文章编号:1000-8152(2009)08-0860-07

基于有限信息的铜吹炼动态过程智能集成建模

王雅琳, 桂卫华, 阳春华, 谢永芳, 宋海鹰

(中南大学信息科学与工程学院,湖南长沙410083)

摘要:针对具有强动态变化特征但过程信息有限可知的铜转炉吹炼过程,提出一种基于有限数据信息的吹炼动态过程智能集成建模方法.依据冶金反应动力学原理,建立了描述吹炼过程反应体系变化的非线性动力学模型;引入动力学系数修正因子,基于有限的数据信息和龙格--库塔公式,构建了动力学系数修正因子的优化模型;结合智能决策生成的典型样本集,提出了基于微粒群算法和模式搜索法的混合智能算法确保有效获得最优修正因子,最终形成吹炼过程的动态模型.用实际生产数据仿真实验,模型预测的最大相对误差小于5%,仿真结果验证了模型有效性.

关键词:铜转炉吹炼;动态过程;智能集成建模;有限数据信息;混合智能算法 中图分类号:TF355;TP391.9 文献标识码:A

Intelligent integrated modeling for the dynamic copper-converting process based on limited data information

WANG Ya-lin, GUI Wei-hua, YANG Chun-hua, XIE Yong-fang, SONG Hai-ying

(School of Information Science and Engineering, Central South University, Changsha Hunan 410083, China)

Abstract: For the copper-converting process with significant variation in dynamics and limited information of process, we propose an intelligent integrated modeling method based on its limited data information. First, we develop a nonlinear reaction kinetic model for the copper-converting process by the metallurgical reaction principles; second, we create a model for optimizing its kinetic coefficients based on the limited data and by using the Runge-Kutta formula. Finally, by employing particle swarm optimization and pattern searches with the typical sample set generated by intelligent decision, we put forward a hybrid intelligent algorithm to acquire the optimal kinetic coefficients for the dynamic model of copper converting process. The maximum relative error is less than 5%, when comparing the simulation result of our dynamic model with the real value of the Peirce-Smith(PS) converter in a copper smeltery. This shows the effectiveness of the proposed model.

Key words: copper converting; dynamic process; intelligent integrated modeling; limited data information; hybrid intelligent algorithm

1 引言(Introduction)

铜转炉吹炼是火法炼铜的一个关键环节,现有生 产以人工操作方式为主,产品质量波动大、合格率 低,能源资源浪费严重,急需通过过程的优化控制予 以解决.铜转炉吹炼过程是一个复杂的间歇式、高 温、多相熔池反应过程,涉及化学反应、传热、传 质、流体流动等,具有强烈的动态变化特征.要实现 铜转炉吹炼过程的优化控制,建立该过程的数学模 型是非常重要的.然而基于热力学平衡计算的静态 数学模型^[1,2],难以描述吹炼的动态过程.尽管不少 学者针对铜锍吹炼过程的反应动力学开展了研究, 并建立了一些动力学模型^[3~6],但这些模型主要考 虑吹炼过程中某一化学反应,缺乏对吹炼过程反应 体系的整体描述,难以用于优化控制.另一方面,尽 管神经网络、支持向量机等基于数据的智能建模方 法在复杂工业过程的建模中受到极大关注^[7,8],但这 类方法主要用于建立模型输出可知的静态模型或时 序模型,难以在仅能获得少量过程状态变化信息(如 吹炼结束时的渣含硅以及铜锍温度等)的吹炼动态 过程中应用.借鉴"智能集成建模"思想^[9],依据吹 炼过程动力学原理,结合实际生产的历史数据,提出 一种基于有限信息的铜转炉吹炼动态过程智能集成

收稿日期: 2008-11-24; 收修改稿日期: 2009-04-14.

基金项目:国家自然科学基金资助项目(60634020,60804037);教育部新世纪优秀人才支持计划项目(NCET-08-0576);教育部博士点基金项目(200805331103).

建模方法.根据吹炼过程主要化学反应的反应动力 学系数和反应级数,建立描述吹炼过程中反应体系 变化的非线性动力学模型,并引入动力学系数修正 因子,建立修正因子优化模型,针对智能决策生成的 典型样本集,提出基于微粒群算法和模式搜索算法 的混合智能算法优化动力学参数修正因子,最终确 定吹炼过程的动态模型.实际工业数据的验证了所 建模型的有效性.

2 铜转炉吹炼过程描述(Description of the copper converting process)

在铜的火法生产中,通过闪速熔炼获得的铜锍要 经过转炉吹炼,进一步除去铁、硫等杂质,以获得纯 度98%以上的粗铜.铜吹炼过程为间歇式周期性作 业,通常在卧式侧吹(Peirce-Smith, PS)转炉内进行, 其作业流程如图1所示,作业温度为1200℃~1300℃, 整个过程分为造渣期和造铜期两个阶段.

在造渣期,从风口向炉内熔体中鼓入富氧空气. 通过空气的剧烈搅动,冰铜中的FeS被氧化,生成 FeO和SO₂; FeO再与SiO₂进行造渣反应.主要化学反 应为

$$\text{FeS}_{(\text{matte}\tilde{\chi})} + 1.5\text{O}_2 = \text{FeO}_{(\text{slag}\tilde{\chi})} + \text{SO}_2, \qquad (1a)$$

$$2 \text{FeO}_{(\text{slag}\check{\alpha})} + \text{SiO}_{2(\text{solid})} = 2 \text{FeO} \cdot \text{SiO}_{2(\text{slag}\check{\alpha})}, \quad (1b)$$

$$6 \text{FeO}_{(\text{slag}\underline{\varkappa})} + O_2 = 2 \text{Fe}_3 O_{4(\text{slag}\underline{\varkappa})}, \qquad (1c)$$

$$\mathrm{FeS}_{(\mathrm{matte}\check{\mathcal{R}})}\!+\!3\mathrm{Fe}_{3}\mathrm{O}_{4(\mathrm{slag}\check{\mathcal{R}})}\!=\!10\mathrm{FeO}_{(\mathrm{slag}\check{\mathcal{R}})}\!+\!\mathrm{SO}_{2}.$$

(1d)

在造铜期,留在炉内的白铜锍(主要以Cu₂S的形 式存在)与鼓入炉内的O₂反应,生成粗铜和SO₂,主 要化学反应为:

$$Cu_2 S_{(matte\ddot{\mathcal{R}})} + O_2 = 2Cu_{(copper\ddot{\mathcal{R}})} + SO_2.$$
 (2)

吹炼产生的烟气经废热锅炉回收余热后,经收尘 处理,送硫酸车间制酸.

铜转炉吹炼过程为放热反应,为防止由于产生大 量热量而缩短耐火砖的寿命,需向炉内加入各种冷 料,以控制炉内温度;实际生产中根据冷料的种类不 同,有直投和连续加入两种操作方式.另外,为保证 化学反应的进行,需要向炉内鼓入富氧空气.

铜吹炼过程按造渣期和造铜期分别进行质量控制.造渣期工艺指标是渣型(主要是渣含硅)和渣温; 造铜期则希望尽量投入更多的冷料,从而提高单炉的粗铜产量,并要保证出铜温度达到工艺要求.实际 生产中,通过控制合理的鼓风、熔剂加入(仅造渣期 有)和冷料添加等制度来控制产品质量.因此,要实 现铜吹炼过程优化控制,就需要建立各种操作制度 与吹炼反应中熔体组份和温度之间的动态关系.

3 基于有限数据信息的铜吹炼动态过程智 能集成模型(Intelligent integrated model of the copper converting process based on limited data information)

铜转炉吹炼过程是一个仅部分终点信息可知的 强动态过程,文中提出一种如图2所示的有限数据信 息驱动下建立吹炼动态过程智能集成模型的方法. 动态模型的主体为基于反应动力学和热力学的多变 量常微分机理模型,模型中的关键动力学参数在数 据驱动下由智能优化模块对关键参数的优化模型寻 优确定.鉴于造渣期和造铜期的动态建模方法相似, 这里仅以造渣期为例予以阐述.

图 2 基于有限数据信息的铜吹炼动态过程智能集成模型

Fig. 2 Intelligent integrated model of the copper converting process based on limited data information

3.1 吹炼过程的反应动力学模型(Reaction kinetic model of the converting process)

铜吹炼过程的反应动力学模型描述吹炼过程中 铜锍反应体系的组份和温度变化.

造渣期的主要化学反应(1a)~(1d)共同决定了其 铜锍反应体系的组份和温度变化. 造渣反应中需要 添加冷料和熔剂, 且进行一定的鼓风操作, 为此, 定 义造渣过程状态变量 $X \in \mathbb{R}^{12}$ 和控制变量 $U \in \mathbb{R}^{4}$, 其中: $x_1 \pi x_2 \beta$ 别为转炉中直投和连投固体冷料 的质量(kg); $x_3 \sim x_7 \beta$ 别为熔体中Cu₂S, FeS, FeO, 2FeO · SiO₂和Fe₃O₄的浓度(kmol/m³); $x_8 \pi x_9 \beta$ 别 为反应产生的SO₂和N₂的质量(kg); x_{10} 为转炉中熔 剂的质量(kg); $x_{11}\pi x_{12}\beta$ 别为铜锍熔体和直投冷 料的温度(K); u_1 为鼓入富氧的流速(Nm³/min); u_2 为 添加SiO₂熔剂的流速(kg/min); u_3 为炉气的排出流 速(kg/min); u_4 为连投固体冷料的操作速率(kg/min).

根据实验结果, PS转炉反应系统可近似为恒容 系统,且吹炼过程中转炉内的铜锍相和渣相在鼓入 富氧的作用下相互混合.由式(1)的4个主要造渣反 应,依据文献[3]的研究结论,基于冶金动力学原理, 建立式(3)所示的铜锍吹炼造渣过程非线性反应动 力学模型.该模型由12个常微分方程组成,描述了系 统内组份和温度随时间变化的速率:

$$\dot{x}_i = f_i(X, U, \theta), \tag{3}$$

其中:

$$X = [x_1, x_2, \cdots x_{12}]^{\mathrm{T}}, U = [u_1, u_2, u_3, u_4]^{\mathrm{T}},$$
$$\theta = [k'_{\mathrm{a}}, k'_{\mathrm{b}}, k'_{\mathrm{c}}, k'_{\mathrm{d}}]^{\mathrm{T}}, i = 1, 2, \cdots, 12.$$

式中: θ 为待确定的模型动力学参数, k'_{a} , k'_{b} , k'_{c} 和 k'_{d} 分别为式(1a)~(1d)中4个化学反应的反应速率常 数修正因子, $f_{i}(X, U, \theta)$ 为描述第i个状态变量 x_{i} 变 化的非线性函数.由于文章篇幅所限,文中仅给出部 分状态变化方程.

1) 铜锍中FeO的浓度变化.

FeO浓度变化 \dot{x}_5 的影响因素有: FeS氧化生成的 FeO为 \dot{x}_{51} , FeO造渣时消耗的量 \dot{x}_{52} , FeO被进一步氧 化生成Fe₃O₄所消耗的量 \dot{x}_{53} , 以及部分Fe₃O₄被FeS 还原生成FeO的量 \dot{x}_{54} , 它们分别对应反应(1a)~(1d) 中的FeO浓度变化. 即:

$$\dot{x}_5 = \dot{x}_{51} + \dot{x}_{52} + \dot{x}_{53} + \dot{x}_{54},\tag{4}$$

$$\dot{x}_{51} = -\dot{x}_{41}$$

$$k'_{\rm a} \times k_{0_{\rm rea_a_FeS_Q_{\rm air}}} \times S_R \times u_1 \times \frac{\rho_{\rm fiffi}}{100M_{\rm FeS}} x_4, \quad (5)$$

$$\dot{x}_{52} = -\frac{k_{\rm b}' 2k_{0_{\rm rea_b_SiO_2_T}}}{M_{\rm SiO_2} \cdot V_m} \exp(\frac{-E_{\rm b}}{R \cdot x_{11}}) x_5 x_{10}, \quad (6)$$

$$\dot{x}_{53} = -k'_{\rm c} \cdot k_{0_{\rm rea_c_FeO_T}} \frac{\rho_{\text{flff}}}{100M_{\rm FeO}} \exp(\frac{-E_{\rm c}}{R \cdot x_{11}}) x_5,$$
(7)

$$\dot{x}_{54} = k'_{\rm d} \frac{10k_{0_{\rm rea_d_SO_2_T}}}{M_{\rm SO_2} \cdot V_m} \exp(\frac{-E_{\rm d}}{R \cdot x_{11}}) x_4 x_7^2.$$
(8)

式中: $k_{0.rea.a.FeS_Q_{air}}$ 为式(1a)中FeS与富氧流量相关 的宏观反应速率常数; $k_{0.rea.b.SiO_2.T}$, $k_{0.rea.c.FeO.T}$ 和 $k_{0.rea.b.SO_2.T}$ 分别为式(1b)~(1d)中与温度相关的 反应速率常数; S_R 为单位反应体积的反应表 面积; $\rho_{铜锍}$ 为铜锍密度; M_{FeS} 为FeS的分子量,同 理 M_{FeO} 为FeO的分子量; E_b , E_c , E_d 分别为反应 式(1b)~(1d)的活化能; R为气体常数; V_m 为转炉中 熔体(包括铜锍、白铜锍和渣)的总体积.

2) 渣中2FeO·SiO₂的浓度变化.

由式(6),可得到造渣反应产生的2FeO·SiO₂浓度 x_6 的变化率

$$\dot{x}_{6} = k_{\rm b}' \frac{k_{0_{\rm rea_b_SiO_2_T}}}{M_{\rm SiO2} \cdot V_m} \exp(\frac{-E_{\rm b}}{R \cdot x_{11}}) x_5 x_{10}.$$
 (9)

3) 熔体的温度变化.

吹炼过程中产生和消耗的能量对熔体温度有影响. 总热能除以铜锍和渣的摩尔定压热容(此处假设 渣和铜锍的温度相同)与熔体中各物质摩尔量之积, 为熔体温度的变化速率

$$\dot{x}_{11} = \frac{\sum_{i=1}^{\circ} q_i}{C_{\sum p} \cdot V_m}.$$
(10)

其中

$$C_{\sum p} = x_3 C_{p(Cu_2S)} + x_4 C_{p(FeS)} + x_5 C_{p(FeO)} + x_6 C_{p(2FeO\cdot SiO_2)} + x_7 C_{p(Fe_3O_4)}.$$

式中: $C_{p(M)}$ 为某化合物M的摩尔定压热容; $q_1 \sim q_4$ 分别为(1a)~(1d)中4个反应产生的化学热, 定压过程中等于焓的增量, 如

$$q_1 = -(\Delta H_{\rm FeO} + \Delta H_{\rm SO_2} - \Delta H_{\rm FeS})\dot{x}_{51}V_m, \quad (11)$$

其值可以查阅有关热力学数据直接计算得到. q₅ ~ q₈分别为加热和熔化固体冷料的热损失、漏入炉中的空气造成的热损失、鼓风系统造成的热损失以及水冷墙热辐射造成的热损失,其值可根据物料的性质、入炉温度、炉子的结构参数和鼓风系统和水冷墙热辐射造成的热损失系数等数据计算得到.

由式(3)~(11)组成的造渣过程反应动力学模型中, 仅k'_a ~ k'_d这4个反应动力学参数有待优化确定, 其它模型参数都已知.

3.2 有限数据信息驱动的动力学参数优化 模型(Optimization model of kinetic parameter driven by limited data information)

反应动力学模型是一个由12个状态变量组成的 复杂非线性常微分方程组,解析求解困难;从现场 得到的信息仅为吹炼终点时的渣含SiO2量和铜锍温 度,通过现场测试,也仅得到一些炉次每隔10 min的 铜锍温度人工检测量.为此,在现场数据驱动下,基 于龙格-库塔法^[10]建立反应动力学模型中动力学参 数的优化模型.

定义 $Y = [y_1, y_2]^T$ 分别表示渣含SiO₂量(%)和 铜锍温度(K), 令 y_{1,t_f} , y_{2,t_f} 为吹炼终点 t_f (min)时渣 含SiO₂量和铜锍温度, $y_2(k)$ 为第k时刻铜锍温度. 已知, 一个典型数据样本集Q由m组包含铜锍温 度人工检测信息与对应终点信息的数据样本点和 其他n - m组仅有终点信息的数据样本点组成,

$$\begin{split} \mathbb{H}Q &= A \cup B, \ \mathbb{H} \\ A &= \{x_{i,0}^l, u_j^l, y_{1,t_{\mathrm{f}}}^l, y_{2,t_{\mathrm{f}}}^l, y_2^l(k)\}, \\ B &= \{x_{i,0}^r, u_j^r, y_{1,t_{\mathrm{f}}}^r, y_{2,t_{\mathrm{f}}}^r\}, \\ i &= 1, 2, \cdots, 12, j = 1, 2, 3, 4; l = 1, 2, \cdots, m, \\ k &= 1, 2, \cdots, N^l, N^l = [t_{\mathrm{f}}^l/h], \\ r &= 1, 2, \cdots, n-m, \end{split}$$

其中: N^l 为第l个造渣期内铜锍温度的人工检测 次数; h = 10 min为温度检测时间间隔. 对于Q, 以四阶龙格-库塔公式^[10]为基础, 再结合数值插 值法和物质百分含量与体积摩尔浓度间的转化 方程, 得如式(12)所示的动力学参数优化模型, 这 里 $k_{V-M.SiO_2}$ 为渣中2FeO·SiO₂的体积摩尔浓度转化 为SiO₂百分含量的转化系数, α_1 和 α_2 为规范化系数, 取 $\alpha_1 = 1$ 和 $\alpha_2 = 0.1$:

$$\begin{split} \min_{\theta^*} \{ \sum_{l=1}^m \sum_{k=1}^{N^l} [\frac{y_2^l(k) - \hat{y}_2^l(k)}{\alpha_2 \times y_2^l(k)}]^2 + \sum_{r=1}^n \sum_{i=1}^2 [\frac{y_{i,t_f}^r - \hat{y}_{i,t_f}^r}{\alpha_i \times y_{i,t_f}^r}]^2 \}, \\ \text{s.t.} \\ \begin{cases} \hat{y}_{1,t_f}^l = k_{\text{V-M.SiO}_2} \hat{x}_{6,t_f}^l, \hat{y}_{2,t_f}^l = \hat{x}_{11,t_f}^l, \\ \hat{x}_{i,t_f}^l = \hat{x}_i^l(N^l) + \frac{t_f - hN^l}{h} [\hat{x}_i^l(N^l + 1) - \hat{x}_i^l(N^l)], \\ \hat{x}_i^l(k+1) = \hat{x}_i^l(k) + \frac{1}{6} (K_{i1}^l + 2K_{i2}^l + 2K_{i3}^l + K_{i4}^l), \\ K_{i1}^l = hf_i(\hat{x}_i^l(k)), K_{i2}^l = hf_i(\hat{x}_i^l(k) + \frac{1}{2}K_{i1}^l), \\ K_{i3}^l = hf_i(\hat{x}_i^l(k) + \frac{1}{2}K_{i2}^l), \\ K_{i4}^l = hf_i(\hat{x}_i^l(k) + K_{i3}^l), \\ \dot{x}_i = f_i(\mathbf{X}, \mathbf{U}, \theta), & \mathbb{H}Q \boxminus \\ \end{split} \end{split}$$

式(12)计算量大,为便于优化过程的实现,从大量的历史数据中选出n组有代表性的数据点组成典型样本集Q.这n组数据包括3部分:第1部分由m个样本组成,包含现场温度检测实验测得的铜锍温度变化信息;第2部分由p个样本组成,反映数据代表的广度;对每炉造渣终点时间 t_f 作统计分析,其95%以上分布在40~90 min之间,令p = 7,分别按 t_f 在<40,40~50,50~60,60~70,70~80,80~90,>90这7个时间段,从剩余历史数据集中随机选择一个数据点组成第2部分样本.第3部分由q个样本组成,反映数据代表的深度:由于 t_f 有60%以上分布在45~65 min之间,为此对于 t_f 在45~65 min之间的历史数据,采用粗糙集方法对由 X, U, t_f 组成的数据集进行条件属性X, U约简,然后按K-means法进行数据聚类,得到q个聚类中心,组成第3部分样本.

3.3 动力学参数的混合智能优化(Hybrid Intelligent Optimization for kinetic parameter)

式(12)为无约束多变量复杂非线性优化问题,为 保证寻优速度和精度,借鉴混合遗传算法思想^[11], 提出一种基于微粒群算法(PSO)与模式搜索法的混 合智能算法予以求解.混合算法主体为惯性权值非 线性动态自适应调节的微粒群算法^[12](WNAPSO), 在WNAPSO的每个迭代周期内对优于全局最优粒 子的当代最优粒子再采用模式搜索法进行一轮局部 搜索,若新的寻优位置优于原位置,则让该粒子位于 新位置,否则保持不变;接着进入下一个PSO迭代周 期,更新粒子群内的*M*个微粒,直到满足寻优终止条 件.

对于式(12)的优化变量 $\theta = [k'_{a}, k'_{b}, k'_{c}, k'_{d}]^{T}$, WNAPSO中用第*i*个微粒的位置 $Z_{i} = (z_{i1}, z_{i2}, z_{i3}, z_{i4})^{T}$ 来表示 θ 的第*i*种取值,并定义 $V_{i} = (v_{i1}, v_{i2}, v_{i3}, v_{i4})^{T}$ 为第*i*个微粒的速度, $P_{i} = (p_{i1}, p_{i2}, p_{i3}, p_{i4})^{T}$ 为第*i*个微粒迄今为止搜索到的最好位置, $P_{g} = (p_{g1}, p_{g2}, p_{g3}, p_{g4})^{T}$ 为整个种群搜索到的最好 位置.WNAPSO每一次迭代,微粒*i*的第*d*维(1 $\leq d \leq$ 4)按下列公式更新自己的速度和位置:

$$v_{id}^{(k+1)} = wv_{id}^{(k)} + c_1 \operatorname{rand}_1(p_{id}^{(k)} - z_{id}^{(k)}) + c_2 \operatorname{rand}_2(p_{gd}^{(k)} - z_{id}^{(k)}),$$
(13)

$$z_{id}^{(k+1)} = z_{id}^{(k)} + v_{id}^{(k+1)}.$$
(14)

其中: $i = 1, 2, \dots, M, d = 1, 2, 3, 4, k$ 为迭代数, $c_1 \pi c_2$ 为加速因子, w为惯性权重, rand₁和rand₂是 两个在[0,1]范围内变化的随机数. 为使粒子速度不 致过大, 还设定速度上限 V_{max} , 即当 $v_{id} > V_{max}$ 时, $v_{id} = V_{max}$; 当 $v_{id} < -V_{max}$ 时, $v_{id} = -V_{max}$. 此 外, 按式(15)(16)自适应非线性动态调整PSO的惯性 权重w以改善PSO的寻优效率.

$$w = \begin{cases} \frac{w_{\min} - w_{\max}}{\mu \times \text{iter}_{\max}^{2}} \times \text{iter}^{2} + w_{\max}, \\ \text{iter} \leqslant \mu \times \text{iter}_{\max}; \\ \frac{w_{\max} - w_{\min}}{(1 - \mu) \times \text{iter}_{\max}^{2}} \times (\text{iter} - \text{iter}_{\max})^{2} + w_{\min}, \\ \text{iter} > \mu \times \text{iter}_{\max}. \end{cases}$$
(15)

$$\mu = \mu_{\text{const}} + \xi \mu_{\xi} + \delta \mu_{\delta}, \tag{16}$$

其中: $w_{\text{max}} n w_{\text{min}} \beta n B = 0$ 世 板 重 的 最大值 和 最 小 值; iter和iter_{max} 分 别 是 PSO 当 前 迭 代 次 数 和 最 大 迭 代 次 数; $\mu > 0 \sim 1 2$ 间 的 可 变 因 子; $\mu_{\text{const}} > \mu \mu$ 的 初 始 值, $\mu_{\xi} n \mu_{\delta} > 0$ 权 重 系 数; 收 敛 率 ξ 和 进 化 率 δ 分 别 为 衡 量 微 粒 群 中 各 微 粒 位 置 聚 散 性 的 变 量 和 全 局 最 优 值变化快慢的变量,其定义对于求极大值还是极小 值问题略有不同.这里以求极小值问题为例进行说 明.假设极小值问题只有一个最优解,其适应度函数 为O = g(Z),计算过程中g(Z) > 0.则

$$\begin{cases} \xi = g(P_{\rm g}) / \frac{1}{M} \sum_{i=1}^{M} g(Z_i), \\ \delta = [g(P_{\rm g}^{(k)}) - g(P_{\rm g}^{(k+1)})] / g(P_{\rm g}^{(k)}). \end{cases}$$
(17)

由于是求极小值, 则 $0 < \xi \leq 1$ 且 $0 \leq \delta < 1$.

Step 1 对于初始点 Z^0 , 给定4个坐标方向 e_1, e_2 , e_3, e_4 , 设置初始步长 η , 加速因子 $\lambda \ge 1$, 减缩率 $\beta \in (0,1)$, 容许误差 $\varepsilon > 0$, 并令 $U^1 = V^1 = Z^0, h = 1, j = 1$;

Step 2 若 $g(U^j + \eta e_j) < g(U^j)$,则 令 $U^{j+1} = U^j + \eta e_j$,执行Step4; 否则,执行Step3;

Step 3 若 $g(U^{j} - \eta e_{j}) < g(U^{j})$,则 令 $U^{j+1} = U^{j} - \eta e_{j}$,执行Step4; 否则,令 $U^{j+1} = U^{j}$,进行Step4;

Step 4 若j < 4,则令j = j + 1,转Step2; 否则,执行Step5;

Step 5 若 $g(U^5) > g(V^h)$, 令 $\eta = \beta \eta$, $U^1 = V^{h+1} = V^h$, 且h = h + 1, j = 1, 转Step7; 否则, 进行Step 6;

Step 6 $\Leftrightarrow V^{h+1} = U^5, U^1 = V^{h+1} + \lambda(V^{h+1} - V^h), \exists h = h + 1, j = 1,$ **f** Step 7;

Step 7 若 $g(V^k) \leq \varepsilon$ 或 $h \geq \text{iter}_p$,则停止迭代, $\mathcal{P}Z^1 = V^h$; 否则转Step2.

混合智能算法的终止条件包括两个方面:一是当PSO达到最大迭代次数iter_{max}时退出;二是当 $P_{g}^{(k)}$ 对应的目标函数值 $O_{g}^{(k)} \leq \varepsilon$ 时,认为搜索到最优动力学参数,算法结束.

4 实验研究(Experiment study)

以某铜冶炼厂4号PS铜转炉为对象,建立其造 渣S1期动态模型. 典型样本集Q由3部分共20组数据 组成,其中包含3组铜锍温度变化信息的数据、7组 tf均匀分布下随机抽取的数据以及10组在tf的60% 分布范围内聚类得到的数据. 前3组取自2007年5月 29~2007年5月31中5批炉次每隔10 min进行铜锍温 度人工检测获得的数据;后两部分数据由2007年1月 ~2007年7月一段时间内4号转炉正常生产的历史数 据通过智能决策模块生成.

优化模型采用基于WNAPSO和模式搜索法的混合智能算法求解. PSO种群规模为20,

$$c_1 = c_2 = 2, w_{\text{max}} = 0.9, w_{\text{min}} = 0.1,$$

 $\mu_{\text{const}} = 0, \mu_{\xi} = 0.05, \mu_{\delta} = 0.5,$

 $V_{\rm max} = 1$, iter_{max} = 100, $\varepsilon = 0.004$,

模式搜索算法中的参数设置为:

$$\eta = 0.02, \lambda = 1, \beta = 0.5, \text{iter}_{p} = 25.$$

进行10次仿真实验,取最佳值得最优动力学参数θ* 为[0.750,1.271,1.157,0.843]^T;将θ*代入式3描述的反 应动力学模型,并对历史数据库中的另外31组数据 进行预测,预测值与实际值的对比如图3所示;按 式(18)定义的误差作为评价标准(式中g_i和g_i分别 为g_i第r个样本的实际值和预测值),则吹炼终点时 渣含硅和铜锍温度的最大相对预测误差E_{imax}分别 为3.16%和2.47%;由此可以看出,所建的动态模型能 很好地反映吹炼过程的终点状态.根据模型最大相 对拟合误差于1%且最大相对预测误差小于5%,评 价模块可判断模型建立成功.

$$E_{i\max} = \max_{r=1}^{N} \left(\frac{|y_i^r - \hat{y}_i^r|}{\alpha_i \times y_i^r} \right),$$

$$RMSEy_i = \sqrt{\frac{1}{N} \sum_{r=1}^{N} \left(\frac{y_i^r - \hat{y}_i^r}{\alpha_i \times y_i^r} \right)^2}.$$
 (18)

为进一步分析所建动态模型的准确性,对5批 次含有铜锍温度变化信息的第4组未用于动力参 数优化的4号炉第33炉次数据进行了仿真验证.该 次炉的基本信息为:进入转炉的底渣量6.2吨、含 铜60%的铜锍130吨,直投冷料床下物11.6吨,连投

冷料锢铍3.70吨、熔剂总量8.62吨,各入炉物料的 组份和温度情况如表1所示. 含氧率23%的富氧 吹炼56 min,且鼓风速率、熔剂给料率、排风速率 和连投冷料给料率都恒速,分别为560 Nm³/min, 154 kg/min,400 kg/min和66 kg/min.按照所建动态 模型进行仿真计算,造渣S1期终点渣含硅以及铜锍 温度动态变化的计算值与实测值对比结果如表2所 示,模型最大相对预测误差E_{max}和相对预测均方 差RMSE分别为4.22%和2.53%.图4为第33炉次吹 炼过程造渣S1期铜锍组分的变化曲线.

表1 入炉物料的组份和温度

Table 1Component and temperature of the materialsputting in converter

		铜锍	床下物	锢铍	底渣
	Cu_2S	0.47	0.27	0.33	
	FeS	0.247	—	0.37	
组分/	FeO	_	—		0.01
(mol/100g)	Fe_3O_4	0.017	0.04	0.01	0.45
	Cu	0	0	0	0.07
	SiO_2	0.0016	0.12	0.007	0.4
参考入炉温度/K		1423	298	298	1400

- 表 2 4号炉第33炉次吹炼造渣过程模型计算值与 实测值对比
- Table 2Comparison of the real value with the model
result of the 33rd slag-making process

•	N T 1	
110		aanvartar
	1 1 1 4	CONVENEL

4号炉(第33炉次)	实际值	模型计算值
$y_{1,t_{\mathrm{f}}}$	20.4%	21.3%
$y_{2,t_{\mathrm{f}}}$	1516 K	1511.83
$y_2(1)$	1453 K	1450.75
$y_2(2)$	1490 K	1485.29
$y_2(3)$	1510 K	1512.45
$y_2(4)$	1522 K	1525.03
$y_2(5)$	1520 K	1519.16

图 4 造渣S1期铜锍组份的动态变化曲线

曲线中CuS浓度只增不减、FeS几乎线性下降以及FeO先增后降等铜锍组份变化趋势与理论分析完成一致.由此可见,建立的吹炼过程动态模型能够准确的描述转炉吹炼过程的反应变化情况.

5 结论(Conclusions)

基于冶金反应动力学原理和铜转炉吹炼过程反 应机理的研究,建立了铜转炉吹炼动态过程的非线 性反应动力学模型;基于实际生产过程中的有限信 息,建立了反应动力学模型中动力学参数的优化模 型;以智能决策模块生成的典型样本集为参照,提出 了基于微粒群算法和模式搜索法的混合智能算法求 解优化模型,为动态模型提供最佳的动力学参数.采 用现场生产数据对最终形成的反应动力学模型进行 了仿真实验,并与实际检测数据进行了对比分析,实 验结果表明所建模型可有效描述吹炼过程中铜锍组 份及温度随时间动态变化的情况,为吹炼过程优化 控制奠定了基础.

参考文献(References):

- CHEN C L, ZHANG J Y, ZHOU T P, et al. Thermodynamic study on process in copper converters (the slag-making stage)[J]. Journal of University of Science and Technology Beijing: Mineral Metallurgy Materials (Eng Ed), 1999, 6(3): 187 – 192.
- [2] TAN P F. CuModel-A thermodynamic model and computer program of copper smelting and converting processes and its industrial applications[C] //Proceedings of Extraction and Processing Division Congress. Charlotte, North Carolina: United States Sponsor, 2004: 411–422.
- [3] 杭家栋,刘纯鹏.高品位锍吹炼动力学的研究[J].有色金属,1989, 31(1):42-48.

(HANG Jiadong, LIU Chunpeng. An investigation on converting high grade matter[J]. *Nonferrous Metals*, 1989, 31(1): 42 – 48.)

- [4] ALYASER A H, BRIMACOMBE J K. Oxidation kinetics of molten copper sulfide[J]. *Metallurgical and Materials Transactions B*, 1995, 26(1): 25 – 40.
- [5] KYLLO A K, RICHARDS G G. Kinetic modeling of minor element behavior in copper converting[J]. *Metallurgical and Materials Transactions*, 1998, 29B(1): 261 – 268.
- [6] 姚俊峰,梅炽,任鸿九,等. 冷料熔化动力学模型在炼铜转炉中的应用[J]. 中南工业大学学报, 2001, 32(2): 217 220.
 (YAO Junfeng, MEI Chi, REN Hongjiu, et al. The application of the melting dynamic model of cold materials in the copper converter[J]. *Journal of Central South University of Technology*, 2001, 32(2): 217 220.)
- [7] ROY N K, POTTER W D, LANDAU D P. Polymer property prediction and optimization using neural networks[J]. *IEEE Transactions* on Neural Networks, 2006, 17(4): 1001 – 1014.
- [8] 桂卫华, 宋海鹰, 阳春华. Hammerstein-Wiener模型最小二乘向量 机辨识及其应用[J]. 控制理论与应用, 2008, 25(3): 393 - 397.
 (GUI Weihua, SONG Haiying, YANG Chunhua. Hammerstein-Wiener model identified by least-squares-support-vector machine and

its application[J]. *Control Theory & Applications*, 2008, 25(3): 393 – 397.)

- [9] WANG Y L. Intelligent integrated modeling theory and its application to optimal control for non-ferrous metallurgical process[D]. Changsha: Central South University, 2001.
- [10] 武瑞婵, 邓黎. 常微分方程数值解及其MATLAB实现[J]. 科技信息(学术研究), 2007, 26(35): 1-8.
 (WU Ruichan, DENG Li. Numerical solution of ordinary differential equation realization in MATLAB[J]. Science & Technology Information, 2007, 26(35): 1-8.)
- [11] 谢巍, 方康玲. 一种求解不可微非线性函数的全局解的混合遗传 算法[J]. 控制理论与应用, 2000, 17(2): 180 – 183.
 (XIE Wei, FANG Kangling. A hybrid genetic algorithm for global solution of indifferentiable nonlinear function[J]. *Control Theory & Applications*, 2000, 17(2): 180 – 183.)
- [12] 王宁, 王雅琳, 阳春华, 等. 改进微粒群算法及其在生料浆调配多目标优化中的应用[J]. 系统工程, 2007, 25(12): 105 110.
 (WANG Ning, WANG Yalin, YANG Chunhua, et al. Improved particle swarm optimization and its application in multi-objective opti-

mization for the raw mix slurry preparing process[J]. *Systems Engineering*, 2007, 25(12): 105 – 110.)

作者简介:

王雅琳 (1973—), 女, 副教授, 研究方向为工业过程建模、优化 与控制, E-mail: ylwang@mail.csu.edu.cn;

桂卫华 (1950—), 男, 教授, 博士生导师, 研究方向为工业过 程建模、优化与控制、大系统及分散鲁棒控制, E-mail: gwh@mail. csu.edu.cn;

阳春华 (1965—), 女, 博士, 教授, 博士生导师, 研究方向为工 业过程建模与优化, E-mail: ychh@mail.csu.edu.cn;

谢永芳 (1972—), 男, 博士, 教授, 研究方向为复杂过程优化控制, E-mail: yfxie@mail.csu.edu.cn;

宋海鹰 (1975—), 男, 博士, 研究方向为复杂冶炼过程建模与 优化, E-mail: songhaiying1975@163.com.

下期要目

极小极大加系统 (F,G,H) 的输出反馈镇定·······魏红昀,	陈文德,	王永骥
非恒同混沌系统的全状态广义同步	·陈 娟,	陆君安
具有状态观测器的鲁棒重复控制系统设计周 兰,吴 敏,	佘锦华,	何 勇
柔性形态滤波和遗传规划在电机轴承故障诊断的应用于湘涛,	卢文秀,	褚福磊
双馈风力发电系统的非线性解耦控制	蔡 旭,	龚幼民
基于粒子群优化的有约束模型预测控制器董娜,陈增强,	孙青林,	袁著祉
基于LMI的小时滞饱和系统稳定域估计方法辛焕海, 屠竞哲,	谢 俊,	甘德强
网络化防空火控系统中的航迹融合陈 杰,陈 晨,	夏元清,	张 娟
磁悬浮系统的加速度计反馈控制算法张 锟,	崔 鹏,	李 杰
基于模型参考自适应Smith预估器反馈式AGC厚度控制系统李 迅, 宋东球,	喻寿益,	桂卫华
感应电动机定子磁链与转矩的逆解耦及存在性		巫庆辉
基于免疫自适应遗传算法的机器人栅格地图融合马 昕, 宋 锐,	郭 睿,	李贻斌
流程工业的组合积分系统及其先进控制	·任正云,	郑 达