文章编号:1000-8152(2010)04-0527-06

带有状态和输入时滞的不确定广义系统的鲁棒预测控制

刘晓华, 王利杰

(鲁东大学 数学与信息学院,山东 烟台 264025)

摘要:针对一类同时具有状态和输入时滞的不确定广义系统,研究其鲁棒预测控制问题,给出了鲁棒预测控制器 的综合方法.运用Lyapunov稳定性理论和线性矩阵不等式方法,近似求解无穷时域二次性能指标优化问题,从而得 到鲁棒预测控制器存在的充分条件和显式表达式.证明了优化问题在初始时刻的可行解,可以保证广义闭环时滞 系统是渐近稳定且正则无脉冲的.仿真算例验证了所提出方法的有效性.

关键词: 鲁棒预测控制; 广义系统; 线性矩阵不等式(LMIs); 时滞; 不确定性中图分类号: TP273 文献标识码: A

Robust predictive control of uncertain singular systems with both state and input delays

LIU Xiao-hua, WANG Li-jie

(College of Mathematics and Information, Ludong University, Yantai Shandong 264025, China)

Abstract: The problem of robust predictive control is investigated for uncertain singular systems with both state and input delays. The design method of robust predictive controller is proposed; the approximate solutions of optimal problems for infinite time interval and with quadratic performance index are calculated by means of Lyapunov stable theory and linear matrix inequalities(LMIs) technique; and the sufficient conditions for the existence of the robust predictive control are given. The feasibility of the optimization problems guarantees that the closed-loop singular time-delay systems are robustly stable, and the regularity and the impulse-free property of singular systems are also held. A simulation example illustrates the efficiency of this method.

Key words: robust predictive control; singular systems; linear matrix inequality(LMIs); time-delay; uncertainty

1 引言(Introduction)

预测控制是在每一采样时刻,通过在线求解有限 时域或无限时域目标函数的优化问题,进而求得当 前控制量的一类先进控制算法^[1].预测控制的优点 是可以有效处理状态量和控制量的约束问题,但经 典的模型预测控制(model predictive control, MPC)方 法却很难处理模型的不确定性^[2].在20世纪90年代, 鲁棒控制的一些方法被引入到预测控制,以提高模 型建模误差存在时的鲁棒性.在预测控制框架内处 理模型的不确定性,使受控系统在满足可行性条件 下达到渐近稳定的方法,称为鲁棒预测控制^[3],它融 合鲁棒控制对不确定性的处理方法和预测控制的滚 动优化思想,能够有效地处理模型不确定性问题,从 而弥补了经典预测控制律设计过程中没有考虑模型 不确定性的不足.

对于实际控制系统,不确定性和时滞是普遍存在

的,并且它们往往是导致系统不稳定或性能下降的 主要原因^[4].因而,对不确定时滞系统的研究是必要 的.目前,关于不确定时滞正常系统的鲁棒预测控制 已取得了许多成果^[5~9].广义系统比正常系统经常 更能准确地描述实际的动态系统,它广泛存在于诸 多实际领域,如电力系统、机械系统、电子网络系统 以及经济系统等^[10,11].近年来,广义系统的预测控 制已引起了学者们的关注^[12].对于不确定广义系统, 文献[13]研究了连续时间范数有界情况下的鲁棒预 测控制问题,控制器存在的条件和表达式由线性矩 阵不等式给出,所提出的方法可以保证闭环系统的 稳定性.然而,关于不确定广义时滞系统的鲁棒预测 控制的研究结果还未见报道.

本文针对一类同时带有状态和输入时滞的 不确定广义系统,研究其鲁棒预测控制问题.运 用Lyapunov稳定性理论和线性矩阵不等式方法,在

收稿日期: 2008-11-13; 收修改稿日期: 2009-06-03.

基金资助项目:国家自然科学基金资助项目(60774016, 60875039);山东省自然科学基金项目(ZR2009GL005).

线近似求解无穷时域二次性能指标"min-max"优化问题,得到预测控制器的显式表达,并以线性矩阵不等式形式,给出控制器存在的充分条件.在此基础上,分析广义闭环时滞系统的正则、无脉冲和渐近稳定性.最后通过仿真证明所提出方法的可行性和有效性.

2 问题描述(Problem formulation)

考虑一类同时带有状态和输入时滞的不确定广 义系统模型^[14]如下:

$$\begin{cases} E\dot{\boldsymbol{x}}(t) = (A + \Delta A)\boldsymbol{x}(t) + (A_d + \Delta A_d)\boldsymbol{x}(t - d_1) + \\ (B + \Delta B)\boldsymbol{u}(t) + (B_d + \Delta B_d)\boldsymbol{u}(t - d_2), & (1) \\ \boldsymbol{x}(t) = \varphi(t), \ t \in [-\tau^*, 0]. \end{cases}$$

其中: $E \in \mathbb{R}^{n \times n}$ 为奇异矩阵, 满足rank(E) = $r < n, \boldsymbol{x}(t) \in \mathbb{R}^{n}, \boldsymbol{u}(t) \in \mathbb{R}^{m}$ 分别表示系统的状态向量 和输入向量; E, A, A_{d}, B, B_{d} 为适当维数的已知常 数矩阵; d_{1}, d_{2} 为系统的滞后常数, 满足 $d_{1}, d_{2} \leq \tau^{*},$ τ^{*} 为已知常数; $\varphi(t)$ 为给定初始向量值连续函数; $\Delta A, \Delta A_{d}, \Delta B, \Delta B_{d}$ 表示时变参数不确定性, 具有 形式:

 $[\Delta A \ \Delta A_d \ \Delta B \ \Delta B_d] = DF(t)[E_1 \ E_a \ E_2 \ E_b].$ (2)

其中 $F(t) \in \mathbb{R}^{i \times j}$ 表示未知的实值有界函数且 $F^{\mathrm{T}}(t)F(t) \leq I, D, E_1, E_a, E_2, E_b$ 是适当维数的已 知矩阵.

采用状态反馈控制结构如下:

$$\boldsymbol{u}(kT+\tau,kT) = Kx(kT+\tau,kT), k \ge 0, \tau \ge 0.$$
(3)

对于范数有界不确定广义时滞系统(1),采用与 文献[13]相类似的二次型性能指标:

$$\min_{K} \max_{F(kT+\tau,kT),\tau \ge 0.} J_k,$$

$$J_k := \int_0^\infty (\boldsymbol{x}^{\mathrm{T}}(kT+\tau,kT)Q\boldsymbol{x}(kT+\tau,kT) + \boldsymbol{u}^{\mathrm{T}}(kT+\tau,kT)R\boldsymbol{u}(kT+\tau,kT))d\tau,$$
(4)

Q,R为加权对称正定矩阵.

假设采样时间序列为 $\{t_k\}_{k=0,1,2,\cdots}$,且满足 $t_{k+1}-t_k = T, T$ 为采样周期, $\mathbf{x}(kT) = \mathbf{x}(kT,kT)$ 表示采 样时刻kT的状态测量值, $\mathbf{x}(kT+\tau,kT)$ 表示在kT时 刻对 $kT + \tau$ 时刻的状态计算值, $\mathbf{u}(kT + \tau,kT)$ 表 示kT时刻使性能指标(4)优化的受控输入序列 在 $kT + \tau$ 时刻的计算值. 在 $t \in [kT, (k+1)T]$ 周期 内,实施状态反馈控制 $\mathbf{u}(kT + \tau, kT) = Kx(kT + \tau, kT)$,并通过以下闭环系统得到(k+1)T时刻的可 测状态 $\mathbf{x}((k+1)T)$.

$$E\dot{\boldsymbol{x}}(t) = (A + \Delta A + BK + \Delta BK)\boldsymbol{x}(t) + (A_d + \Delta A_d) \times \boldsymbol{x}(t - d_1) + (B_d K + \Delta B_d K)\boldsymbol{x}(t - d_2).$$
(5)

本文的目的是针对不确定广义时滞系统(1),设 计状态反馈预测控制器,通过在每一采样时刻kT, 求解优化问题(4),确定出鲁棒预测控制器(3),使得 不确定广义时滞系统在满足可行性条件时达到渐近 稳定.

引理 1^[15] *E*为奇异矩阵, 秩为r, 则存在正交矩阵 $U = [U_1 \ U_2], V = [V_1 \ V_2]$ 使得

$$E = U \begin{bmatrix} \Sigma_r & 0\\ 0 & 0 \end{bmatrix} V^{\mathrm{T}},$$

且有 $EV_2 = 0, U_2^{\mathrm{T}}E = 0, 则有下面的结论成立:$

1) 对所有满足条件 $ZE^{T} = EZ^{T} \ge 0$ 的Z, Z可 以参数化成形式: $Z = EV_{1}WV_{1}^{T} + SV_{2}^{T}$,其中, $W \ge 0 \in \mathbb{R}^{r \times r}, S \in \mathbb{R}^{n \times (n-r)}$,更进一步,若Z非奇 异,W > 0.

2) 若 $EV_1WV_1^T + SV_2^T$ 非奇异且W > 0,则存 在矩阵 \hat{W} 使 $(EV_1WV_1^T + SV_2^T)^{-T} = U_1\hat{W}U_1^T E + U_2\hat{S}$,其中,

$$\hat{W} = \Sigma_r^{-1} W^{-1} \Sigma_r^{-1}, \, \hat{S} = U_2^{\mathrm{T}} (E V_1 W V_1^{\mathrm{T}} + S V_2^{\mathrm{T}})^{-\mathrm{T}}.$$

其中U,V具体解释及引理证明见文献[17].

引理 2^[13] 假设矩阵*Y*, *D*, *E*具有适当的维数, 且*Y*是对称矩阵, 则*Y* + *DFE* + $E^{T}F^{T}D^{T} < 0$, 对 所有满足*F*^T(*t*)*F*(*t*) \leq *I*的矩阵*F*(*t*), 当且仅当存在 一个常数 $\varepsilon > 0$, 使得*Y* + $\varepsilon DD^{T} + \varepsilon^{-1}E^{T}E < 0$.

引理 $3^{[16]}$ 广义系统 $E\dot{x}(t) = Ax(t)$ 是正则、无脉冲且稳定的. 当且仅当存在正定矩阵 $P \in \mathbb{R}^{n \times n}$, 使得以下不等式:

$$E^{\mathrm{T}}P = P^{\mathrm{T}}E \ge 0, AP^{\mathrm{T}} + PA^{\mathrm{T}} < 0.$$

引理 4^[17] 对于任意适当维数的矩阵P, R有 $P^{T}R + R^{T}P \leq R^{T}QR + P^{T}Q^{-1}P, \forall Q > 0.$

3 鲁棒预测控制(Robust predictive control)

在每一采样时刻*kT*,为了求解含有模型不确定性的优化问题(4),本文通过一个假定的不等式条件给出性能指标*J*_k的上确界,将无限时域优化问题(4)转化为可求解的"min-max"优化问题,并利用线性矩阵不等式工具给出控制律的显式表达.

考虑如下二次Lyapunov函数^[14]:

$$V(\boldsymbol{x}(t)) = \boldsymbol{x}^{\mathrm{T}}(t)E^{\mathrm{T}}P\boldsymbol{x}(t) + \int_{-d_{1}}^{0} \boldsymbol{x}^{\mathrm{T}}(t+\xi)R_{1}\boldsymbol{x}(t+\xi)\mathrm{d}\xi + \int_{-d_{2}}^{0} \boldsymbol{u}^{\mathrm{T}}(t+\xi)R_{2}\boldsymbol{u}(t+\xi)\mathrm{d}\xi.$$
(6)

其中: R₁ > 0, R₂ > 0, P满足以下条件:

$$E^{\mathrm{T}}P = P^{\mathrm{T}}E \ge 0. \tag{7}$$

$$\frac{\mathrm{d}}{\mathrm{d}\tau} (V(\boldsymbol{x}(kT+\tau,kT))) \leqslant -(\boldsymbol{x}^{\mathrm{T}}(kT+\tau,kT)Q\boldsymbol{x}(kT+\tau,kT) + \boldsymbol{u}^{\mathrm{T}}(kT+\tau,kT)R\boldsymbol{u}(kT+\tau,kT)).$$
(8)

为保证性能指标是有限值, 假设 $x(\infty, kT) = 0$, 那 么, 有 $V(x(\infty, kT)) = 0$. 将式(8)从0到 ∞ 积分, 得

$$-\int_{0}^{T} \boldsymbol{x}^{\mathrm{T}}(kT+\tau,kT)(Q+K^{\mathrm{T}}RK)\boldsymbol{x}(kT+\tau,kT)\mathrm{d}\tau \geq \boldsymbol{x}^{\mathrm{T}}(kT+T,kT)E^{\mathrm{T}}P\boldsymbol{x}(kT+T,kT) - \boldsymbol{x}^{\mathrm{T}}(kT)E^{\mathrm{T}}P\boldsymbol{x}(kT) + \int_{-d_{1}}^{0} \boldsymbol{x}^{\mathrm{T}}(kT+T+\xi,kT)R_{1}\boldsymbol{x}(kT+T+\xi,kT)\mathrm{d}\xi - \int_{-d_{1}}^{0} \boldsymbol{x}^{\mathrm{T}}(kT+\xi,kT)R_{1}\boldsymbol{x}(kT+\xi,kT)\mathrm{d}\xi + \int_{-d_{2}}^{0} \boldsymbol{u}^{\mathrm{T}}(kT+\xi,kT)R_{2}\boldsymbol{u}(kT+T+\xi,kT)\mathrm{d}\xi - \int_{-d_{2}}^{0} \boldsymbol{u}^{\mathrm{T}}(kT+\xi,kT)R_{2}\boldsymbol{u}(kT+\xi,kT)\mathrm{d}\xi.$$

$$\exists T \to \infty \text{ fr}, \text{ iff} \text{ iff} \text{ iff} \text{ iff} \text{ iff}, \text{ iff}$$
$$\boldsymbol{x}^{\mathrm{T}}(kT+T,kT)E^{\mathrm{T}}P\boldsymbol{x}(kT+T,kT) \to 0,$$
$$\int_{-d_{1}}^{0} \boldsymbol{x}^{\mathrm{T}}(kT+T+\xi,kT)R_{1}\boldsymbol{x}(kT+T+\xi,kT)\mathrm{d}\xi \to 0,$$
$$\int_{-d_{2}}^{0} \boldsymbol{u}^{\mathrm{T}}(kT+T+\xi,kT)R_{2}\boldsymbol{u}(kT+T+\xi,kT)\mathrm{d}\xi \to 0$$

由此可得:

$$\int_{0}^{\infty} \boldsymbol{x}^{\mathrm{T}}(kT+\tau,kT)(Q+K^{\mathrm{T}}RK)\boldsymbol{x}(kT+\tau,kT)\mathrm{d}\tau \leqslant 1$$

[L]	$A_d X_1$	$B_d X_2$	$(E_1 Z + E_2 Y)^{\mathrm{T}}$
*	$-X_1$	0	$(E_a X_1)^{\mathrm{T}}$
*	*	$-X_2$	$(E_b X_2)^{\mathrm{T}}$
*	*	*	*
*	*	*	*
*	*		*
_*	*	*	*

其中:

$$\begin{split} L &= AZ^{\mathrm{T}} + BY^{\mathrm{T}} + (AZ^{\mathrm{T}} + BY^{\mathrm{T}})^{\mathrm{T}} + \varepsilon DD^{\mathrm{T}}, \\ Z &= EV_1 WV_1^{\mathrm{T}} + SV_2^{\mathrm{T}}, \\ \int_{-d_1}^{0} \boldsymbol{x}^{\mathrm{T}} (kT + \xi, kT) \boldsymbol{x} (kT + \xi, kT) \mathrm{d}\xi = N_1 N_1^{\mathrm{T}}, \\ \int_{-d_2}^{0} \boldsymbol{x}^{\mathrm{T}} (kT + \xi, kT) \boldsymbol{x} (kT + \xi, kT) \mathrm{d}\xi = N_2 N_2^{\mathrm{T}}, \end{split}$$

*代表相应的对称块矩阵.

定理1表明,在每一采样时刻kT,针对不确定广 义时滞系统提出的鲁棒预测控制问题,可以转化

最小化.

定理1 设**x**(*kT*)为系统(1)在*kT*时刻的状态测 量值,通过最小化V(**x**(*kT*))确定出状态反馈增益矩 阵

$$K = Y^{\rm T} (EV_1 W V_1^{\rm T} + S V_2^{\rm T})^{-{\rm T}}.$$
 (9)

其中, $W > 0, Y, S, X_1, X_2, M_1, M_2, \gamma, \varepsilon$ 由以下优化 问题求得:

$$\min_{\gamma,\varepsilon,W,Y,S,X_1,X_2,M_1,M_2} \gamma + \operatorname{tr}(M_1) + \operatorname{tr}(M_2), (10)$$
s.t.
$$\begin{bmatrix} \gamma & \boldsymbol{x}^{\mathrm{T}}(kT)V_1 \\ V_1^T \boldsymbol{x}(kT) & W \end{bmatrix} \ge 0, \quad (11)$$

$$\begin{bmatrix} M_1 & N_1^{\rm T} \\ N_1 & X_1 \end{bmatrix} > 0, \tag{12}$$

$$\begin{bmatrix} M_2 & N_2^{\mathrm{T}} \\ N_2 & X_2 \end{bmatrix} > 0, \tag{13}$$

$$\begin{array}{ccccc} Y^{\mathrm{T}} & Y^{\mathrm{T}} & Z & Z \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ R^{-1} & 0 & 0 & 0 \\ * & -X_2 & 0 & 0 \\ * & * & -X_1 & 0 \\ * & * & * & -Q^{-1} \end{array} \right] < 0.$$
(14)

为在一组线性矩阵不等式约束下的"min-max" 优化问题. 证明见附录1.

4 鲁棒稳定性分析(Robust stability analysis)

引理 5^[3] 优化问题(10)在*kT*时刻的任意可行 解,在*NT*(*N* > *k*)仍是可行的.

由定理1给出的鲁棒预测控制方法,可确定 出kT的状态反馈控制律 K_k ,当k从0到 ∞ 变化时, 得到分段连续状态反馈矩阵序列{ K_k } $_{k=0}^{\infty}$.由引 理5知,初始时刻的可行性保证了优化问题(10)的 解始终是可行的. 将控制序列{*K_k*}_{*k*=0}带入方程(1),可以得到分段连续广义闭环时滞系统表达式如下:

$$E\dot{\boldsymbol{x}}(t) = (A + \Delta A + BK_k + \Delta BK_k)\boldsymbol{x}(t) + (A_d + \Delta A_d)\boldsymbol{x}(t-d_1) + (B_dK_k + \Delta B_dK_k)\boldsymbol{x}(t-d_2),$$

$$t \in [kT, (k+1)T), k = 0, 1, \cdots.$$
(15)

下面,给出广义闭环时滞系统鲁棒稳定性定理.

定理 2 若优化问题(10)存在可行解,则在定理1给出的分段连续状态反馈控制律*K*_k作用下,闭环系统(20)是正则、无脉冲及渐近稳定的.证明见附录2.

5 仿真实例(Simulation example)

考虑如下不确定广义时滞系统:

$$E\dot{\boldsymbol{x}}(t) = (A + rA_0)\boldsymbol{x}(t) + (A_d + sA_{d0})\boldsymbol{x}(t - d_1) + (B + qB_0)\boldsymbol{u}(t) + (B_d + hB_{d0})\boldsymbol{u}(t - d_2).$$

具体参数如下:

$$E = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, A = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix}, B = \begin{bmatrix} 2 \\ 1 \end{bmatrix},$$
$$A_d = \begin{bmatrix} 0 & 0 \\ 0.1 & 0.1 \end{bmatrix}, B_d = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, E_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}^{\mathrm{T}}$$
$$E_2 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}^{\mathrm{T}}, E_a = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}^{\mathrm{T}}, E_b = \begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}^{\mathrm{T}},$$
$$D = \begin{bmatrix} 0.1 & 0 & 0.1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}, A_0 = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, B_0 = \begin{bmatrix} 0 \\ 1 \end{bmatrix},$$
$$A_{d0} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, B_{d0} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}, Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},$$
$$R = \begin{bmatrix} 1 \end{bmatrix}, |r| \le 0.1, |s| \le 0.1, |q| \le 0.1, |h| \le 0.1.$$

初始状态 $x_1(t) = \exp(1), x_2(t) = -1.0, \ pr(t) =$ 10×diag{r, s, q, h}.此时系统可写为 $E\dot{x}(t) =$ $(A + DFE_1)x(t) + (A_d + DFE_a)x(t - d_1) +$ $(B + DFE_2)u(t) + (B_d + DFE_b)u(t - d_2).$ 这里 $t \in [-3,0],$ 选择采样周期为T = 0.3 s.根据 定理1提出的方法求解"min-max"优化问题(10). 具体仿真结果如图1和图2所示,点划线表示 $d_1 =$ $1.0, d_2 = 0.5$ 时的输入和状态响应曲线,实线表示 $d_1 = 3.0, d_2 = 1.5$ 时的输入和状态响应曲线.仿真 结果表明,基于LMI方法设计的不确定广义时滞 系统的鲁棒预测控制算法,可以有效地处理时滞 和参数不确定性问题,具有较快的动态响应.

6 结论(Conclusions)

本文提出了一类同时具有状态和输入时滞的不确定广义系统的鲁棒预测控制算法,运用Lyapunov稳定性理论和线性矩阵不等式方法,处理广义时滞系统的不确定性问题,证明了广义闭环系统在同时具有状态和输入时滞时,是渐近稳定以及正则无脉冲的,并且得到的结果与时滞无关.最后,通过仿真实例证明了所提出的方法的有效性.

参考文献(References):

- RICHALET J. Model predictive heuristic control: applications to industrial processes[J]. *Automatica*, 1978, 14(5): 413 – 428.
- [2] RODRIGUES M A, ODLOAK D. MPC for stable linear systems with model uncertainty[J]. *Automatica*, 2003, 39(11): 569 – 583.
- [3] KOTHARE M V, ALAKRISHNAN V, MORARI M. Robust constrained model predictive control using linear matrix inequalities[J]. *Automatica*, 1996, 32(10): 1361 – 1379.
- [4] WANG Z D, HUANG B, UNBEHAUEN H. Robust reliable control for a class of uncertain nonlinear state-delayed systems[J]. *Automatica*, 1999, 35(12): 955–963.
- [5] HAN C Y, LIU X H, ZHANG H S. Robust model predictive control for continuous uncertain systems with state delays[J]. *Control Theory* & *Applications*, 2008, 6(2): 189 – 194.

- [6] 刘晓华, 于晓华. 多面体不确定系统时滞依赖鲁棒预测控制[J]. 控 制与决策, 2008, 7(23): 807-812. (LIU Xiaohua, YU Xiaohua. Delay-dependent robust predictive control for polytopic uncertain systems[J]. Control and Decision, 2008, 7(23): 807 - 812.)
- [7] JEONG S C, PARK P G. Constrained MPC algorithm for uncertain time-varying systems with state-delay[J]. IEEE Transactions on Automatic Control, 2005, 50(2): 257 - 263.
- [8] LU M, SHAO H H. Robust predictive control of polytopic uncertain systems with both state and input delays[J]. Journal of Systems Engineering and Electronics, 2007, 18(3): 616 - 621.
- [9] DING B, HUANG B. Constrained robust model predictive control for time-delay systems with polytopic description[J]. International Journal of Control, 2007, 80(4): 509 - 522.
- [10] DAI L. Singular control systems[M] //Lecture Notes in Control and Information Sciences. New York: Springer-Verlag, 1989: 0 - 118.
- [11] 张庆灵,杨冬梅.不确定广义系统的分析与综合[M]. 沈阳:东北 大学出版社, 2003. (ZHANG Qingling, YANG Dongmei. Analysis and Synthesis of Uncertain Singular Systems[M]. Shenyang: Northeastern University
- Press, 2003.) [12] YONCHEV A, FINDEISEN R, EBENBAUER C, et al. Model predictive control of linear continuous time singular systems subject to input constraints[C] //43rd IEEE Conference on Decision and Control, Bahamas: [s.n.], 2004: 2047 - 2051.
- [13] ZHANG L, HUANG B. Robust model predictive control of singular systems[J]. IEEE Transactions on Automatatic Control, 2004, 49(6): 1000 - 1006.
- [14] PIAO F X, ZHANG Q L. Robust H infinity control for uncertain descriptor systems with state and control delays[J]. Journal of Systems Engineering and Electronics, 2006, 17(3): 571 - 575.
- [15] ZHANG L, HUANG B, LAM J. LMI synthesis of H₂ and mixed H_2/H_∞ controllers for singular systems[J]. IEEE Transactions on Circuits and System, 2003, 59(9): 615-626.
- [16] XU S Y, PAUL V D, STEFAN R, Robust stabilization for singular systems with state delay and parameter uncertainty[J]. IEEE Transactions on Automatatic Control, 2002, 47(7): 1122-1128.
- [17] YU L, XU J M, HAN Q L. Optimal guaranteed cost control of singular systems with delayed state and parameter uncertainties[C] //Proceeding of the 2004 American Control Conference. Boston: IMassachusetts, 2004: 4811 - 4816.
- [18] SU H Y, JI X Y, CHU J. Delay dependent robust control for uncertain singular time delay systems[J]. Asian Journal of Control, 2006, 8(2): 180 - 189

附录1 定理1证明(Appendix1 Theorem 1 proof) 证 在采样时刻kT,考虑Lyapunov函数

$$\begin{split} V(\boldsymbol{x}(kT)) &= \boldsymbol{x}^{\mathrm{T}}(kT) E^{\mathrm{T}} P \boldsymbol{x}(kT) + \\ & \int_{-d_{1}}^{0} \boldsymbol{x}^{\mathrm{T}}(kT + \xi, kT) R_{1} \boldsymbol{x}(kT + \xi, kT) \mathrm{d}\xi + \\ & \int_{-d_{2}}^{0} \boldsymbol{u}^{\mathrm{T}}(kT + \xi, kT) R_{2} \boldsymbol{u}(kT + \xi, kT) \mathrm{d}\xi. \end{split}$$

假设参数 γ 满足 $x^{\mathrm{T}}(kT)E^{\mathrm{T}}Px(kT) \leq \gamma$,由Schur补引理及 文献[13]知, $\boldsymbol{x}^{\mathrm{T}}(kT) E^{\mathrm{T}} P x(kT) \leq \gamma$ 等价于式(11). 二次型函数积分项的第一部分可转化为

$$\int_{-d_1}^0 \boldsymbol{x}^{\mathrm{T}}(kT+\xi,kT)R_1\boldsymbol{x}(kT+\xi,kT)\mathrm{d}\xi =$$

$$\int_{-d_1}^{0} \operatorname{tr}(\boldsymbol{x}^{\mathrm{T}}(kT+\xi,kT)X_1^{-1}\boldsymbol{x}(kT+\xi,kT))\mathrm{d}\xi = \operatorname{tr}(N_1N_1^{\mathrm{T}}X_1^{-1}) = \operatorname{tr}(N_1^{\mathrm{T}}X_1^{-1}N_1).$$

假设存在矩阵变量 M_1 ,使得tr $(N_1^T X_1^{-1} N_1) < tr(M_1)$,由 Schur补引理得式(12)成立, 其中 $X_1 = R_1^{-1}$.

同理可得二次型函数积分项的第二部分可转化为

$$\begin{split} &\int_{-d_1}^{0} \boldsymbol{x}^{\mathrm{T}}(kT + \xi, kT) R_1 \boldsymbol{x}(kT + \xi, kT) \mathrm{d}\xi = \\ &\int_{-d_1}^{0} \mathrm{tr}(\boldsymbol{x}^{\mathrm{T}}(kT + \xi, kT) X_1^{-1} \boldsymbol{x}(kT + \xi, kT)) \mathrm{d}\xi = \\ &\mathrm{tr}(N_1 N_1^{\mathrm{T}} X_1^{-1}) = \mathrm{tr}(N_1^{\mathrm{T}} X_1^{-1} N_1). \end{split}$$

假设存在矩阵变量 M_1 ,使得tr $(N_1^T X_1^{-1} N_1) < tr(M_1)$.假 设存在矩阵变量 M_2 ,使得tr($K^T N_2^T X_2^{-1} N_2 K$) < tr(K^T M_2K), 由Schur补引理得式(13)成立, 其中 $X_2 = R_2^{-1}$.

因此, $V(\boldsymbol{x}(kT)) < \gamma + \operatorname{tr}(M_1) + \operatorname{tr}(M_2)$, 从而最小化问 题转化为min γ + tr(M_1) + tr(M_2).

将状态反馈控制律(3)及状态方程(1)代入不等式(8)中, 得

$$\dot{V}(\boldsymbol{x}(kT+\tau)) = \\ \dot{\boldsymbol{x}}^{\mathrm{T}}(kT+\tau)E^{\mathrm{T}}P\boldsymbol{x}(kT+\tau) + \boldsymbol{x}^{\mathrm{T}}(kT+\tau)E^{\mathrm{T}}P\dot{\boldsymbol{x}}(kT+\tau) + \\ \boldsymbol{x}^{\mathrm{T}}(kT+\tau)R_{1}\boldsymbol{x}(kT+\tau) - \boldsymbol{x}^{\mathrm{T}}(kT+\tau-d_{1})R_{1}\boldsymbol{x}(kT+\tau) + \\ \boldsymbol{x}^{\mathrm{T}}(kT+\tau)R_{1}\boldsymbol{x}(kT+\tau) - \boldsymbol{x}^{\mathrm{T}}(kT+\tau-d_{1})R_{1}\boldsymbol{x}(kT+\tau) - \\ \boldsymbol{x}^{\mathrm{T}}(kT+\tau-d_{2})K^{\mathrm{T}}R_{2}K\boldsymbol{x}(kT+\tau-d_{2}) = \\ \boldsymbol{x}^{\mathrm{T}}(kT+\tau)[(A+\Delta A+BK+\Delta BK)^{\mathrm{T}}P+ \\ P^{\mathrm{T}}(A+\Delta A+BK+\Delta BK) + R_{1} + \\ K^{\mathrm{T}}R_{2}K]\boldsymbol{x}(kT+\tau) + \boldsymbol{x}^{\mathrm{T}}(kT+\tau - \\ d_{1})(A_{d}+\Delta A_{d})^{\mathrm{T}}P\boldsymbol{x}(kT+\tau) + \boldsymbol{x}(kT+\tau) + \\ \boldsymbol{x}(kT+\tau-d_{2}))^{\mathrm{T}}(B_{d}+\Delta B_{d})^{\mathrm{T}}P\boldsymbol{x}(kT+\tau) + \\ (K\boldsymbol{x}(kT+\tau-d_{2}))^{\mathrm{T}}(B_{d}+\Delta B_{d})^{\mathrm{T}}P\boldsymbol{x}(kT+\tau) + \\ \boldsymbol{x}(kT+\tau) - \\ d_{1})(A_{d}+\tau)^{\mathrm{T}}P^{\mathrm{T}}(B_{d}+\Delta B_{d})(K\boldsymbol{x}(kT+\tau) + \\ \boldsymbol{x}(kT+\tau)^{\mathrm{T}}P^{\mathrm{T}}(B_{d}+\Delta B_{d})(K\boldsymbol{x}(kT+\tau) - \\ d_{1})(A_{d}+\tau)^{\mathrm{T}}P^{\mathrm{T}}(B_{d}+\tau) + \\ (K\boldsymbol{x}(kT+\tau-d_{2}))^{\mathrm{T}}R_{2}(K\boldsymbol{x}(kT+\tau-d_{2})) \leq \\ \boldsymbol{x}^{\mathrm{T}}(kT+\tau)(Q+K^{\mathrm{T}}RK)\boldsymbol{x}(kT+\tau).$$
 (16)

上述不等式(16)可以化为如下的不等式

$$\begin{bmatrix} \boldsymbol{x}(kT+\tau) \\ \boldsymbol{x}(kT+\tau-d_1) \\ Kx(kT+\tau-d_2) \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} \Sigma \ P^{\mathrm{T}}(A_d+DFE_a) \ P^{\mathrm{T}}(B_d+DFE_b) \\ * \ -R_1 & 0 \\ * & * & -R_2 \end{bmatrix}$$
$$\begin{bmatrix} \boldsymbol{x}(kT+\tau) \\ \boldsymbol{x}(kT+\tau-d_1) \\ Kx(kT+\tau-d_2) \end{bmatrix} \leqslant 0.$$
(17)

第4期

 $DF(E_1+E_2K)]+R_1+K^TR_2K+Q+K^TRK$, if

$$\boldsymbol{\varOmega} = \begin{bmatrix} \boldsymbol{\varOmega}_1 \ \boldsymbol{P}^{\mathrm{T}} \boldsymbol{A}_d \ \boldsymbol{P}^{\mathrm{T}} \boldsymbol{B}_d \\ \ast \ -\boldsymbol{R}_1 \ \boldsymbol{0} \\ \ast \ \ast \ -\boldsymbol{R}_2 \end{bmatrix}.$$

 $Q + K^{\mathrm{T}}RK$. 则式(17)等价于

$$\Omega + \begin{bmatrix} P^{\mathrm{T}}D\\0\\0 \end{bmatrix} F[E_1 + E_2K E_a E_b] + \\ \begin{bmatrix} E_1 + E_2K E_a E_b \end{bmatrix}^{\mathrm{T}}F^{\mathrm{T}} \begin{bmatrix} P^{\mathrm{T}}D\\0\\0 \end{bmatrix}^{\mathrm{T}} \leqslant 0$$

由引理2知,存在ε > 0,使得上述不等式转化为

$$\Omega + \varepsilon \begin{bmatrix} P^{\mathrm{T}}D\\0\\0 \end{bmatrix} \begin{bmatrix} P^{\mathrm{T}}D\\0\\0 \end{bmatrix}^{\mathrm{T}} + \varepsilon^{-1}[E_1 + E_2K E_a E_b]^{\mathrm{T}}[E_1 + E_2K E_a E_b] < 0.$$
(18)

$$\begin{bmatrix} L_1 P^{\mathrm{T}} A_d P^{\mathrm{T}} B_d (E_1 + E_2 K)^{\mathrm{T}} \\ * & -R_1 & 0 & E_a^{\mathrm{T}} \\ * & * & -R_2 & E_b^{\mathrm{T}} \\ * & * & * & -\varepsilon I \end{bmatrix} < 0$$

 ${\B + } {\B + } E_1 = (A + BK)^{\rm T} P + P^{\rm T} (A + BK) + R_1 + K^{\rm T} R_2 K +$ $Q + K^{\mathrm{T}}RK + \varepsilon P^{\mathrm{T}}DD^{\mathrm{T}}P.$ 由Schur补引理,进一步有

$$\begin{bmatrix} L_2 \ P^{\mathrm{T}}\!A_d \ P^{\mathrm{T}}\!B_d \ (E_1 \!+\! E_2 K)^{\mathrm{T}} \ K^{\mathrm{T}} \ K^{\mathrm{T}} \ I \ I \\ * \ -R_1 \ 0 \ E_a^{\mathrm{T}} \ 0 \ 0 \ 0 \ 0 \\ * \ * \ -R_2 \ E_b^{\mathrm{T}} \ 0 \ 0 \ 0 \ 0 \\ * \ * \ * \ * \ -\varepsilon I \ 0 \ 0 \ 0 \\ * \ * \ * \ * \ -R^{-1} \ 0 \ 0 \\ * \ * \ * \ * \ * \ -R^{-1} \ 0 \ 0 \\ * \ * \ * \ * \ * \ * \ -R^{-1} \ 0 \\ * \ * \ * \ * \ * \ * \ -R^{-1} \ 0 \\ * \ * \ * \ * \ * \ * \ -R^{-1} \ 0 \\ * \ * \ * \ * \ * \ * \ -R^{-1} \ 0 \\ * \ * \ * \ * \ * \ * \ -R^{-1} \ 0 \\ \end{bmatrix} < 0.$$

$$(19)$$

 $\Rightarrow Z = P^{-T}, Y = ZK^{T}, X_{1} = R_{1}^{-1}, X_{2} = R_{2}^{-1}.$ 并在 式(19)左右两边同乘以变换矩阵diag{Z,X1,X2,I,I,I,I}, 则不等式(19)等价于不等式(14). 此时, 鲁棒预测控制器由 式(9)给出.显然,不等式(14)是线性矩阵不等式,因此,可 用LMI工具箱中的求解器feasp来求解. 证毕.

附录 2 定理 2 证明(Appendix 2 Theorem 2 proof)

证 由式(6)知,闭环系统的分段连续Lyapunov函数为

$$V(\boldsymbol{x}(t)) = \boldsymbol{x}^{\mathrm{T}}(t)E^{\mathrm{T}}P_{k}\boldsymbol{x}(t) + \int_{-d_{1}}^{0}\boldsymbol{x}^{\mathrm{T}}(t+\xi)R_{1}$$
$$\boldsymbol{x}(t+\xi)\mathrm{d}\xi + \int_{-d_{2}}^{0}\boldsymbol{u}^{\mathrm{T}}(t+\xi)R_{2}\boldsymbol{u}(t+\xi)\mathrm{d}\xi.$$
(20)

与应用 第27卷 由式(16),有 $\frac{\mathrm{d}}{\mathrm{d}\tau}(V(\boldsymbol{x}(t,t))) \leq -\boldsymbol{x}^{\mathrm{T}}(t)(Q+K^{\mathrm{T}}RK)\boldsymbol{x}(t),$ 由于矩阵Q, R为正定矩阵, 因此, $\frac{d}{d\tau}(V(\boldsymbol{x}(t,t)))$ 为负定的, $V(\boldsymbol{x}(t),t)$ 为严格单调递减的, 即 $\frac{d}{d\tau}(V(\boldsymbol{x}(t,t))) < 0$, 闭环 系统为渐近稳定的. 由不等式(16)还可以得到

$$\begin{bmatrix} \Omega_k & P_k^{\mathrm{T}}(A_d + \Delta A_d) & P_k^{\mathrm{T}}(B_d K_k + \Delta B_d K_k) \\ * & -R_1 & 0 \\ * & 0 & -K_k^{\mathrm{T}} R_2 K_k \end{bmatrix} < 0.(21)$$

其中: $\Omega_k = P_k^{\mathrm{T}}(A + \Delta A + BK_k + \Delta BK_k) + (A + \Delta A + BK_k + \Delta BK_k)^{\mathrm{T}}P_k + R_1 + K_k^{\mathrm{T}}R_2K_k$. 由Schur进一步有

$$P_{k}^{\mathrm{T}}(A + \Delta A + BK_{k} + \Delta BK_{k}) + (A + \Delta A + BK_{k} + \Delta BK_{k})^{\mathrm{T}}P_{k} + R_{1} + K_{k}^{\mathrm{T}}R_{2}K_{k} + P_{k}^{\mathrm{T}}(A_{d} + \Delta A_{d})R_{1}^{-1}(A_{d} + \Delta A_{d})^{\mathrm{T}}P_{k} + P_{k}^{\mathrm{T}}(B_{d}K_{k} + \Delta B_{d}K_{k})K_{k}^{\mathrm{T}}R_{2}^{-1}K_{k}(B_{d}K_{k} + \Delta B_{d}K_{k})^{\mathrm{T}}P_{k} < 0.$$
(22)

由引理4可得式(23)(24)成立:

$$P_{k}^{\mathrm{T}}(A_{d} + \Delta A_{d})R_{1}^{-1}(A_{d} + \Delta A_{d})^{\mathrm{T}}P_{k} > (A_{d} + \Delta A_{d})^{\mathrm{T}}P_{k} + P_{k}^{\mathrm{T}}(A_{d} + \Delta A_{d}) - R_{1}, \qquad (23)$$

$$P_{k}^{\mathrm{T}}(B_{d}K_{k} + \Delta B_{d}K_{k})K_{k}^{\mathrm{T}}R_{2}^{-1}K_{k}(B_{d}K_{k} + \Delta B_{d}K_{k})^{\mathrm{T}}P_{k} > (B_{d}K_{k} + \Delta B_{d}K_{k})^{\mathrm{T}}P_{k} + P_{k}^{\mathrm{T}}(B_{d}K_{k} + \Delta B_{d}K_{k}) - K_{k}^{\mathrm{T}}R_{2}K_{k}. \qquad (24)$$

将式(23)(24)代入到式(22)中,得到:

$$0 > P_k^{\mathrm{T}}(A + \Delta A + BK_k + \Delta BK_k) + (A + \Delta A + BK_k + \Delta BK_k)^{\mathrm{T}}P_k + R_1 + K_k^{\mathrm{T}}R_2K_k + (A_d + \Delta A_d)^{\mathrm{T}}P_k + P_k^{\mathrm{T}}(A_d + \Delta A_d) - R_1 + (B_dK_k + \Delta B_dK_k)^{\mathrm{T}}P_k + P_k^{\mathrm{T}}(B_dK_k + \Delta B_dK_k) - K_k^{\mathrm{T}}R_2K_k.$$

化简后得:

$$P_k^{\mathrm{T}}[(A + \Delta A + BK_k + \Delta BK_k) + (A_d + \Delta A_d) + (B_d K_k + \Delta B_d K_k)] + [(A + \Delta A + BK_k + \Delta BK_k) + (A_d + \Delta A_d) + (B_d K_k + \Delta B_d K_k)]^{\mathrm{T}} P_k < 0.$$

 $i \mathcal{E}(A + \Delta A + BK_k + \Delta BK_k) = \tilde{A}, (A_d + \Delta A_d) = \tilde{A}_d,$ $(B_d K_k + \Delta B_d K_k) = \tilde{B_d}$.则上述不等式化为

$$P_k^{\mathrm{T}}[\tilde{A} + \tilde{A}_d + \tilde{B}_d] + [\tilde{A} + \tilde{A}_d + \tilde{B}_d]^{\mathrm{T}} P_k < 0.$$
(25)

根据引理3,存在可逆矩阵 P_k 使得 $P_k^{\mathrm{T}}E = E^{\mathrm{T}}P_k \ge 0$ 及 式(25)成立,则矩阵对 $(E, \tilde{A} + \tilde{A}_d + \tilde{B}_d)$ 是正则无脉冲的.

由以上证明可知闭环系统(19)是正则、无脉冲以及渐 近稳定的^[18]. 证毕.

作者简介:

刘晓华 (1959—), 男, 教授, 博士, 博士生导师, 研究方向为预 测控制、自适应控制理论及应用等, E-mail: xhliu@ldu.edu.cn;

王利杰 (1982—), 女, 硕士研究生, 研究方向为预测控制, Email: ytwanglj@163.com.