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摘要:在假设信度规则库(BRB)的输入为均匀分布的情况下,已有文献提出了一种序贯自适应的学习算法以实
现BRB的参数在线辨识和结构的自适应调整. 然而在实际问题中,信度规则库的输入一般是未知的、难以得到的,
这在一定程度上限制了序贯自适应学习算法的实用性,因此就需要研究一种改进的BRB学习算法以实现参数和结
构的同时辨识. 本文在序贯自适应方法的基础上,通过定义BRB的完整性准则,提出了改进的BRB进化策略.与现
有方法相比,该方法可以实现信度规则的自动增减,且无需输入样本的概率密度函数. 此外,该方法继承了BRB的
特点,仅需要部分的输入输出信息.基于改进的进化策略,提出了一种新的故障预测算法,最后通过陀螺仪故障预测
实验验证了本文方法的有效性.
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Abstract: Recently, a sequential adaptive learning algorithm has been developed for online constructing belief-rule-
based (BRB) system. This algorithm is based on the assumption that the sample density function of the inputs to BRB
system obeys the uniform distribution. However, in practice, the sample density function is not always available and is
difficult to be determined; this really limits the applicability of the above method. As such, it is desired to develop an
improved algorithm without requiring the sample density function. In this paper, on the basis of the sequential adaptive
learning algorithm, we develop an improved evolving BRB learning algorithm based on the belief-incomplete criterion.
Compared with the current algorithms, a belief rule can be automatically added into the BRB or pruned from the BRB
without the need of the sample density function. In addition, our algorithm inherits the features of the BRB, in which only
partial input and output information are required. Based on the improved algorithm, a fault prognosis method is presented.
In order to verify the effectiveness of our algorithm, a practical case study for gyroscope fault prognosis is studied and
examined to demonstrate how our algorithm can be implemented.
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1 Introduction
As a key element of condition-based maintenance

(CBM), fault prognosis has become very important in
prognosis and health management, and is currently an
active research area in the world[1–3]. For example,
in some systems like nuclear power station and mis-
sile control system, it is very significant that before the
faults occur[4–6], they can be predicted so as to avoid
large calamity. Moreover, it is critically important to
conduct fault prognosis while in use since it has direct
impacts on the planning of maintenance activities, spare
parts provision, operational performance, and the prof-

itability of the owner of the asset. Generally speaking,
the current methods can be categorized into three kinds:
physics of failure-based method, data-driven method,
and fusion method which is the combination of previ-
ous two. However, for a specific system under consid-
eration, many fault prediction problems involve quan-
titative data as well as qualitative knowledge, which
may suffer various types of uncertainties such as in-
completeness and fuzziness. However, afore-mentioned
prediction models are limited in dealing with both nu-
merical data and human judgment information under
uncertainty[7–8]. In order to deal with uncertainty in-
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volved, several frameworks have been constructed[9],
such as Bayesian probability theory, Dempster-Shafer
(D–S) theory, and fuzzy set theory. Due to the power
of the D-S theory in handling uncertainties, it has found
wide applications in many areas such as expert systems
to date[10–12].

Under the D-S inference framework, a generic rule-
base inference methodology using the evidential rea-
soning approach was proposed to handle hybrid infor-
mation with uncertainty, also named as belief-rule-base
(BRB). This methodology establishes a nonlinear rela-
tionship between antecedent attributes and an associ-
ated consequence, and can reflect the dynamic nature
of inference process. It is known that the IF-THEN
rule-based method and the fuzzy IF-THEN rule-based
method can only cope with fuzzy uncertainty and are
not applicable in cases where there exists probabilis-
tic uncertainty[13]. In contrast, the BRB approach pro-
vides a more informative and realistic scheme than the
traditional IF–THEN rule-base with respect to knowl-
edge representation. However, there is little literature
on fault prognosis only using BRB. This paper fills this
gap and only focuses on the BRB approach. In BRB,
there are several types of unknown parameters includ-
ing belief degrees, attribute weights and rule weights.
These parameters need to be determined accurately for
a specific application. However, it is often difficult to
determine these parameters by human, particularly for a
large scale rule base. As such, some optimization mod-
els have been proposed to train a BRB[10] in an off-line
style. As such, the training process is time-consuming.
Further, the recursive algorithms for online updating the
BRB systems have also been developed and their calcu-
lation speed is high[11]. However, these optimal algo-
rithms are all based on the determined structure of the
BRB. To make joint adjustment of model structure and
parameters to nonlinear systems, adopting the sequen-
tial learning algorithm is quite natural. There are some
excellent works on sequential adaptive learning algo-
rithms for nonlinear system identification, such as [14]
and [15].

For example, a selective recursive kernel learning
was proposed in [14] for online identification of non-
linear systems with NARX form and one of its appeal-
ing characteristics was that it can adaptively adjust the
model structure to capture the process dynamics. It
is noted that these algorithms were basically achieved
by minimizing the mean-squared error (MSE). In or-
der to enhance the capacity of BRB method, recently, a
sequential adaptive learning algorithm has been devel-
oped for online constructing belief-rule-based (BRB)
systems[12]. The above learning algorithm is based on
the assumption that the sampling density function of
the inputs of BRB system obeys the uniform distribu-
tion. However, the sample density function is not avail-

able and is difficult to obtain for a specific case, and
this really limits the applicability of the above method.
As such, it is desired to develop an improved algorithm
without requirement for the sample density function.

In this paper, we first give a definition representing
the activated degree of belief rule for the given inputs,
and then used this definition as the belief completeness
criterion for the BRB system. Furthermore, along the
line of the sequential adaptive learning algorithm[12], we
develop an improved evolving BRB learning algorithm
based on the belief completeness criterion, in which the
structure and parameters of BRB can be adjusted online.
Compared with the original learning algorithms in [12],
a belief rule can be automatically added into the BRB or
pruned from the BRB without need of the sample den-
sity function and it can be implemented easily. Unlike
the algorithms in [14] and [15], the proposed parameter
estimation algorithm in this paper is done by maximiz-
ing the likelihood function. In addition, our algorithm
inherits the feature of the BRB and the sequential adap-
tive algorithm, in which only partial input and output in-
formation are required. Based on the improved method,
a fault prognosis is presented explicitly. In order to ver-
ify the effectiveness of our algorithm, a practical case
study for gyroscope fault prognosis are provided and
examined to demonstrate how our algorithm can be im-
plemented. The results show that our algorithm may be
widely used in fault prognosis practice.

2 Preliminaries
2.1 Belief rule base

A belief-rule-base (BRB), which represents the dy-
namics of a system, consists of a collection of belief
rules defined as follows[10]:

Rk : If x1 is Ak
1 ∧ x2 is Ak

2 ∧ · · · ∧ xMk
is Ak

Mk
,

Then {(D1, β
1
1,k), · · · , (DN , β1

N,k)},
with a ruleweight θ1

k and attribute weight
δ1
1,k, δ

1
2,k, · · · , δ1

Mk,k, (1)

where x1, x2, · · · , xMk
represents the antecedent at-

tributes in the kth rule. Ak
i (i=1, · · · ,Mk, k=1, · · · ,

L) is the referential value of the ith antecedent attribute
in the kth rule and Ak

i ∈Ai. Ai ={Ai,j, j =1, · · · , Ji}
is a set of referential values for the ith antecedent at-
tribute and Ji is the number of the referential values.
θk ∈ R+(k = 1, · · · , L) is the relative weight of
the kth rule, and δ1,k, δ2,k, · · · , δMk,k are the relative
weights of the Mk antecedent attributes used in the kth
rule. βj,k(j = 1, · · · , N, k = 1, · · · , L) is the be-
lief degree assessed to Dj which denotes the jth conse-

quence. If
N∑

j=1

βj,k = 1, the kth rule is said to be com-

plete; otherwise, it is incomplete. Note that‘∧’ is
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a logical connective to represent the‘AND’relation-
ship. In addition, we suppose that M is the total number
of antecedent attributes used in the rule base. In the fol-
lowing, we use x(n) = [x1(n) · · · xM(n)]T as the
input vector of BRB at time instant n.
2.2 Rule-based information transformation tech-

nique for quantitative data
In this paper, we only consider the case that the in-

put of BRB system is given by numerical values, that is,
all elements of x(n) are numerical values. In this case,
equivalence rules need to be extracted from the deci-
sion maker to achieve transformation from numerical
value into belief structure[9–10, 16]. This can be used to
transform a value to an equivalent expectation, thereby
relating a particular value to a set of referential val-
ues, named as rule-based transformation technique [16].
In this technique, a value γi,j(i = 1, · · · ,M, j =
1, · · · , Ji) can be judged to be a referential value Ai,j

in a BRB, or

γi,jmeans Ai,j, i = 1, · · · ,M, j = 1, · · · , Ji. (2)

Assume that a larger value γi,(j+1) is preferred over
a smaller value γi,j . Let γi,Ji

and γi,1 be the largest and
smallest feasible values, respectively. Then, each ele-
ment xi(n) in the input vector x(n) can be represented
using the following equivalent expectation:

S(xi(n)) =
{(γi,j, αi,j(xi(n))), i = 1, · · · ,M, j = 1, · · · , Ji},

(3)

where αi,j(xi(n)) can be calculated by




αi,j(xi(n)) =
γi,j+1 − xi(n)
γi,j+1 − γi,j

,

γi,j 6 xi(n) 6 γi,j+1, j = 1, · · · , Ji − 1,

(4)

{
αi,j+1(xi(n)) = 1− αi,j(xi(n)),
γi,j 6 xi(n) 6 γi,j+1, j = 1, · · · , Ji − 1,

(5)

αi,s(xi(n))=0 for s=1, · · · , Ji, s 6=j, j + 1. (6)

The detailed rule-based transformation technique
can be found in [14].

2.3 Belief-rule inference using the evidential rea-
soning approach

When the antecedent attributes, i.e., the inputs of
the BRB are available, the evidential reasoning (ER)
approach[17] is used as the inference tool. Using the
ER analytical algorithms[10, 18], the final conclusion
O(ŷ(n)) that is generated by aggregating all rules, ac-
tivated by the actual input vector x(n), can be repre-
sented as follows:

O(ŷ(n)) = h(x(n)) =
{(Dj, βj(x(n))), j = 1, · · · , N}, (7)

where βj(x(n)) denotes the belief degree in Dj at time
instant n, and (8) and (9) hold.

βj(x(n)) =
µ(x(n))

1− µ(x(n))× [
L∏

k=1

(1− ωk(x(n)))]
×

[
L∏

k=1

(ωk(x(n))βj,k + 1− ωk(x(n))
N∑

i=1

βi,k)−
L∏

k=1

(1− ωk(x(n))
N∑

i=1

βi,k)], (8)

µ(x(n)) =

[
N∑

j=1

L∏
k=1

(ωk(x(n))βj,k + 1− ωk(x(n))
N∑

i=1

βi,k)−

(N − 1)
L∏

k=1

(1− ωk(x(n))
N∑

i=1

βi,k)]−1, (9)

where βj(x̂(n)t) is the function of the belief
degrees βi,k (i = 1, · · · , N, k = 1, · · · , L), the rule
weights θk (k = 1, · · · , L), the attribute weights
δ̄i (i = 1, · · · ,M), and the input vector x (n).
ωk (x (n)), the activation weight of the kth rule at time
instant n, can be calculated by




ωk(x̂(n)) =
θk

M∏
i=1

(αk
i (xi(n)))δ̄i

L∑
l=1

θl

M∏
i=1

(αl
i(xi(n)))δ̄i

,

δ̄i =
δi

max
i=1,··· ,M

{δi} ,

(10)

where δi ∈ R+(i = 1, · · · ,M) is the relative weight
of the ith antecedent attribute used in the kth rule.
αk

i (xi(n))∈{αi,j(xi(n)), i = 1, · · · ,M, j = 1, · · · ,
Ji}, the individual matching degree, is the degree of be-
lief to its jth referential value Ak

i,j in the kth rule at time

instant n. αk(x(n)) =
M∏
i=1

(αk
i (xi(n)))δ̄i is called the

normalized combined matching degree.
The logic behind the approach is that, if the conse-

quence in the kth rule includes Di with βi,k > 0 and
the kth rule is activated, then the overall output must
be Di to a certain degree. This degree is measured
by both the degree to which the kth rule is important
to the overall output and the degree to which the an-
tecedents of the kth rule are activated by the actual input
x(n)[9–10]. Then for the numerical output case consid-
ered in this paper by using utility concept, the predicted
output ŷ(n) is formulated as

ŷ(n) =
N∑

j=1

µ(Dj)βj(x̂(n)), (11)

where µ(Dj) represents the utility of an individual con-
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sequent Dj and βj(x(n)) is calculated by (8).

3 An evolving strategy for BRB
As analyzed in introduction, the current sequential

learning algorithm[12] for BRB is based on the assump-
tion that the sampling density function of the inputs of
BRB system obeys the uniform distribution. However,
the sample density function is not frequently available
in practice. As such, developing an improved method
without the sample density function required is desired
from the application point of view. Similar to fuzzy rule
system[19], we define a belief ε-completeness for rule
adjustment in the following.
3.1 ε-completeness criterion for rule adjustment

in BRB
Definition 1 ε-completeness of belief rules. For

any inputs in the operating range, there exists at least
one belief rule so that the matched degree is no less than
ε. In application, the minimum value of ε is usually se-
lected as ε = 0.5.

According to this definition, we can easily learn
that ωk(x(n)) in (10) can be used for calculating the
matched degree between the given input x(n) and be-
lief rule k at time instant n. As such, we can define the
quantitative value of ε-completeness of belief rules as
the minimum value of the activated degree of the belief
rules which should be satisfied.

Definition 2 for a compact belief-rule-base, the
following condition should be satisfied using ε-
completeness of belief rules

min
k
{ωk(x(n)), k = 1, · · · , L} > ε. (12)

Then from the viewpoint of belief rules, a belief rule
is inherent to a local representation over a region de-
fined in the input space. If a new input pattern satisfies
the ε-completeness criterion of belief rules, the BRB
system will not generate a new belief rule but accom-
modate the new input and output sample by updating
the parameters of existing rules. In addition, if the ac-
tivated degrees of some belief rules are very small, this
means these rules are less important for current input
pattern and so they are pruned to maintain the compact
ability of BRB. In the following subsections, we give
the detailed rule adjustment strategy according to Defi-
nitions 1 and 2.

3.2 Adding a belief rule
Firstly, suppose that in an initial BRB, there have

been L belief rules, M antecedent attributes, Ji(i =
1, · · · ,M) referential values of the ith antecedent at-
tribute and N consequences. Furthermore, we assume
that these L belief rules are all significant. Here adding
a belief rule can be interpreted as follows: if the crite-
ria as given later are satisfied on the basis of the avail-
able input and output information of the BRB system,

some new referential values of the antecedent attribute
are added.

According to the above ε-completeness of belief
rules, when a new observed data pair (x(n),y(n)) ar-
rives at time instant n, where x(n) is an input vector
and y(n) is the corresponding output vector, the fol-
lowing two criteria may be used to determine whether a
new belief rule is added[12, 20].{

‖x(n)− γ̄(n)‖ > eg,
min

k
{ωk(x(n)), k = 1, · · · , L} > ε, (13)

where γ̄(n) = [γ̄1(n) · · · γ̄M(n)]T, γ̄i(n) ∈ {γi,j,
i = 1, · · · ,M, j = 1, · · · , Ji} and ‖ · ‖ is the Eu-
clidean norm. γ̄(n) denotes the referential vector of
the antecedent attributes of a belief rule being nearest to
x(n) under the Euclidean distance sense. ε is a thresh-
old to be selected as 0.5 in this paper and eg is the ex-
pected approximation accuracy. L + 1 is the number of
belief rule in the updated BRB.

Once the two criteria given in (13) are satisfied, a
new belief rule, i.e., the (L + 1) th rule, may be added.
The parameters of the new rule can be determined as
follows[12]:

1) The referential value vector of the antecedent
attributes is

γL+1 = x(n). (14)

2) The belief degree βj,L+1(j = 1, · · · , N) which
Dj is assessed for y(n) can be determined using rule
based information transformation technique[16]:




βj,L+1 =
u(Dj+1)− y(n)
u(Dj+1)− u(Dj)

,

u(Dj) 6 y(n) 6 u(Dj+1), j = 1, · · · , N − 1,

(15){
βj+1,L+1 = 1− βj,L+1,

u(Dj) 6 y(n) 6 u(Dj+1), j = 1, · · · , N − 1,

(16)

βs,L+1 = 0 for s = 1, · · · , N, s 6= j, j + 1. (17)

3) The weight of antecedent attribute δ̄i(i = 1,
· · · ,M) in the (L + 1)th belief rule is the same as
one in the other rules. The rule weight can be set as
θL+1 = 1.

3.3 Parameter adjustment
Once the structure of a BRB is determined using

the observed data pair (x(n),y(n)), some parameters,
such as the rule weights, the attribute weights, and the
belief degrees, should be updated using (x(n),y(n)).
Along the line of the method developed in [16], first, we
assume that if the inputs of the BRB x(1), · · · ,x(n)
are independent, the true outputs, y(1), · · · ,y(n), can
also be assumed to be independent. Therefore, there
exists
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f(y(1), · · · ,y(n)|x(1), · · · ,x(n),Q) =
n∏

τ=1

f(y(τ)|x(τ),Q), (18)

where y is numerical and is considered as a random
variable. f(y(τ)|x(τ),Q) is assumed to be the con-
ditional probability density function (PDF) of y at time
instant τ and Q is the unknown parameter vector.

The expectation of the log-likelihood of (18) at time
instant n is defined as

Ln+1(Q) ∆= E{
n∑

τ=1

log f(y(τ)|x(τ),Q)|x(1),

x(2), · · · ,x(n),Q(n)}, (19)

where E{·|·} denotes the conditional expectation at
Q = Q(n).

The recursive formulation of (19) can be written as

Ln+1(Q) =
Ln(Q) + E{log f(y(n)|x(n),Q)|x(n),Q(n)}.

(20)

Define

Γ (Q(n)) ∆= ∇Q log f(y(n)|x(n),Q(n)), (21)

Ξ(Q(n)) ∆=
E{−∇Q∇T

Q log f(y(n)|x(n),Q)|x(n),Q(n)}.
(22)

Based on the recursive EM algorithm[21–23], the
maximizing parameter Q(n + 1) is given by [12] and
[21],

Q(n + 1) = Q(n) +
1
n

[Ξ(Q(n))]−1Γ (Q(n)),

(23)

where Q consists of the rule weights, attribute weights,
belief degrees satisfying the equality and inequality
constraints[9]:

0 6 θk 6 1, k = 1, · · · , L, (24)

0 6 δ̄m 6 1, m = 1, · · · ,M, (25)

06βj.k 61, j =1, · · · , N, k=1, · · · , L, (26)
N∑

j=1

βj,k =1, k = 1, · · · , L. (27)

Hence, the recursive algorithm (23) can be revised
as follows:

Q(n + 1) =∏
H

{Q(n) + 1
n
[Ξ(Q(n))]−1Γ (Q(n))}, (28)

where H is a constraint set composed of the constraints
(24)−(27), and

∏
H

{·} is the projection onto the con-

straint set H1, ensuring that the estimation of Q can
satisfy the given constraints. The detailed algorithm of∏
H

{·} has been given in [11]. In order to obtain the

analytic formulations of Ξ(Q(n)) and Γ (Q(n)), the
following assumption is given.

Generally speaking, for prediction problem, we
hope that for a given input x(n), the BRB system can
generate an predicted output ŷ(n) as calculated by (11),
as close to y(n) as possible. Here ŷ(n) is considered as
a random variable and y(n) can be considered as its ex-
pectation. As such, we expect that (y(n)− ŷ(n)) ∼
N(0, σ2). Hence we assume that the PDF of y(n)
obeys the following normal distribution:

f(y(n)|x(n),Q) =
1√
2πσ

exp{−(y(n)− ŷ(n))2

2σ
}, (29)

where Q = [V T σ]T denotes the parameter vector
and σ denotes variance. V = [θk δ̄m βj,k]T is pa-
rameter vector of the BRB and k = 1, · · · , L, m =
1, · · · ,M, j = 1, · · · , N . When (29) is put into (28),
the analytic formulation of the recursive algorithm can
be obtained. Due to the independence between the el-
ements of V and the entries of σ, they can be updated
independently using the following formulations:

σ(n) = arg max
σ

log f(y(n)|x(n),Q)|V =V (n) =

(y(n)− ŷ(n))2|V =V (n), (30)

V (n + 1) =
∏
H1

{V (n) +
1
n

[Ξ ′(Q(n))]−1Γ ′(Q(n))}, (31)

where Ξ ′(Q(n)) and Γ ′(Q(n)) can be obtained by
(21) and (22) with respect to V , since the elements of
V and the entries of σ have been treated separately.

In addition, a group of belief rules in BRB model
are activated at time instant n, which means that
only some parameters can be updated, so the matrix
Ξ ′ (Q (n)) may be singular and needs to be revised.
Thus, the final recursive algorithm can be written as fol-
lows:

V (n + 1) =

π2{V (n) +
α

n
π1{V (n)} ×

[Ξ ′(Q(n)) + γIp]−1Γ ′(Q(n))}, (32)

where α > 0 is the step factor and can change the con-
vergence speed. The matrix Ξ ′

1(Q(n)) is amended us-
ing γIp so that it becomes positive definite and γ >
0, which is termed as the revision factor. In (32),
π1{V (n)} is used to deal with the equality constraints
(27), defined as (1 − 1/N)IN and π2{·} is used to
deal with inequality constraints (24)−(26) so that the
updated parameters can all be within the given bound.
In this paper, we adopt a simple strategy that, if the up-
dated parameter is within the bound, maintain as it is;
if the updated parameter goes beyond the upper bound,
let it equal to the upper bound, vice versa.
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3.4 Pruning of a belief rule
After adding a new rule and parameters updating,

if the statistical utility of the kth belief rule is less than
the given threshold ep, i.e., this rule is insignificant, it
should be removed. The criterion to prune a belief rule
can be described by

ωk(x(n)) < ep, k = 1, · · · , L. (33)

In (13) and (33), parameters ε, eg and ep should be
determined or chosen in advance. Obviously, if ε and
ep are smaller, the system performance is better, but
the resulting BRB’s structure is more complex, which
is a disadvantage when there is high real-time require-
ment. Therefore, there should be a reasonable trade-off
between the system performance and BRB’s structure.
In specific application, we should choose these param-
eters carefully according to the expected system perfor-
mance.

3.5 Fault identification
As to fault prognosis, we consider the threshold-

based fault identification method based on the princi-
ple that if a system is in normal state, the characteris-
tic parameter expressing the system operating condition
will be changed in a fixed bound; when the value the
characteristic parameter goes beyond a constant level,
fault is declared[6]. This critical level is defined as fault
threshold ȳ. In this paper, we use the concept of the dis-
tance between the predicted output of the BRB model
and such threshold to define the occurrence of the fault
from a conservative point of view, since our method
will be demonstrated using drift data of gyro, which is a
safety-critical device used widely in inertial navigation
system and we must ensure enough time for scheduling
maintenance or replacement if fault will occur. Con-
sidering that ŷ (n) is the predicted value of the charac-
teristic parameter at time instant n, when the distance
between ŷ (n) and ȳ go beyond a small index φth, we
can declare that the operating system is in a failed state.
Namely,

dt = ‖ŷ(n)− ȳ‖ > φth, (34)

where ‖ · ‖ represents the normal operator.
As a result of the above discussion, the procedure

for fault prognosis using the improved BRB updating
method may be summarized as follows.

Step 1 Initialization step–Q(0), α, γ, ε, eg, ep,
and φth.

Step 2 Adding rule step–when x(n), y(n), Q(n)
are available, then check (13), if satisfied, then a new
rule is added using (14)−(17). Otherwise, go to next
step.

Step 3 Parameters updating step–σ(n) is ob-
tained from (30). V (n + 1) is calculated from (32).

Step 4 Pruning rule step–Check (33). If it is sat-

isfied, then such rule is pruned.
Step 5 Prediction step–ŷ(n + 1) is obtained by

(11) using updated BRB.
Step 6 Fault identification step–Check (34). If it

is satisfied, stop. Otherwise, let n = n + 1 and go to
Adding rule step.

4 A practical case study
In this section, a practical case study is examined to

validate the proposed model and to show the application
potential in engineering practice. As a key device of the
inertial navigation system in missiles and space equip-
ments, gyro plays an irreplaceable important role and its
operating state has a direct effect on navigation preci-
sion. According to the statistic analysis, it is shown that
almost 80% faults of inertial navigation system result
from gyros. As gyroscopic drift rises, the gyro perfor-
mance begins to degrade, resulting in the excitation of
gyroscopic faults. As such, building reliable and cost-
effective prediction model is welcome and desired in
recent years.

In this study, the drift data are collected in a gyro-
scope performance reliability test. For the gyroscope
drift test, some technical parameters include the sam-
pling interval T , the acceleration of gravity g, and
the geographic latitude R. In this experiment, T =
2.2 h, g = 9.7941m/s2 and R = 34.6006◦. After the
experiment, we can collect all the drift data. The data
sets include the time-to-drift data for 90 suits of gyro-
scope. The experiment results are illustrated in Fig.1.

Fig. 1 All gyroscopic drift data collected in the test

As shown in Fig.1, it indicates that the gyroscopic
drift is a time series. For illustration purpose, in this
study six antecedent attributes are selected as an exam-
ple. Consequently, we can transform 90 observed val-
ues to 84 sets of input-output patterns accordingly. Then
the belief rule can be represented as follows:

Rk : If yt−1 is Ak
1 ∧ · · · ∧ yt−6 is Ak

2 ,

Then drift at next step is yt with
{(D1, β1,k), · · · , (DN , βN,k)} involved θk

and δ1, δ2, · · · , δ6,

where Rk(k = 1, · · · , L) is the belief rules of the BRB.
In the BRB, Ak

i is the referential points of yt−i, i =
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1, 2, · · · , 6, respectively. Dl(l = 1, · · · , N) are the as-
sessment grades of system behavior. In this case study,
the technical requirement of this kind of gyroscope is
that the drift value is not larger than 2.4(◦)/h, so the
linguistic labels for yt−1, yt−2, · · · , yt−6 are defined as
‘Small’(S), ‘Medium’(M), and ‘Large’(L) and ȳ = 2.4.
That is to say that Ak

i ∈ {S,M,L} for i = 1, · · · , 6.
And then three assessment grades of fault assessment
of gyro are used: ‘Good’(G), ‘Average’(A), and ‘Poor’
(P), this is to say, D = (D1, D2, D3) = (G,A,P).
As such, if we enumerate all belief rules, there are 36

rules, which is difficult to apply in practice. There-
fore, the evolving BRB method is a must. The refer-
ential points of inputs defined above are in linguistic
terms and thus need to be quantified. In [16], a scheme
to convert other inputs to belief structure has been de-
veloped. After data transformation, quantitative data
can be transformed to belief structures and the two are
equivalent in the sense that they both represent the same
states of the system. In this case, we set the referen-
tial points as γ̄(n) = [1.0 1.4 2.4]T, correspond-
ing to Ak

i ∈ {S,M,L}. Since drift data is a time se-
ries, we set the utility used of D as used in (11) to be
µ(D1) = 1, µ(D2) = 1.4, µ(D3) = 2.4, which are
the same as γ̄(n).

According to fault prognosis algorithm in Table 1,
we first set the initial BRB involved the following two
rules:

R1 : If yt−1 is S ∧ yt−2 is S ∧ yt−3 is

S ∧ yt−4 is S ∧ yt−5 is S ∧ yt−6 is S,

Then drift yt at next step is

{(D1, 0.95), (D2, 0.05), (D3, 0)}
with θ1 = 1 and δ1 = δ2, · · · , δ6 = 1,

R2 : If yt−1 is L ∧ yt−2 is L ∧ yt−3 is

L ∧ yt−4 is L ∧ yt−5 is L ∧ yt−6 is L,

Then drift yt at next step is

{(D1, 0), (D2, 0), (D3, 1)}
with θ1 = 1 and δ1 = δ2, · · · , δ6 = 1,

and α = 3, γ = 0.4, ε = 0.5, eg = 0.01, ep = 0.05
while φth = 0.3. Then using algorithm summarized
in Table 1 for 84 sets of drift data, we can obtain the
predicted drift value to achieve fault prognosis through
(11). The predicted results are illustrated in Fig.1. As
shown in Fig.1, it is obvious that the predicted out-
comes generated by the proposed method can trace the
changes of the gyro drift well. In order to further
demonstrate the accuracy of the proposed recursive al-
gorithm, the mean absolute percentage error (MAPE)
and root-mean-square error (RMSE) are used. Through
calculation, the MAPE and RMSE between the actual
values and the predicted values generated by the pro-
posed method model is 4.11% and 0.0828, respectively.

Fig. 2 Experimental results with different methods

It may be of interest to compare the results gener-
ated by the proposed method with the sequential learn-
ing method[12] and the classical Bayesian forecasting
method[24–25], since the first one uses the same model
structure and adjusting mechanism as adopted in this
paper while the last one is based on the Gaussian distri-
bution and independent assumption. In the simulation,
the parameters of Bayesian forecasting method in [24]
are updated using Kalman filter. The simulated results
are illustrated in Fig.2 and the comparison results are
summarized in Table1.

Table 1 Comparison of the predicted results

The proposed method Ref. [24] Ref. [12]

MAPE 0.0411 0.0481 0.0553
RMSE 0.0828 0.0910 0.1022

Table1 shows that the proposed method has better
prediction performance in this case study than other two
methods in terms of prediction accuracy. One possi-
ble cause for lower prediction accuracy of sequential
method is that it requires the input of BRB to obey
the uniform distribution. However, it is clear that such
requirement cannot be satisfied in this case study as
shown in Fig.1. The performance between our method
and sequential method is subtle. However, according
to fault identification criterion (34), Bayesian forecast-
ing method will generate false alarm at the first pre-
dicted point since there is no fault in our case study, as
shown in Fig.2. This fact also provides evidence for the
forecasting performance of the proposed fault progno-
sis method, and further demonstrates the effectiveness
and feasibility of the developed evolving BRB method
in practice.

5 Conclusions
This paper is concerned with constructing an evolv-

ing BRB system to achieve fault prognosis. First, we
give a definition of belief completeness criterion to rep-
resent the activated degree of belief rule given the in-
puts. Then along the line of the sequential adaptive
learning algorithm, we develop an improved evolving
BRB learning algorithm based on the defined criterion,
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in which the structure and parameters of BRB can be ad-
justed online but without other additional requirement
for the sample density function of inputs. Compared
with the other learning algorithms, a belief rule can be
automatically added into the BRB or pruned from the
BRB without the need of the sample density function.
In addition, our algorithm inherits the feature of the
BRB, in which only partial input and output information
is required. In order to verify the effectiveness of our al-
gorithm, a practical case study of gyro fault prognosis
are studied and examined to demonstrate how our al-
gorithm can be implemented. Compared with Bayesian
forecasting method and sequential learning method, the
proposed method in this paper can generate more satis-
factory results.
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