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摘要:将图论及一种新的数学分析工具–—矩阵的半张量积(semi-tensor product of matrices, STP),作为研究工具,
通过研究图的k内稳定集的充分必要条件,研究了k轨道任务分配问题的可解性条件.定义了图的顶点子集的特征
向量,利用STP方法得到图的k内稳定集新的若干充分必要条件.基于这些新的充分必要条件,建立了能够搜索出图
的所有k内稳定集的两种算法. 进而将上述结果应用到k轨道任务分配问题,得到了该问题可解性的两个充分必要
条件.此外,通过这些充分必要条件,也发现了一些有趣的现象.例如,完全最优方案(completely optimal schedules)的
存在.
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Solvability of k--track assignment problem: a graph approach
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Abstract: The theory of graph and a new mathematical analysis tool, semi-tensor product (STP) of matrices are applied
to consider the solvability conditions of k--track assignment problem by investigating the necessary and sufficient conditions
of k--internally stable sets of graphs (k--ISS). By defining characteristic vectors for vertex subsets of graphs and using the
STP, several new necessary and sufficient conditions of k--ISS are obtained, based on which two algorithms able to find all
the k--ISSs of a graph are established. The results obtained are further applied to the k--track assignment problem, and two
necessary and sufficient conditions of the solvability of the problem are proposed; also some interesting phenomena such
as completely optimal schedules are discovered by the new method.
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1 Introduction
The multi-track assignment problem is a key issue

in operational research and control theory, and has been
applied to many areas such as production scheduling
and control, discrete event dynamic systems and opti-
mal design of engineering. The problem has been in-
vestigated extensively in recent years. Cornelsen and
Stefano[1] considered how to assign tracks of a station
to some trains such that they can leave and enter with-
out conflicting with any other one. Later, the problem
of track assignment of a station was further examined
by Demange, et al.[2]. The described this problem as an
online coloring of circle graphs or permutation graphs
under the assumption that a station is composed of ser-
val parallel tracks and each track is approachable from
one or both sides for one or multiple trains. As regard

the optimization of track assignment, Severson and Pa-
ley[3] proposed a method to optimize the performance
of assignment in the circumstance of multiple shipboard
radar systems by maximizing the collective search area
of the radars. As a continuation, Severson and Paley[4]

discussed the optimization problem in the context of
ballistic missile surveillance and tracking.

However, to the best of our knowledge, there has
been no result on how to find out all the feasible sched-
ules and all the optimal schedules for a given multi-
track assignment problem. Finding all the feasible
schedules and all the optimal schedules is useful to un-
derstand the inherent logical relationship of multi-track
assignment problem. Hence it is meaningful to discuss
complete solution sets of the problem, and of course it
is a challenging work.
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Graphs provide mathematical models to analyse
successfully many concrete real-world problems. Re-
garding the problem of multi-track assignment, it can
be modeled as a k--internally stable set of a graph (k--
ISS). A k--internally stable set is an extension of inter-
nally stable set that there is no a path of length equal to
or less than k between any two vertices of the set, where
an internally stable set is a set of vertices in which no t-
wo vertices are adjacent, in other words, there is no path
of length 1 between any two vertices of the set.

Unfortunately, little attention has been paid on how
to find out all k-internally stable sets of graphs. Encour-
agingly, the theory of semi-tensor product (STP), which
was proposed by D. Cheng and H. Qi[5] in recent years,
provides a promising approach to model and analyse the
structure of graphs. Y. Wang[6] is the first who intro-
duces the STP to graph theory. Using the STP he inves-
tigated the problems of the maximum weight stable set
and vertex colouring, and presented several new results
and algorithms, which can be used to study some prob-
lems of multiple agent systems such as the group con-
sensus. Later, M. Meng and J. Feng[7] applied the STP
to the field of hypergraph. Using the STP, they stud-
ied the problems of stable set and colouring of hyper-
graphs and obtained some new results and algorithms
that can find all the colouring schemes and minimum
colouring partitions. Besides, STP has been applied
successfully to many fields such as Boolean network-
s[8–11], game theory[12–13], nonlinear systems[14], fuzzy
control systems[15] and finite automata[16–19]. Especial-
ly in the field of graph theory, as Y. Wang[6] said, the
STP method can express graph problems in a clear way
and is helpful for further study of graph problems.

Motivated by the above, one of the aims of our work
is to investigate the k-internally stable sets of graphs
and establish their new necessary and sufficient condi-
tions and search algorithm by using STP as a main re-
search tool. Another aim is to apply the results obtained
to the k--track assignment problem, and further to es-
tablish an algorithm to find out all the feasible sched-
ules and optimal schedules for a given multi-track as-
signment problem. Our main contributions are as fol-
lows. We provide a new mathematical formulation for
k--internally stable sets of graphs, and obtain several
new theoretical results and algorithms. These new re-
sults are further applied to consider the k--track assign-
ment problem and two necessary and sufficient condi-
tions of the solvability of the problem are proposed; al-
so some interesting phenomena are discovered by the
new method, which differs greatly from the existing re-
sults. It is worth noting that our focus of this paper is on
the theoretical results and solution algorithms. How to
reduce the computational complexity is our next work.

The paper contains the following contents. Section
2 gives some preliminaries on the STP and k--internally

stable sets of graphs. Section 3 devotes to discuss how
to search k--internally stable sets of graphs by the STP,
and present serval new results on the issue. The solv-
ability conditions of the k--track assignment problem is
presented in Section 4. Section 5 tests the correctness
of the results by an illustrative example; this is followed
by some concluding remarks in Section 6.

2 Preliminaries
This section gives some necessary preliminaries on

the STP, k--ISS, k--MISS and k--AMISS of graphs.

Definition 1[5] For M ∈Mm×n and N ∈Mp×q,
their semi-tensor product, denoted by M n N , is de-
fined as follows: M n N := (M ⊗ Is/n)(N ⊗ Is/p),
where s is the least common multiple of n and p, and ⊗
is the Kronecker product.

Remark 1 STP is a generalization of the convention-
al matrix product, when n = p, it reduces to the latter. Not
only do almost all the major properties of the conventional ma-
trix product remain true for STP, for instance, the associative
law is that for A ∈ Mm×n, B ∈ Mp×q , and C ∈ Mr×s, we
have (A n B) n C = A n (B n C), but STP can overcome
some defects of the conventional matrix product; the follow-
ing is an interesting example. For a detailed description, please
refer to [5].

Definition 2 [5] A swap matrix W[m,n] is an
mn × mn matrix, which is defined as follows. Its
rows and columns are labelled by double index (i, j),
the rows are arranged by the ordered multi-index
Id[(I, J), (i, j)], and the columns are arranged by the
ordered multi-index Id[(I, J), (i, j)]. Then the element
at the position [(I, J), (i, j)] is

W((I,J),(i,j)) = δI,Ji,j =

{
1, I = i and J = j,

0, otherwise.

Remark 2 From Definition 2, it is easy to see that for
any X ∈ Rm and Y ∈ Rn, we have[5]{

W[m,n] nX n Y = Y nX,

W[n,m] n Y nX = XY.
(1)

This can be seen as the“quasi-commutative law”of the STP,
which the conventional matrix product does not hold.

Let“1”and“0”represent the logical“True”
and“False”, respectively, and D := {0, 1}. In many
cases, we use the following vectors to represent them.
T := 1 ∼ δ12 , F := 0 ∼ δ22 , where δin is the ith
column of the identity matrix In, and “∼”denotes
“identity”. Similarly, a k--valued logical variable
x ∈ Dk,

Dk:={0, 1

k−1
,

2

k−1
, · · · , 1},

can be represented with the vectors:
k − i

k − 1
∼ δik, i = 1, 2, · · · , k.

The following are some notations used in this paper:
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∆n = {δ1n, · · · , δnn}. Especially ∆2 = {δ12 , δ22} is
the vector form of the logical range D := {0, 1}.

kn ∈ Rn is a column vector with each element be-
ing real number k.

coli(A) is the ith column of matrix A, col(A) is the
set of the columns of A.

Definition 3[20] The Boolean product of matrices
A = [aij]p×q and B = [bij]q×r, denoted as C =
A×BB = [cij]p×r, is defined as follows: cij =
q
∨
l=1

(ail ∧ blj), where ∨ and ∧ are the logic addition and

multiplication on D, respectively. Further the Boolean
power of matrix A is defined as A0B = A,AkB =
Ak−1B×BA, k = 1, 2, · · · .

A graphG consists of a finite nonempty set V of ob-
jects called vertices and a set E of 2-element subsets of
V called edges. The sets V and E are the vertex set and
edge set of G, respectively. So a graph G is an ordered
pair of two sets V and E, denoted by G = (V,E). For
a graph G = (V,E) with V = {v1, v2, · · · , vn}, if
eij = (vi, vj) ∈ E implies eji = (vj, vi) ∈ E, G
is called an undirected graph; otherwise,G is called a
directed graph. A graph G′ = (V ′, E′) is called a
sub-graph of G if V ′ ⊆ V and E′ ⊆ E. A path of
a graph G=(V,E) is a sub-graph P = (V ′, E′) of the
form V ′={vi1 , vi2 , · · ·, vik}, E′={(vi1 , vi2), (vi2 , vi3),
· · · , (vik−1

, vik)}. The number of the edges of a path
from vi to vj is its length, denoted as d(vi, vj). For
i = j, we define d(vi, vi) = 0.

Definition 4[21] A set S of vertices of graph G
is a k--internally stable set (k--ISS) of G if for ev-
ery pair vertices vi and vj of S there is no path with
d(vi, vj) 6 k between them. A k--internally stable set
S is said to be maximum (k--MISS) if any vertex subset
strictly containing S is not a k--internally stable set. A
k--internally stable set with the largest number of ver-
tices is called a k--absolute maximum internally stable
set (k--AMISS).

3 Algebraic approach to search k--ISSs and
k--AMISSs
In this section we investigate how to search k--ISSs

and k--AMISSs of graphs in a mathematical manner and
present the main results of this paper.
3.1 Searching k--internally stable sets

Consider a graph G= (V,E) with V = {v1, v2,
· · · , vn}. The adjacency matrix A = [aij] of G is de-
fined by

aij =

{
1, (vi, vj) ∈ E,

0, otherwise.
(2)

The k--adjacency matrix A[k] of G is defined as

A[k] = A ∨A2B ∨ · · · ∨AkB , (3)

where AiB(i = 1, 2, · · · , k) are the Boolean power

of matrix A, and ∨ is defined as follows. For A =
[aij]m×n and B = [bij]m×n, then A ∨ B = [aij∨
bij]m×n.

For a given subset S ⊆ V , we define VS =
[x1, x2, · · · , xn] as its characteristic vector, where

xi =

{
1, if xi ∈ S,
0, otherwise.

(4)

Further we define

YS = nn
i=1yi, (5)

where yi = [xi, x̄i]
T, x̄i = 1− xi, i = 1, 2, · · · , n.

Remark 3 According to [5], every yi in Eq.(5) can be
derived from YS . yi is defined by xi that is determined unique-
ly by the subset S. Thus YS is in one-to-one correspondence
with VS , and therefore YS can also be called the characteristic
vector of S. In this paper YS and VS can be used interchange-
ably without arising confusion. One can get a subset S if a
characteristic vector YS is known.

We first introduce the following definition.

Definition 5 We call Ed former(m,n) and
Ed latter(m,n) dummy operators, where

Ed former(m,n) = [Im, · · · , Im︸ ︷︷ ︸
n

],

Ed latter(m,n) = [In, · · · , In︸ ︷︷ ︸
m

].

The reason we call them dummy operators is that
for m- and n-valued logical variables, u ∈ ∆m and
v ∈ ∆n, we have{

Ed former(m,n)n un v = v,
Ed latter(m,n)nW[n,m] n un v = u.

(6)

For notation concision, when m = n = 2, de-
note Ed former(2, 2) and Ed latter(2, 2) as Ed and E′

d,
respectively.

Theorem 1 Let A[k] = [a
[k]
ij ] be the k--adja-

cency matrix of graph G = (V,E) with V = {v1, v2,
· · · , vn}. G contains a k--internally stable set if and
only if there is a j, 1 6 j 6 2n, such that

colj(M) = 0n, (7)
where

M =


M1

M2

...
Mn

, Mi = Q
n∑

j=1

a
[k]
ij Tij, i = 1, 2, · · · , n,

Tij = (Ed)
n−2 nW[2j ,2n−j ] nW[2i,2j−i−1],

Q = [1 0 0 0].

Proof We first prove that there is a path with
d(vi, vj) 6 k from vertex vi to vj if and only if
a
[k]
ij = 1. Consider AlB = [al

ij], 1 6 l 6 k. The
definition of Boolean product of matrices implies that

al
ij = ∨

i1,··· ,il
(aii1 ∧ ai1i2 ∧ · · · ∧ ail−1j). (8)
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Observing Eq.(8), it is easy to see that al
ij = 1 iff

there exist l − 1 subscripts i1, i2, · · · , il−1 such that
aii1 = ai1i2 = · · · = ail−1j = 1.

This together with Eq.(2) tell us that there exists an
edge between vertices vi and vi1 , vi1 and vi2 , · · · , vil−1

and vj , respectively. Thus al
ij = 1 is equivalent to

that vertices vi and vj are connected by a path with
d(vi, vj) 6 l; if the subscripts i, i1, i2, · · · , il−1, j are
distinct from each other, the length of the path is l.

Now we consider A[k] = [a
[k]
ij ]. a

[k]
ij = a1

ij ∨ a2
ij ∨

· · · ∨ ak
ij = 1 if and only if there is an l, 1 6 l 6 k,

such that al
ij = 1, i.e., there is a path with d(vi, vj) 6 l

from vertex vi to vj , therefore, a[k]
ij = 1 if and only if

there is a path with d(vi, vj) 6 k from vertex vi to vj .
Next we prove Theorem 1. (Necessity). If G con-

tains a k--internally stable set S with characteristic vec-
tor VS = [x1, x2, · · · , xn], it is easy to know from Defi-
nition 4 that for any two vertices vi, vj ∈ V , if a[k]

ij = 1,
that is, there is a path with d(vi, vj) 6 k between vi
and vj , then either vi /∈ S or vj /∈ S, by which and
Eq.(4) we have xixj = 0. Thus the characteristic vec-
tor VS = [x1, x2, · · · , xn] of S satisfies the following
equations

n∑
j=1

a
[k]
ij xixj = 0, i = 1, 2, · · · , n. (9)

Since xixj = xjxi, without loss of generality, we
assume i < j in the following. Using Eqs. (1) and (6),
for yi = [xi, 1− xi]

T and yj = [xj, 1− xj]
T, we can

get the following equation:
yiyj =

(Ed)
n−2yj+1 · · · ynyi+1 · · · yj−1y1 · · · yi−1yiyj =

(Ed)
n−2W[2j ,2n−j ]yi+1 · · · yj−1y1 · · · yn =

(Ed)
n−2W[2j ,2n−j ]W[2i,2j−i−1]y1 · · · yiyi+1 · · · yn =

TijYS, (10)

where Tij = (Ed)
n−2nW[2j ,2n−j ]nW[2i,2j−i−1], YS =

nn
i=1yi.

Because xixj = Q(yi n yj), we then have

xixj = Q(Tij n YS), (11)

where Q = [1 0 0 0].
Equation (9) can be therefore rewritten as
n∑

j=1

a
[k]
ij Q(Tij n YS) = Q(

n∑
j=1

a
[k]
ij Tij)n YS =

Mi n YS = 0, i = 1, 2, · · · , n, (12)

where Mi = Q(
n∑

j=1

a
[k]
ij Tij).

Note that Eq.(12) are equivalent to
M1 n YS = 0,
M2 n YS = 0,

...
Mn n YS = 0.

That is,

M n YS = 0n, (13)

where M =


M1

M2

...
Mn

 .

Now we can get that if G contains a k--inter-
nally stable set S with characteristic vector VS = [x1,
x2, · · · , xn], then Eq.(9) is solvable, equivalently,
Eq.(13) holds, which implies that there exists a column
of M that is 0n. The necessity is obtained.

(Sufficiency). If there is a j, 1 6 j 6 2n, satisfy-
ing colj(M) = 0n, then the vector YS = δj2n satisfies
Eq.(13). Hence, Eq.(9) has a solution (x1, x2, · · · , xn),
which corresponds to a characteristic vector of a subset
of V , say, S. Since xi ∈ D and a

[k]
ij > 0, we have

a
[k]
ij xixj > 0. This together with Eq.(9) indicates that

a
[k]
ij xixj = 0 holds for any i ̸= j, which tell us that

if a[k]
ij = 1 then either xi = 0 or xj = 0, i.e., either

vi /∈ S or vj /∈ S. By the definition of k--internal stable
set, S is a k--internal stable set of G. We then get the
sufficiency. The proof is completed.

To construct, based on Theorem 1, an algorithm to
search all k--internally stable sets of graphs, we express
Theorem 1 in another form as follows:

Theorem 2 Consider a graph G = (V,E) with
the k--adjacency matrix A[k] = [a

[k]
ij ]. For a given

subset S ⊆ V , let its characteristic vector be VS =
[x1, x2, · · · , xn], and let YS = nn

i=1yi = δk2n , yi =
[xi, xi]

T. Then S is a k--internally stable set of G iff

colk(M) = 0n, (14)

where

M =


M1

M2

...
Mn

 , Mi=Q
n∑

j=1

a
[k]
ij Tij, i=1, 2, · · · , n,

Tij = (Ed)
n−2 nW[2j ,2n−j ] nW[2i,2j−i−1],

Q = [1 0 0 0].

Proof (Necessity). If S is a k--internal stable set
of G, from the proof of the necessity of Theorem 1,
we know that the characteristic vector YS = δk2n of S
satisfies Eq.(13), i.e., M n δk2n = 0n. Note that the di-
mension of M is n×2n and YS is of 2n×1 dimension.
In this case the semi-tensor product of matrices reduces
to the conventional product of matrices. Thus M n δk2n
is just the kth column of M . The necessity is proved.

(Sufficiency). If colk(M) = 0n, then the vector
YS = δk2n satisfies Eq.(13). Recall the proof of the suf-
ficiency of Theorem 1, and we know S is a k--internal
stable set of G. The proof is then completed.
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Based on the proofs of Theorems 1 and 2, the follow
conclusion is obvious.

Corollary 1 For a given graph G = (V,E), as-
sume its k--adjacency matrix is A[k] = [a

[k]
ij ]. Assign

each vertex vi ∈ V a characteristic variable xi as de-
scribed in Eq.(4) and define yi = [xi, xi]

T. Then G
contains a k--internally stable set if and only if the fol-
lowing equation

M nn
i=1 yi = 0n (15)

has at least one solution, where M is given in Eq.(14).
Moreover the number of k--internally stable set equals
to the number of the solutions. One can get, according
to Remark 3, a k--internally stable set from each solu-
tion.

Theorem 2 suggests an algorithm which can find out
all k--internally stable sets of an arbitrary graph.

Algorithm 1 Given a graph G = (V,E) with
A[k] = [a

[k]
ij ] as its k--adjacency matrix, assign each ver-

tex vi ∈ V a characteristic variable xi as described in
Eq.(4) and define yi = [xi, 1− xi]

T. Taking the fol-
lowing steps one can obtain all k--internally stable sets
of G.

Step 1 Compute the matrix M in Theorem 2.
Step 2 Check whether there exists a zero-column

0n in M . If not, G has no k--internally stable set and
the computation comes to end. Otherwise, set

K = {i|coli(M) = 0n}. (16)

Step 3 For each l in K, consider the equation
nn

i=1yi = δl2n . We define

Sn
1 = (Ed)

n−1 nW[2,2n−1],
...

Sn
i = (Ed)

n−1 nW[2i,2n−i],
...

Sn
n = (Ed)

n−1.

(17)

Then yi can be obtained by computing yi = Sn
i n

δl2n , i = 1, 2, · · · , n.
Step 4 Select yi=δ12 and construct Sl={vi|yi =

δ12}. Sl is a k--internally stable set of G.
All k--internally stable sets of G are

{Sl|l ∈ K,Sl is produced by Steps 3 and 4.}
The k--internally stable number of G is βk(G) =

max
l∈K

{|Sl|}, where |Sl| is the cardinality of Sl. All k--

absolute maximum internally stable sets of G are

ζ = {Sl| |Sl| = βk(G)}.
Remark 4 Since the algorithm above can find all k--

internally stable sets of a graph, we can get some k--internally
stable sets with some special properties, such as, there is no
common vertex between every two k--internally stable sets of a
family of k--internally stable sets, say, {S1, S2, · · · , Sm}.

Remark 5 All the operations related to STP in Algo-
rithm 1 and Theorems 1 and 2 can be easily completed by the
MATLAB toolbox developed by Professors D Z Cheng and H
S Qi, which is accessible at: http: //lsc.amss.ac.cn/dcheng/stp/
STP.zip.

3.2 Searching k--absolute maximum internally
stable set

Algorithm 1 provides a way to find out all k-
internally stable sets of graphs, of course, including k-
absolute maximum internally stable sets (k-AMISSs).
In this subsection, we investigate the problem separate-
ly and present a necessary and sufficient condition of
such kind of subset and an algorithm able to search all
k-AMISSs of an arbitrary graph.

Lemma 1[21] Let A[k] = [a
[k]
ij ] be the k-adja-

cency matrix of graph G = (V,E), S ⊆ V is a giv-
en subset. Assign each vertex vi ∈ V a variable xi

that xi = 1 if vi ∈ S and xi = 0 if vi /∈ S, then S
is a k-AMISS if and only only if (x1, x2, · · · , xn) is a
maximum point of the function

f(x1, · · · , xn) =
n∑

i=1

xi − (n+ 1)
n∑

i=1

n∑
j=1,j ̸=i

a
[k]
ij xixj, (18)

and the maximum value of f is non-negative.

Theorem 3 Let A[k] = [a
[k]
ij ] be the k-adjacency

matrix of graph G = (V,E). Consider a subset S ⊆ V
whose characteristic vector is VS = [x1, x2, · · · , xn].
Assume that

YS = nn
i=1yi = δk2n , yi = [xi, x̄i]

T,

then S is a k-AMISS of G if and only if the kth com-
ponent of M is maximum among all the non-negative
components, where

M = P (
n∑

i=1

Ti)− (n+ 1)M̄, (19)

in which

P = [1 0], Ti = (Ed)
n−1 nW[2i,2n−i],

Q = [1 0 0 0], M̄ = Q(
n∑

i=1

n∑
j=1,j ̸=i

a
[k]
ij Tij),

Tij = (Ed)
n−2 nW[2j ,2n−j ] nW[2i,2j−i−1].

Proof From the proof of Theorem 1 we know that

xixj = Q(Tij n YS).

Thus the part
n∑

i=1

n∑
j=1,j ̸=i

a
[k]
ij xixj of f can be ex-

pressed as
n∑

i=1

n∑
j=1,j ̸=i

a
[k]
ij xixj = Q(

n∑
i=1

n∑
j=1,j ̸=i

a
[k]
ij Tij)n YS.

(20)

Next, we consider another part
n∑

i=1

xi of f .
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Using Eqs.(1) and (6), we can get

yi = (Ed)
n−1 n yi+1 n · · · yn n y1 n · · ·n yi =

(Ed)
n−1 nW[2i,2n−i] n y1 n · · ·n yn =

(Ed)
n−1 nW[2i,2n−i] n YS.

Thus xi = Pyi = P ((Ed)
n−1 nW[2i,2n−i] n YS). We

then have
n∑

i=1

xi = P ((
n∑

i=1

(Ed)
n−1 nW[2i,2n−i])n YS). (21)

Substituting Eqs.(20) and (21) to Eq.(18), we get

f(x1, · · · , xn) =

P ((
n∑

i=1

(Ed)
n−1 nW[2i,2n−i])−

(n+ 1)Q(
n∑

i=1

n∑
j=1,j ̸=i

a
[k]
ij Tij))n YS =

M n YS, (22)

where M is given in Eq.(19).

Recall that YS = nn
i=1yi, yi = [xi, x̄i]

T and
(x1, x2, · · · , xn) are determined uniquely by each oth-
er, or say, they are in one-to-one correspondence with
each other, by which we know from Lemma 1 that
if S is a k-AMISS of G, then its characteristic vec-
tor YS = δk2n is a maximum point of Eq.(22) and the
maximum value is non-negative, i.e., M n YS is the
maximum non-negative value of Eq.(22). Note that
M n YS = M n δk2n is just the kth component of M ,
and that the range of f is the set consisting of all differ-
ent components of M (because YS = nn

i=1yi ∈ ∆2n).
Therefore the kth component of M is a maximum one
among all the non-negative components.

Conversely, if the kth component of M is a max-
imum component among all the non-negative compo-
nents, from Eq.(22) and the assumption that the char-
acteristic vector of S is YS = δk2n , we know YS is a
maximum point of Eq.(22) and the maximum value is
non-negative. Therefore, according to the equivalence
between Eq.(22) and Eq.(18) and the one-to-one corre-
spondence between YS and (x1, x2, · · · , xn), we know
(x1, x2, · · · , xn) is a maximum point of Eq.(18) and
the maximum value is non-negative. By Lemma 1 we
know that S is k-AMISS of G. The proof is completed.

Similar to the relationship between Algorithm 1 and
Theorem 2, Theorem 3 provides a way to search all k-
AMISSs of graphs.

Algorithm 2 Assume that A[k] = [a
[k]
ij ] is the k-

adjacency matrix of graph G = (V,E), assign each
vertex vi ∈ V a characteristic variable xi as described
in Eq.(4) and define yi = [xi, 1− xi]

T. To get all k-
AMISSs of G, one can take the following steps.

Step 1 Compute the matrix M in Theorem 3.

Step 2 Check whether all components of M are
negative, if yes, G has no k-AMISS and the computa-

tion comes to end. Otherwise, set

K = {i|coli(M) = max(col(M))}. (23)

Step 3 For each l in K, consider the equation
nn

i=1yi = δl2n . Define Sn
i = (Ed)

n−1 n W[2i,2n−i],
i = 1, 2, · · · , n. Then yi can be obtained by comput-
ing yi = Sn

i n δl2n ,i = 1, 2, · · · , n.
Step 4 Select yi = δ12 and construct the set

Sl = {vi|yi = δ12}.
S is a k-AMISS of G. All k-AMISSs are

{Sl|l ∈ K,Sl is produced by Steps 3 and 4.}.
The following conclusion on k-maximum weight

internally stable set (k-MWISS) can be proved in a very
similar way to that of Theorem 3, and the proof is omit-
ted.

Theorem 4 Consider a graph G = (V,E) with
a non-negative function ω : V → R. For a given subset
S ⊆ V , suppose that the characteristic vector of S is
YS = δk2n . Then S is a k-maximum weight internally
stable set of G if and only if the kth component of M̃
is the largest one, where

M̃ = P (
n∑

i=1

ω(vi)Ti)− (1 +
n∑

i=1

ω(vi))M̄, (24)

in which P , Ti and M̄ are given in Eq.(19).

Remark 6 From Theorem 4 we can establish an al-
gorithm to find out all k-maximum weight internally stable sets
of graphs, which is very similar to Algorithm 2, just replace M

of Algorithm 2 by M̃ in Eq.(24), and therefore we omit it here.

4 Solvability of k--track assignment problem
The k-track assignment problem is a kind of re-

source allocation problem in operation research and
scheduling theory with aiming to assign n jobs to k-
machines. Each job starts and ends at specific times
and can be processed by only one machine. Each ma-
chine operates in a certain track (period) beginning and
finishing at certain times. Moreover each machine can
handle only one job or is idle at a time. A schedule is
an assignment of jobs to machines such that the time in-
tervals of the jobs assigned to the same machine do not
conflict with each other, and that these time intervals are
contained in the working time interval of the machine.

Mathematically the k-track assignment problem
can be expressed as follows. Let I be the set of all inter-
vals corresponding to all jobs, and Fj be the set of the
time intervals of the jobs which can be processed on the
machine j. The k-track assignment problem is to find k
disjoint sets S1, S2, · · · , Sk ⊆ I satisfying

1) Sj ⊆ Fj for j = 1, 2, · · · , k;
2) The intervals in Sj are not overlapped with each

other;
3) |S1 ∪ S2 ∪ · · · ∪ Sk| is maximal. S = (S1,

S2, · · · , Sk) is called a feasible schedule if Eqs.(1)–
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(2) hold. If Eq.(3) holds additionally, S = (S1, S2,
· · · , Sk) is said to be optimal.

The k-track assignment problem can be modeled by
circular-arc graphs. A circular-arc graph is the intersec-
tion graph of a set of arcs on a circle. It has one vertex
for each arc in the set, and an edge between every pair
of vertices corresponding to arcs that intersect.

Formally, let I1, I2, · · · , In be a set of arcs, the cor-
responding circular-arc graph is G = (V,E) where
V = {I1, I2, · · · , In} and (Ii, Ij) ∈ E if and only
if (Ii ∩ Ij) ̸= ∅. Fig.1 is an illustrative example.

Fig. 1 Example of circular-arc graph

For a given k-track assignment problem, using arcs
to represent time intervals of jobs, the k-track assign-
ment problem can be represented by a circular-arc
graph. A schedule is then to find some group of dis-
connected vertices in the circular-arc graph, which cor-
responds to finding interval stable sets. To make the
number of assigned jobs be largest, one needs to find
some absolutely maximum internally stable sets in the
circular-arc graph.

In this section, as an application of k-internally sta-
ble set and k-maximum internally stable set, we con-
sider a simple case that the k machines have the same
function, i.e., every job can be assigned to every ma-
chine. In this case, the k-track assignment problem is
to find some disjoint internally stable sets or absolutely
maximum internally stable sets in the set I , which can
be achieved by the results/algorithms presented in Sec-
tion 3. To solve such k-track assignment problem, we
only need to set the k in the obtained results to be 1, con-
sequently the k-internally stable set and k-absolutely
maximum internally stable sets reduce to the internal-
ly stable set and absolutely maximum internally stable
sets, respectively.

Based on the analysis above and the results of Sec-
tion 3, we have the following conclusions.

Proposition 1 For a given k-track assignment
problem, assume that its graph model is G = (V,E)

with A[1] = (a
[1]
ij ) being the 1-adjacency matrix.

The k-track assignment problem has a feasible sched-
ule if and only if there exist k column indices 1 6
j1, j2, · · · , jk 6 2n such that

colji(M) = 0n, i = 1, 2, · · · , k. (25)

where

M =


M1

M2

...
Mn

 , Mi = Q
n∑

j=1

a
[1]
ij Tij, i = 1, 2, · · · , n,

Tij = (Ed)
n−2 nW[2j ,2n−j ] nW[2i,2j−i−1],

Q = [1, 0, 0, 0].

Proposition 2 The k-track assignment problem
in Proposition 1 has an optimal schedule if and only if
there are k maximum non-negative components in M ,

M = P (
n∑

i=1

Ti)− (n+ 1)M̄, (26)

in which

P = [1, 0], Ti = (Ed)
n−1 nW[2i,2n−i],

M̄ = Q(
n∑

i=1

n∑
j=1,j ̸=i

a
[k]
ij Tij), Q = [1, 0, 0, 0],

Tij = (Ed)
n−2 nW[2j ,2n−j ] nW[2i,2j−i−1].

The proofs of Propositions 1 and 2 follow from The-
orems 1 and 3 immediately and are omitted.

Remark 7 Based on Proposition 2, Algorithm 2 can
be applied to solve the track assignment problem after a slight
modification that in Step 1 of Algorithm 2 replace the matrix
M by the matrix M in Proposition 2. In practice, we first use
Algorithm 2 to find out all 1-absolute maximum internally sta-
ble sets of the graph that is the model of the track assignment
problem to be solved, then collect the disjoint sets among these
1-absolute maximum internally stable sets, the resulting set-
s are the optimal schedules of the track assignment problem.
Next we use an example in [21] to illustrate it.

Example 1 Consider the k-track assignmen-
t problem shown in Fig.2(a), which contains eight jobs
varying from 8 a.m to 11 p.m, whose graph model is
G = (V,E), V = {1, 2, · · · , 8}, as shown in Fig.2(b).
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We first give the 1-adjacency matrix A[1] = [a
[1]
ij ]

of G.

A[1] =



0 0 0 1 1 1 0 0
0 0 0 0 1 0 1 1
0 0 0 0 0 0 0 1
1 0 0 0 0 1 0 1
1 1 0 0 0 1 1 0
1 0 0 1 1 0 0 0
0 1 0 0 1 0 0 0
0 1 1 1 0 0 0 0


.

Step 1 According to (26) we can get the matrix
M as follows:

M =
[−190,−137,−155,−102,−137,−84,−102,−49,
−119,−66,−102,−49,−84,−31,−67,−14,
−137,−102,−102,−102,−67,−67,−32,−66,−31,
−49,−14,−49,−14,−32, 3,−173,−138,−138,
−103,−120,−85,−85,−50,−102,−67,−85,−50,
−67,−32,−50,−15,−120,−103,−85,−68,−85,
−68,−50,−33,−49,−32,−32,−15,−32,−15,
−15, 2,−137,−102,−120,−85,−84,−49,−67,−32,
−84,−49,−85,−50,−49,−14,−50,−15,−84,−67,
−67,−50,−49,−32,−32,−15,−31,−14,−32,
−15,−14, 3,−15,2,−120,−103,−103,−86,−67,
−50,−50,−33,−67,−50,−68,−51,−32,−15,−33,
−16,−67,−68,−50,−51,−32,−33,−15,−16,−14,
−15,−15,−16, 3,2,2,1,−137,−84,−102,−49,
−102,−49,−67,−14,−84,−31,−67,−14,−67,
−14,−50, 3,−102,−67,−67,−32,−85,−50,−50,
−15,−49,−14,−32, 3,−50,−15,−33,2,−120,−85,
−85,−50,−85,−50,−50,−15,−67,−32,−50,
−15,−50,−15,−33, 2,−85,−68,−50,−33,−68,
−51,−33,−16,−32,−15,−15, 2,−33,−16,−16,
1,−84,−49,−67,−32,−49,−14,−32,3,−49,
−14,−50,−15,−32, 3,−33, 2,−49,−32,−32,
−15,−32,−15,−15, 2,−14,3,−15,−15, 2,−16,
1,−67,−50,−50,−33,−32,−15,−15, 2,−32,
−15,−33,−16,−15, 2,−16, 1,−32,−33,−15,
−16,−15, 1−16, 2, 3, 2, 2, 1, 2, 1, 1, 0].

Step 2 There are nine maximum non-negative
components 3 in M , which are marked by underlines.
Their positions are 32, 94, 125, 144, 156, 200, 206, 218
and 249, respectively. Thus

K = {32, 94, 125, 144, 156, 200, 206, 218, 249}.

Step 3 For each element l ∈ K, computing yi =
S8
i n δl256, i = 1, 2, · · · , 8, where S8

i are defined as in
Eq.(17). Take l = 32 for example, we get

y1 = S8
1 n δ32256 = δ12, y2 = S8

2 n δ32256 = δ12,

y3 = S8
3 n δ32256 = δ12, y4 = S8

4 n δ32256 = δ22,

y5 = S8
5 n δ32256 = δ22, y6 = S8

6 n δ32256 = δ22,

y7 = S8
7 n δ32256 = δ22, y8 = S8

8 n δ32256 = δ22.

Step 4 Select y1, y2, y3 and construct the set
S32 = {1, 2, 3}. S32 is a 1-absolute maximum inter-
nally stable set of G.

All the other 1-absolute maximum internally stable
sets can be obtained in a similar way. All of them are
listed as follows:
S32={1, 2, 3}, S94={1, 3, 7}, S125={1, 7, 8},
S144={2, 3, 4}, S156={2, 3, 6}, S200={3, 4, 5},
S206={3, 4, 7}, S218={3, 6, 7}, S249={6, 7, 8}.

(27)

For the 2-track assignment problem, just choose t-
wo disjoint sets in Eq.(27), the collected sets correspond
to an optimal schedule. All optimal schedules are as fol-
lows:

({1, 2, 3}, {6, 7, 8}), ({2, 3, 4}, {6, 7, 8}),
({3, 4, 5}, {6, 7, 8}), ({1, 7, 8}, {2, 3, 4}),
({1, 7, 8}, {2, 3, 6}), ({1, 7, 8}, {3, 4, 5}).

(28)

To obtain the optimal schedules of 3-track as-
signment problem, we need to know additional
1-internally stable sets, which can be achieved by Al-
gorithm 1, all of them are listed in the following. (The
detailed process is omitted, which is similar to the above
analysis procedure).

S64 = {1, 2}, S96 = {1, 3}, S128 = {1},
S160={2, 3}, S176={2, 4}, S188={2, 6},
S192 = {2}, S208 = {3, 4}, S216 = {3, 5},
S220 = {3, 6}, S222 = {3, 7}, S224 = {3},
S232 = {4, 5}, S238 = {4, 7}, S240 = {4},
S247 = {5, 8}, S248 = {5}, S250 = {6, 7},
S251 = {6, 8}, S252 = {6}, S253 = {7, 8},
S254 = {7}, S255 = {8}.

(29)

Collecting two disjoint sets from (28) and (29), one
from (28), the other from (29), we can get all optimal
schedules of the 3-track assignment problem, which are
listed as follows:

({1, 2, 3}, {4, 5}, {6, 7, 8}),
({1, 2}, {3, 4, 5}, {6, 7, 8}),
({1, 7, 8}, {2, 6}, {3, 4, 5}),
({1, 7, 8}, {4, 5}, {2, 3, 6}).

(30)

Remark 8 It is interesting to find from Eq.(30) that
each of the four optimal schedules contains all the jobs; hence
three tracks (machines) are enough for the assignment prob-



No. 4 YUE Ju-mei et al: Solvability of k--track assignment problem: a graph approach 465

lem. We call the schedule having the least number of track-
s and containing the entire jobs completely optimal schedule.
Our method provides a way to find all the completely optimal
schedules for the k-track assignment problems.

Remark 9 The method described above can also be
applied to solve other similar assignment problems which can
be modeled as circular-arc graphs such as the frequency assign-
ment problem, memory assignment problem and room assign-
ment problem.

5 Illustrative example
This section uses an example in [21] to illustrate

the procedure to search all k-internally stable sets of a
graph by using the proposed method, and to verify the
correctness of the results/algorithms presented in this
paper.

Example 2 Consider the directed graph G =
(V,E) with V = {v1, v2, · · · , v8} as shown in Fig.3.

Fig. 3 The graph of Example 2

We use Algorithm 1 to search all k-internally stable
sets and k-absolute maximum internally stable sets of
G. Let us first consider the case of k = 2.

According to Eq.(3), it is easy to get the 2-
adjacency matrix of G.

A[2] = [a
[2]
ij ] =



0 1 1 1 1 0 0 0
0 0 1 0 0 1 0 1
0 0 0 0 0 1 1 1
0 0 1 0 1 1 0 1
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0


.

Steps 1 and 2 With A[2] we can have the matrix
M in Eq.(7), in which the numbers of zero-columns
are 123, 124, 126, 127, 128, 174, 176, 184, 190, 192,
216, 224, 238, 240, 247, 248, 251, 252, 254, 255.

And thus, the set K is

K = {123, 124, 126, 127, 128, 174, 176, 184,
190, 192, 216, 224, 238, 240, 247, 248,

251, 252, 254, 255}.
By Theorem 1 we know that G contains a 2-

internally stable set; by Corollary 1 we further know
that these twenty zero-columns determine twenty 2-
internally stable sets.

Step 3 For each element l ∈ K, computing yi =
S8
i n δl256, we can get yi, i = 1, 2, · · · , 8. Then the set

Sl = {vi|yi = δ12} is a 2-internally stable set.
Take l = 123 for example, we have
y1=S8

1 n δ123256=δ12, y2=S8
2 n δ123256=δ22,

y3=S8
3 n δ123256=δ22, y4=S8

4 n δ123256=δ22,

y5=S8
5 n δ123256=δ22, y6=S8

6 n δ123256=δ12,

y7=S8
7 n δ123256=δ22, y8=S8

8 n δ123256=δ12.

(31)

Collecting y1, y6, and y8, we then get a 2-inter-
nally stable set S123 = {v1, v6, v8}, which is shown
in red in Fig.3.

Consider another example, for l = 174, computing
yi = S8

i n δ174256 , i = 1, 2, · · · , 8, we obtain the follow-
ing:

y1=S8
1 n δ174256=δ22, y2=S8

2 n δ174256=δ12,

y3=S8
3 n δ174256=δ22, y4=S8

4 n δ174256=δ12,

y5=S8
5 n δ174256=δ22, y6=S8

6 n δ174256=δ22,

y7=S8
7 n δ174256=δ12, y8=S8

8 n δ174256=δ22.

(32)

y2, y4 and y7 indicate another 2-internally stable set
S174 = {v2, v4, v7}, which is marked in blue in Fig.3.

Similarly, by computing yi = S8
i n δl256 for oth-

er ls in K, all the other 2-internally stable sets can be
obtained. They are listed in the following.

S124={v1, v6}, S126={v1, v7}, S127={v1, v8},
S128 = {v1}, S174 = {v2, v4}, S176 = {v2, v5},
S184 = {v2, v7}, S190 = {v2}, S192 = {v3, v5}
S216 = {v3}, S224 = {v4, v7}, S238 = {v4},
S240 = {v5, v8}, S248 = {v5}, S251 = {v6, v8},
S252 = {v6}, S254 = {v7}, S255 = {v8}.

Next, we consider the case of k > 3.
For k = 3, using the procedure similar to the case

of k = 2, we can get all 3-internally stable sets. The
following are the ones except single vertex (a single
vertex is always a k-internally stable set for any inte-
ger k and any graphs): {1, 7}, {2, 4}, {2, 5}, {3, 5},
{5, 8}, {6, 8}.

For k = 4, all 4-internally stable sets except sin-
gle vertex are {2, 4}, {2, 5}, {3, 5}, {5, 8}, {6, 8}.

Continually applying Algorithm 1, we find an in-
teresting result that when k > 4 the k-internally stable
sets are the same. Actually we can prove this by show-
ing that A[k] remains unchanged when k > 4.

Now, we consider k-absolute maximum internal
stable sets of G. For k = 2, the maximum non-negative
element of the matrix M in Eq.(19) is 3, which occurs
at the positions 123 and 174 of M . From Eqs.(31) and
(32), we know that the sets S123 = {v1, v6, v8} and
S174 = {v2, v4, v7} are 2-absolute maximum internally
stable sets of M .

For k = 3, there are six maximum non-negative
elements 2 in the matrix M in Eq.(19), whose posi-
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tions are 126, 176, 184, 216, 247, 251, respectively.
Thus the set K in Step 2 of Algorithm 2 is K = {126,
176, 184, 216, 247, 251}.

For each element l ∈ K, computing yi = S8
i n

δl256, we can get the following 3-absolute maximum
internally stable sets: {1, 7}, {2, 4}, {2, 5}, {3, 5}, {5,
8}, {6, 8}.

When k > 4, similarly to the case of k-internal
stable set, the k-absolute maximum internally stable
sets of G also remain unchanged as follows: {2, 4},
{2, 5}, {3, 5}, {5, 8}, {6, 8}.

The results above are consistent with [21]. As for
the Theorem 3 and Algorithm 2 regarding searching k-
AMISSs of graphs, the correctness of them has also
been verified by Example 1 in Section 4.

6 Conclusions
Graphs provide discrete mathematical models for

many concrete real-world problems. This paper intro-
duces STP to the field of graph theory and uses it to
investigate the problems of k-internally stable set, k-
maximum internally stable set, and k-absolute maxi-
mum internally stable set of graphs. These concepts
serve as mathematical models for some real-world prob-
lems such as the k-track assignment problem. A set of
new results are obtained with the help of STP, includ-
ing three necessary and sufficient conditions of the three
kinds of internally stable set. Based on these new con-
ditions, two algorithms able to find all these subsets of
graphs are established. Moreover, the new results are
applied to the k-track assignment problem, and a new
method is proposed for solving the problem. The ap-
proach of this paper provides a new angle and means to
understand and analyse the structure of graphs and the
related problems.
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