k+i|k∥2Q+∥ũ∗

k+i|k∥2R)+E(x̃∗
k+N |k). (27)

Apply ũk = ũ∗
k|k to the system (14). Since neither

model mismatches nor external disturbances is consid-
ered, the error system state at time instant k + 1 is the
same as x̃∗

k+1|k. Therefore, a feasible solution to Prob-
lem 1 can be chosen as
Ũk+1 = [ũ∗

k+1|k · · · ũ∗
k+N−1|k uF(x̃

∗
k+N |k)]. (28)

Ũk+1 can be understood as a sequence which con-
catenates the shifted optimal input Ũ∗

k with the ter-
minal control law uF. In terms of x̃∗

k+N |K ∈ Ω,
uF(x̃

∗
k+N |k) ∈ Ũ , Ũk+1 satisfies the input constraint,

which implies Problem 1 is feasible at time instant k+1
if Problem 1 has a feasible solution at time instant k.
Under the control sequence Ũk+1, the state sequence
X̃k+1 is

X̃k+1 = [x̃∗
k+1|k · · · x̃∗

k+N |k x̃k+N+1|k+1 ], (29)

which satisfies the state constraint and terminal con-
straint. The cost function at time instant k + 1 is

Jk+1 =
N−1∑
i=0

(∥x̃k+1+i|k+1∥2Q + ∥ũk+1+i|k+1∥2R) +

E(x̃k+1+N |k+1) =
N−1∑
i=1

(∥x̃∗
k+1+i|k∥2Q + ∥ũ∗

k+1+i|k∥2R) +

∥x̃k+N |k+1∥2Q + ∥ũk+N |k+1∥2R +

E(x̃k+1+N |k+1) =
N−1∑
i=0

(∥x̃∗
k+i|k∥2Q + ∥ũ∗

k+i|k∥2R)−

∥x̃∗
k|k∥2Q − ∥ũ∗

k|k∥2R + ∥x̃k+N |k+1∥2Q +

∥ũk+N |k+1∥2R + E(x̃k+1+N |k+1),

since the optimal solution at time instant k + 1
is better than the feasible solution Ũk+1, i.e., Vk+1 6
Jk+1. Thus
Vk+1 − Vk 6 Jk+1 − Jk =

−∥x̃∗
k|k∥2Q − ∥ũ∗

k|k∥2R + ∥x̃k+N |k+1∥2Q +

∥ũk+N |k+1∥2R + E(x̃k+1+N |k+1)− E(x̃∗
k+N |k). (30)

Due to Eq.(25),
Vk+1 − Vk 6 −∥x̃∗

k|k∥2Q − ∥ũ∗
k|k∥2R. (31)

Clearly, the value function Vk is monotonically de-
creasing and has zero as its low bound. Then the state
trajectory of system (14) will converge to the reference
path, i.e., lim

k→∞
x̃k = 0.

3.2 MPC scheme with terminal equality con-
straints

To find suitable terminalpenalty E(·), terminal re-

gion Ω, and terminal control law uF, which is required
by Theorem 1, is an important part of the MPC scheme.
Unfortunately, it is usually difficult to calculate these
terminal ingredients. In the following the reference path
P is chosen as terminal region Ω. In other words, the
terminal region is defined as follows:

Ω := {0}. (32)

Eq.(33) indicates the error x̃ of path following prob-
lem will be forced to equal zero at the end of each pre-
diction. Compared to Eq.(24), Eq.(33) is essentially a
terminal equality constraint. At the same time, forcing
the terminal state to be equal to zero makes the termi-
nal penalty and the terminal control law unnecessary in
achieving the convergence of the MPC scheme. So the
terminal penalty and the terminal control law are chosen
as E(·) = 0 and uF = 0.

Therefore, when Eq.(19e) in Problem 1 is replaced
by Eq.(33), the MPC scheme with terminal equality
constraints is obtained.

Problem 2
minimize

uk+i|k,vk+i|k,θk+i|k
J(xk|k, uk+i|k, vk+i|k, θk+i|k), (33)

subject to

xk+i+1|k = f(xk+i|k, uk+i|k), xk|k = xk, (34a)

xk+i|k ∈ X, uk+i|k ∈ U, (34b)

x̃k+i|k = xk+i|k − p(θk+i|k), (34c)

x̃k+N |k = 0, (34d)

θk+i+1|k = g(θk+i|k, vk+i|k), θk|k = θk, (34e)

θk+i|k ∈ Θ, vk+i|k ∈ V, (34f)

where
J(x̃k+i|k, ũk+i|k) =

N−1∑
i=0

(∥x̃k+i|k∥2Q + ∥ũk+i|k∥2R).
(35)

The following corollary shows that asymptotic con-
vergence to the reference path is guaranteed by the cal-
culation of Problem 2 at each time instant.

Corollary 1 (Zero terminal region for MPC)
Suppose that

· Assumptions 1–4 are satisfied.
· Problem 2 has a feasible solution at k = 0.

Then,
1) Problem 2 is feasible for all time instants k > 0.
2) The state trajectory of the system converges to

the reference path as k → ∞.

Sketch of Proof Let Ũ∗
k , X̃

∗
k in Eq.(26) and E-

q.(27) denote the control input and the error state at time
instant k. Moreover, owing to the terminal equality con-
straint Eq.(33),

X̃∗
k = [x̃∗

k|k x̃∗
k+1|k · · · x̃∗

k+N |k] =

[x̃∗
k|k x̃∗

k+1|k · · · 0].
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Note that the control input Ũ∗
k forces the terminal state

(the state at time k +N ) to zero.
At time instant k + 1, a feasible input sequence is

Ũk+1 = [ũ∗
k+1|k · · · ũ∗

k+N−1|k 0].

Since neither model mismatches nor external dis-
turbances exists, in accordance with Ũk+1, the state se-
quence X̃k+1 is

X̃k+1 =

[x̃∗
k+1|k x̃∗

k+2|k · · · x̃∗
k+N |k x̃k+N+1|k+1] =

[x̃∗
k+1|k x̃∗

k+2|k · · · 0].
Due to Assumption 2 and Assumption 4, system

(14) can follow the reference path while x̃k = 0. S-
ince x̃k+N |k+1 = 0 and ũk+N |k+1 = 0,

Vk+1 − Vk 6 Jk+1 − Jk = −∥x̃∗
k|k∥2Q − ∥ũ∗

k|k∥2R.
The sequence Jk is therefore nonincreasing and

bounded below by zero. Therefore the error x̃ converges
to zero as k → ∞.

4 Simulations
In order to verify the effectiveness of the MPC

scheme with terminal equality constraint (zero termi-
nal region), path following problems of wheeled mobile
robots are considered. Furthermore, both the system dy-
namics and computational burden of MPC scheme with
terminal inequality constraints are provided under the
same simulation conditions, i.e., Table 2.

Table 2 The conditions for simulation

Parameter Value

Prediction horizon N = 10

Sampling time δ = 0.2 s

Q = diag{0.5, 0.5, 0.5}Weight matrices
R = diag{0.5, 0.5}

r = 80 mm

Mechanical parameters 2b = 460 mm

d = 750 mm

0 6 v 6 3 m/sInput constraints
−3.5 6 w 6 3.5 rad/s

Initial state x0 = [−0.4,−0.8, π/2]T

Three kinds of reference paths are adopted to test
the performance of the receding horizon control for path
following problems. The terminal inequality constraints
are calculated by using the methods proposed in [30],
where vertexes of the polytypic linear differential inclu-
sion of the three paths are chosen the same in order to
get the unified terminal ingredients. The obtained ter-
minal inequality constraint is

Ω := {x̃ ∈ R3 | x̃TPx̃ 6 α},
where α = 25 and

P =

26.03 0 0
0 28.11 7.49
0 7.49 26.50

 .

4.1 Eight-shaped path
The first path is an eight-shaped path, where

xR = 1.8 sin θ, yR = 1.2 sin(2θ). (36)

The simulation results are shown in Figs.2–4. Both M-
PC scheme with zero terminal region and MPC scheme
with non-zero terminal region are capable of driving the
robot to follow the reference eight-shaped curve, and
MPC scheme with zero terminal region can achieve a
better performance (smaller error). But the computa-
tional time of MPC scheme with zero terminal region
increases accordingly, c.f. Table 3.

Fig. 2 The trajectories of problem 1, problem 2 and
reference path

Fig. 3 Comparison of the error states
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Fig. 4 Comparison of the control inputs

Table 3 Comparison of the computation burden

Computation time Non-zero terminal Zero terminal

In total/s 151.22 8845.86
Each step/s 0.1512 118.46

4.2 Nonsmooth path
The second path is a nonsmooth path

xR = 1.8 sin θ,

yR =

{
1.2 sin(2θ), 0 6 θ 6 θk,
1, θ > θk,

(37)

where θk is a specific chosen path parameter.
Because Eq.(37) is a nonsmooth path, it is only ap-

plicable to test the performance of MPC scheme with
zero terminal region. The simulation results are shown
in Figs.5–7.

Fig. 5 The trajectories of real path and reference path

Fig. 6 The error states: angle error (rad), y error (m)
and x error (m)

Fig. 7 The control inputs

From Figs.5–7, it can be seen that the MPC scheme
with terminal equality constraints could also drive the
robot to follow the reference path with admissible in-
puts. Note that the robot has already followed the given
path before entering the second part of it.
4.3 Circle path

The third path is a circle, which is defined as

xR = 1.2 cos θ, yR = 1.2 sin θ. (38)

The simulation results are shown in Figs.8–10. Com-
pared with MPC with non-zero terminal region, MPC
with zero terminal region can achieve similar control
performance: the states of the robot have errors at the
preliminary stage, the real path could converge finally
to the reference circle path. The control inputs stay in
the admissible range for the two controllers.

Fig. 8 The trajectories of non-zero terminal, zero terminal
MPC and reference path
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Fig. 9 Comparison of the error states: non-zero terminal
MPC and zero terminal MPC

Fig. 10 Comparison of the control inputs: non-zero terminal
MPC and zero terminal MPC

The real path based on zero terminal region con-
verges to the reference circle faster, but the computa-
tional burden is much heavier as shown in Table 4.

Table 4 Comparison of the computation burden

Computation time Non-zero terminal Zero terminal

In total/s 393.75 4258.84
Each step/s 0.3937 92.75

The above simulations show that the robot has the
ability to follow the reference path with high accura-
cy once it is on the reference. MPC with zero terminal
region, by choosing the reference path as the terminal
region, is an effective way for the path following prob-
lems of wheeled mobile robots. It can avoid complex
calculation of the terminal ingredients and achieve simi-
lar performance compared with MPC with non-zero ter-
minal region.

5 Conclusions
Model predictive control for path following prob-

lems of wheeled mobile robots was discussed in this
paper, where the reference path was chosen as the ter-
minal region. The optimization problem of MPC and

sufficient conditions for convergence to the reference
path were discussed. Simulation results were provid-
ed which show asymptotic convergence of the proposed
scheme. Robots under model predictive control with ze-
ro terminal region can follow the given path under the
admissible inputs. Although the computational burden
is heavier than the conventional schemes, zero terminal
region can achieve a smaller following error and is ap-
plicable to non-smooth paths.
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