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Observer-based fault detection for networked systems with
multiple packets transmission pattern

ZHANG Yong', ZHAO Min, LIU Zhen-xing
(School of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan Hubei 430081, China)
Abstract: Fault detection problem of multiple packets transmission networked systems with uncertain Markovian jump
system model is investigated. By introducing transmission matrix, we build Markovian jump system model with partly
unknown transition probabilities to describe the interaction between different packet transmissions in adjacent sampling
periods. Based on the obtained model, with the help of Lyapunov method and stochastic analysis techniques, we design
mode-dependent fault detection filter in terms of linear matrix inequalities to stabilize stochastically the augmented error
system in H-infinity framework. Corresponding results of classical Markovian jump system model and the switched system
model can be included as our special cases. The effectiveness of the proposed method is demonstrated by simulation

examples.
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1 Introduction

For modern communication networked systems, phys-
ical plants, sensors, actuators and observers are always
not located in the same place; thus observer signals are
transmitted from one place to another through network!!l.
Usually, single packet transmission!>~3! and multiple pack-
ets transmission*! are two kinds of data transmission
pattern on network-based systems. Although this kind
of network-based information transmission systems have
many attractive advantages, the introduction of network in-
evitably brings communication constraints to the systems,
which all might be ended up in poor performance or fault.

On the other hand, fault detection of large-scale com-
plex systems is an active research field!”!!1. Recently, fault
detection of networked control systems with communica-
tion delays and/or missing measurements have been exten-
sively considered by many researchers!!>'4 Actually, few
has modeled multiple packets transmission networked sys-
tems as Markovian jump systems, and almost no attention
has been paid to the study of fault detection for Marko-
vian networked systems with partially unknown transition
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probabilities, which motivates our investigation.

Different from the previous studies on multiple pack-
ets transmission with deterministic systems model'"-% and
Bernoulli random model™>/, in this paper, Markov chain is
introduced to describe the interaction in adjacent sampling
period, and Markovian jump systems model with partly
unknown transition probabilities is established. Based on
the obtained model, by utilizing mode-dependent fault de-
tection filter such as residual generator, fault detection of
multiple packets transmission networked systems is for-
mulated as an H,, attenuation problem. Furthermore,
sufficient conditions for the existence of mode-dependent
observer gain matrices and residual weighting matrices
are acquired in terms of certain linear matrix inequalities
(LMIs), and explicit parameters are characterized if these
LMIs are feasible. Finally, simulation examples are pre-
sented to demonstrate the effectiveness of the proposed
method.

2 Problem statement
Consider the following networked systems:
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{x(kJr 1) = Ax(k) + Bud(k) + B f (k). ) Tk + 1) Az (k)+ Ly (5(k) =5 (k)),
y(k) = Cx(k) + D1d(k) + D2 f(k), g(k) = Ci(k), (©)
where z(k) € R™ is the plant’s state, y(k) € R™ is the (k) = V) (5(F) — 9(k)),

outputs. d(k) € R® and f(k) € R are the disturbance
input and fault, respectively, which belong to ¢2[0, c0).
A, By, B3, C, Dy and Dy are known real matrices with the
appropriate dimensions. In this paper, we investigate mul-
tiple packets transmission networked systems and split the
measurement out y(k) into x separate packets, i.e. y(k) =
V' (k) -+ YI(k)]T, where Y;(k) € RPi, p; € Z* and

> pi=m.
i=1

Dinary-valued function o;(k)(I = 1,2,--- , &) is used
to describe the [-th packet transmission status at dis-
crete time k, ie., o;(k) : Z — {0,1}, where 1 means
successful data transmission and 0 means data loss. Specif-
ically, the [-th packets output Y;(k) is available to ob-
server only corresponding packet access the communica-
tion medium, i.e. o;(k) = 1. Otherwise, when o;(k) = 0,
the output of [-th packets will be zero by the observer and
Y, (k) will be ignored due to its being unavailable. If we
regard Y;(k) as the I-th packets signal received by the ob-
server, we can describe the transmission dynamics of [-th
packets as

Yi(k) = o1(k)Yi(k), l =1,2,--- , k. 2)
For given x, we define the transmission matrix as

M, & {01,009, -+ ,04}. Specially, transmission matrix
M, can be expressed as the following form:

M,g’l L {0’0’... ’0}’
Mi,l é{l,O,”-,
N——

0}’...7
M;’Ké{0,~~~70,0},~~~’
———

(©))
M:—Ll S {17... ,170}7... ,
N—_——

M::ily’{ £ {07 17 e 71}7
———

M/j)l é {111a 71}
According to above discussion, we achieve the follow-
ing dynamics model:
g(k) = My Py k), @)
where
Mﬂ ) e (MO M M
MM
and
y(k) = V1" (k) Yy (k) Y (k)T
Let (k) be a discrete-time homogeneous Markov chains,
which takes values in a finite set & = {1,2,
2%} with the transition probabilities matrix A = (p;;)
given by

pij = P(u(k + 1)|u(k)), Q)

Srand Z Pij = 1.
Jj=1
In this paper, an observer-based fault detection filter is
constructed as residual generator:

where p;; > 0, Vi,j €

where Z(k) € R™ and §(k) € RY represent the state and
output estimation vectors, respectively, (k) is the residual
signal. Observer gain matrices L (1) and residual weight-
ing matrices V), (1) will be designed. Fault detection filters
with above structure is assumed to jump synchronously
with the modes in (4), which is hereby mode-dependent.

Defining e; (k) = x(k) — Z(k), from (1)(4) and (5),
we have

er(k+1)=

[A— Ly k) Clex (k) = Ly [ME® = 1O (k) +
[B1 — Ly ME® Dy ]d(k) +

[B2 — Ly ME™ Do) (k). )

Combining (1) and (7), denoting r.(k) = r(k) —
f(k), e(k) = [zT(k) el (k)" and w(k) = [d*(k)

FE(k)]T, we obtain the following augmented error system:
{e(k + ].) = Au(k)e(k) :F Bu(k)w(k)a (8)
T‘e(k) = Clt(k)e(k) + D“(k)w(k),
where

5N

A 0 }

S LLM@M»@L(MC — LuyC A= Ly C

u(k) =

B
By By
{ u(k)M’( )Dy By—L (k)M‘( ) D, }
Cury = | Vuy MEBC =V C Vi ©l4

Dytry = WViuey ME® Dy Vi ME® Dy — 1.

re(k) is the residual error which contains information on
both the time and location of the occurrence of stochastic
fault.

Definition 1  Augmented filtering error system (8)
is said to be stochastically stable for w(k) = 0 and initial
condition e(0) and 1(0), the following holds:

B (k) 21e(0) 1(0)} < oc.

With Definition 1, the original fault detection filter de-
sign problem for system (1) can be further converted into
H filtering problem: find fault detection filter parameters
L,y and V(1 such that the augmented error systems (8)
is stochastically stable and the infimum of 7 is made as
small as possible in the feasibility of

EOE{H%( N2 <22 Z lw(®)112, ©)

for all nonzero w(k) , where v > 0 is a given disturbance
attenuation level.

In this paper, threshold Ji;, and residual evolution
function J(r.)(k) are selected as

ko+o N
J(re)(k) = E{k:Zk re (k)re(k)}2,
Jin = sup J(re)(k),

d(k)€ela, f(k)=0
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respectively, where kg is the initial evaluation time instant
and g is the evaluation time steps. Therefore, we can detect
the fault by comparing Ji, and J(r.)(k) with the follow-
ing test:

{ J(re)(k) > Jy = alarm for fault,

J(re)(k) < Jen = no fault. (10)

3 Main results and proofs

In this section, sufficient conditions on the existence
of OBFDF would be given, and mode-dependent fault de-
tection filters would be constructed. For notation clarity,
Vi € 3, we denote S = S + S with S = {5 2 py;
is known} and 3%, £ {7 : p;; is unknown}.

Theorem 1 For given scalar v > 0, augmented
filtering error system (8) with partly unknown transition
probabilities is stochastically stable and satisfies the Ho
noise attenuation level (9), if there exist matrices P;(i € J)
such that following matrix inequalities hold:

-P, 0 OF Alrm;
2 NnT nT
* —v°l D;j BT
* * -1 0 <0, an
* * * ij
T, & [le Tj?} 2l [le sz} 7
* Tjg le je%}( * Pj
j € Sk, (12)
o | P P o
7; = [ v Pl JE€SUk> (13)

where pbe = Y pij.
jest,
Proof For the stability analysis of augmented error
system (8), we construct the following stochastic Lya-
punov function:

V(S(k)) = e (k) Pygiye(k),

where P,y > O0(u(k) € ) are positive definite matri-
ces. Calculating the difference of V' (x(k)) along the aug-
mented error system (8) with w(k) = 0 and taking the
mathematical expectation, we have
E{AeV(3(k))} =
E{V(S(k+1)) = V(S(k))} <
eP(k+1) X pijPie(k+1) — e (k)Pe(k) =
JESK
k+D[ X pi+ X pylPe(k+1) -
FESL =
R o+ X piglPelk) =
jei JEST
TRAT+ X piA;Te(k), (14)
JE€SU K
Where A}'T = A;I‘P]l(gl - p’LKPZ, A}'T = A?P]AZ — Pi,
Py = > pi;b;
jES,
By Schur complement, (11) implies A; < 0 and
A; < 0. Thus we have

E{AV(S(k)} <

— > piymin Ain (=4, T)eT (R)e(k) —
FESY J
Amin(—A; D)eT (k)e(k). (15)
Then the stochastic stability can be obtained by similar
main line as [14].
On the other hand, under zero initial condition, for
w(k) # 0 in (8), we consider the following performance
index:

J = Eéo[rm)re(k) — 2T (kw(k)].  (16)
Let

we have
J <
E[AV (k) + 7] (k)re(k) — v*w™ (k)w(k)] =
k=0
EOE[(SE + P E3) + pij (51 + P Z3)], (17)
where B S o
- AZ-TP}(Ai AZ-TP}(Bi
S5 BrRLB
= _ |ATPjA; AlP;B;
-1= % BlTPJBZ ’
. _[¢re—p CTD;
-2 * DID; —~%I'|"

By Schur complement, (11) is equivalent to (=% +
P Z8) + pij(E1+ pi Z4) < 0, which implies J < 0, that
is E{||re(k)|l2} < v||w(k)]|2, so the proof is completed.
Theorem 2  For given scalar v > 0, if there exist
matrices Pjy, Pjo, Pi3, Li, Vi, X;,Y;, U (i € S), such that
the following LMIs hold:
0, 0 6O
x Oy O4| <0, (18)
* * Oy

where _
-1 0 0

953: * TUfX,;inT TQi*Yi*UiT )
% * T3 —Yi—Y," |

12 =
io1 ATX;T_ f22 ATUiT_ f22 |
CT‘—/iT ATYZ_T _CTE;_I‘ ATYiT _CTE;l“
9%3 =
DIMIVT BIXT+0k;, BIUT+6k,
CTV' By X'+6L;, BiU+053,]’
O, = diag{—*I, =71},
121 = CTM;in‘T - CTViTa
122 =C"L{ + CTML],
O3 = BYY;" — DI M. L7,
9%32 = BzTYiT - D;M;E;F
Then, the augmented error system (8) is stochastically sta-
ble (or stable for any switching sequence if 3% = @, for
all + € &) with H, attenuation performance. Moreover, if
LMIs (18) have feasible solution, mode-dependent filters
is given by B B
Li=Y 'Ly Vi=Vi, i €9, (19)
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Proof Denoting J = diag{[l,I,]I, T;lR;r}, pre-
and post multiplying (11) by JT and .J, respectively, we
have

-P, 0 CF ATRT
2 AT pT pT
x*  —~°1 D, B R;
. . 7 0 <0. (20
% * x - R;FT].*lR;T_
For an arbitrary matrix R; = U, Y, | , 1 €S, as-
suming Y; is inverse, we have the following fact:
1 I i1, 1o T
(7 Pr — Ri)(+Pxg) (P —Ri) 20,
Pr Pr Pr
(Pj = Ri)P;H(P; — Ri)" > 0.
(21)

Then, we have 1; — R; — RiT > —RiY}flRiT, and (20)
can rewrite as

P 0 CF ATRT
2 AT AT pT

* —v°1 D, B;' R,

3 . 7 0 <0. (22)

* * * Tj—Ri—R;F
Further define matrices variables

P = [Pi b ],L-:YZLZ», V= V.
* Py

Replacing L; = Y;L;, V; = V; into (22), we readily obtain
(18). The proof is completed.

Remark 1 As [15], the conclusions of Theorem 2
are comprehensive and which include traditional MJLS!"! and
switched systems under arbitrary switching!'” as its special
case. Thus the proposed method in this paper is more general.

Remark 2  Note that (18) are LMIs over both the ma-
trix variables and the prescribed scalars 2. This implies that
~2 can be included as optimization variables for LMIs (18),
which allow us to obtain the minimum Ho attenuation level
for the overall augmented error systems (8). The sub-optimal
mode-dependent fault detection filter can be found by solving
the following problem:

min _ _ s.t.(18), 23)
X;,Y3,U;, P, L, Vi

4 Illustrative example
Consider the networked systems (1) with the following

parameters:
a=[05 ] e= [
=[] [ 24]
D= [6.(;-81} » D2 = [0%2} :
If we investigate two packets transmission NCSs, ac-

cording to the transmission pattern presented in Section 2,
the transmission matrices can be constructed as

My 2 diag{1,1}, My'" £ diag{0,0},

Myt 2 diag{1,0}, M,? £ diag{0,1}.

Then corresponding transition probability matrix cases
are listed in Table 1, where ¢?” means that element is un-
known.

Table 1 Different transition probabilities matrices

Completely known Partly unknown Partly unkown

0.1 0.2 0.3 04 0.1 0.2 0.3 0.4 77?7
0.2 0.6 0.1 0.1 ?7 06 7 0.1 77?7
0.5 0.1 0.2 0.2 05 7 7 7 7?7
0.6 0.1 0.2 0.1 0.6 0.1 0.2 0.1 7777

By solving (18), the sub-optimal performance indices
are obtained for three different transition probabilities
cases, and the computation results are listed in Table 2.

Table 2 Minimum ~* for different transition cases

Completely known  Partly unknown Partly unkown

0.9821 1.2374 1.6549
3 -
2
&
3.
1
0
0
k
Se— el |
-—e
...... e
- e 64 |
S
Y}
[
-0.1 L L
10 20 30
k
0.5 '

0.0
—_
=
=
-0.5F b
— Fault case
------ No fault
— 1
1'00 50 100
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4 ;

Jr)(kK), Jy,

Fig. 1 Corresponding simulations of Case I

In this example, the H, performance level is taken as
~ = 1.2. By using the MATLAB LMI Toolbox, the mode-
dependent fault detection filter L], V/ (i = 1,2,3,4;j =
1,2, 3) can be designed. To demonstrate the effectiveness

of designed filter, an unknown disturbance d(k) is assumed
to be band-limited white noise with power of 0.05. The
fault signal f(k) is simulated as a square wave of 1 am-
plitude that occurred from 20 to 40 steps. The initial val-
ues of the state of the augmented error system is chosen as
e(0) =[0.2 — 0.1 0 0.1]T. For the possible realizations
of modes u(k) in case I, IT and 111, corresponding error re-
sponse e(k) , residual estimation signal r.(k), threshold
Jin and evolution of residual evaluation function J (7 ) (k)
are shown in Figs.1—3, respectively. For given ko = 0 and
o = 100, the threshold and residual evaluation function
values are obtained in Table 3. From Table 3, we know that
when k = 26, 29 and 28, J(r.)(k) > Jy, for the first time,
thus the fault can be detected by 6, 9 and 8 time steps after
its occurrence, respectively. It is clearly observed from the
simulation that the augmented error system (8) are stochas-
tically stable with given H,, performance level, and the
fault can also be detected effectively.

T T T
3r —e;
-———e,
...... e;
2 ---e |
S S
= T
1 -
0 h 4
1 1 1
0 50 100 0 10 20 30
k k
T
0.5
0.0 )
S S
W =
s
0.5t - =
— Fault case
------ No fault
— L 1
1'00 50 100 00 50 10
k k
Fig. 2 Corresponding simulations of Case II
T T T
3 —e
-———e
...... e
b -y
g g
1 |
0 | L
1 Il
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0.5 T

0.0

r(k)

-0.5

— Fault case

------ No fault
_1 '0 - -

0 50 100

Jr k), Jy,

Jrok)

0 50 100

Fig. 3 Corresponding simulations of Case III

Table 3 Corresponding threshold J;;, and residual evolution function value J(r.)(k) for different cases

Completely known

Partly unknown

Partly unkown

Jen = 1.8594
J(re)(25) = 1.8302 < Jy <
J(re)(26) = 1.9684

Jin = 1.9688
J(re)(28) = 1.9189 < Jyp, <
J(re)(29) = 1.9985

Jin = 1.8798
J(re)(27) = 1.8740 < Jyy, <
J(re)(28) = 1.9628

5 Conclusions

In this paper, the fault detection problem has been
addressed for multiple packets transmission networked
systems. Considering the interaction of different pack-
ets in adjacent sampling period and the difficulty in ob-
taining precise transition probabilities of Markovian jump
systems, by introducing transmission matrix, Markovian
jump system with partially unknown transition probabili-
ties is introduced to model this kind of data transmission
pattern. Then, we have derived a sufficient condition un-
der which the augmented error system is stochastically sta-
ble and the residual estimation error satisfies performance
constraint for all nonzero exogenous disturbances under
the zero-initial condition. The main attribution is design
mode-dependent observer-based fault detection filter such
that the error between residual signal and fault signal is
made as small as possible. Numerical example is given to
illustrate the effectiveness of proposed techniques.
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