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Optimal robust control design of
uncertain mechanical systems: a fuzzy approach
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Abstract: A new optimal robust control is proposed for mechanical systems with fuzzy uncertainty. Fuzzy set theory is
used to describe the bound of uncertainty. The desirable system performance is deterministic (assuring the bottom line) and
also fuzzy (enhancing the cost consideration). The proposed control is deterministic but is not the usual if-then rules-based.
The resulting controlled system is proved to be uniformly bounded and uniformly ultimately bounded via the Lyapunov
minimax approach. A performance index (the composite cost which includes the average fuzzy system performance and
the control effort) is proposed based on the fuzzy information. The optimal design problem associated with the control
can then be solved by minimizing the performance index. The unique closed-form optimal gain and the cost are explicitly
shown. The resulting control design is systematic and is able to guarantee the deterministic performance as well as the
minimal cost. Finally, a mechanical system is chosen for demonstration.
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1 Introduction
There always exists unnoticeable and unknown as-

not be completely isolated from the unknown, one may
take the stochastic control approach. The classic linear-

pects of the real system in the dynamic model which
captures prominent features of the mechanical system.
Researches on mechanical system control have always
been very active, especially on handling uncertainties
in the system. Exploring uncertainty and determin-
ing what is known and what is unknown about the
uncertainty is very important. Once the bound infor-
mation of the uncertainty is clearly identified, we can
use this known bound information to develop deter-
ministic control approaches. The well-known Hs/H
control"!, the Lyapunov-based control**, the slid-
ing mode control® and so on contribute to this de-
terministic approach. When the known portion can-
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quadratic-Gaussian control' is in such domain.

The stochastic dynamical systems merge the proba-
bility theory with system theory and has been the most
outstanding since the 50s. Kalman initiated the effort of
looking into the estimation problem and control prob-
lem!”8) in the state space framework when a system
is under stochastic noise. Although the stochastic ap-
proach is quite self-contained and a impressive arena of
practitioners. Concerns on the probability theory’s va-
lidity in describing the real world does exist. That is to
say, the link between the stochastic mathematical tool
and the physical world might be loose. Kalman, among
others, despite his early devotion to stochastic system
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theory now contends that the probability theory might
not be all that suitable to describe the majority of ran-
domness!®’,

The uncertainty in engineering is often acquired via
observed data and then analyzed by the practitioner.
However, the observed data are, by nature, always lim-
ited and the uncertainty is unlikely to be exactly re-
peated many times. The earthquake data can be an ex-
ample for interpretation''”!. Hence, any interpretation
via the frequency of occurrence, which requires a large
number of repetitions, might sometimes be limited due
to a lack of basis. As a result, the fuzzy view via the de-
gree of occurrence may be considered as an alternative
in certain applications. We can find more discussions
on the relative advantages of fuzziness versus probabil-
ity in!!!,

Fuzzy theory was initially introduced to describe
information (for example, linguistic information) that
is in lack of a sharp boundary with its environment!!?!,
Most interest in fuzzy logic theory is attracted to fuzzy
reasoning for control, estimation, decision-making, etc.
Therefore, the merge between the fuzzy theory and sys-
tem theory (fuzzy dynamical system) has been less fo-
cused on. Past efforts on fuzzy dynamical systems can
be found in [13] and [14]. We stress that these are dif-
ferent from the very popular Takagi-Sugeno model or
other fuzzy if-then rules-based models. In this paper,
from a different angle, we employ the fuzzy theory to
describe the uncertainty in the mechanical system and
then propose optimal robust control design of fuzzy me-
chanical systems.

The main contributions are fourfold. First, we not
only guarantee the deterministic performance (includ-
ing uniform boundedness and uniform ultimate bound-
edness), but also explore fuzzy description of system
performance should the fuzzy information of the un-
certainty be provided. Second, we propose a robust
control which is deterministic and is not the usual if-
then rules-based. The resulting controlled system is
uniformly bounded and uniformly ultimately bounded
proved via the Lyapunov minimax approach. Third, a
performance index (the combined cost, which includes
average fuzzy system performance and control effort) is
proposed based on the fuzzy information. The optimal
design problem associated with the control can then be
solved by minimizing the performance index. Fourth,
the unique closed-form solution of optimal gain and the
cost are explicitly presented. The resulting control de-
sign is systematic and is able to guarantee the determin-
istic performance as well as minimizing the cost.

2 Fuzzy mechanical systems

Consider the following uncertain mechanical sys-
tem:

M(q(t),0(t),1)§(t) +V(q(t),4(t), o (t),t) +

G(q(t),o(t),t) +T(q(t),4(t), o(t), ) = 7(t). (1)
Here ¢t € R is the time (i.e., the independent variable),
q € R" is the coordinate, ¢ € R" is the velocity, § €
R™ is the acceleration, ¢ € RP is the uncertain parame-
ter,and 7 € R™ is the control input, M (¢, o, t) € R"*"
is the inertia matrix, V' (q, ¢, 0,t) € R™ is the Corio-
lis/centrifugal force vector, G(q, o,t) € R™ is the grav-
itational force vector, and T'(q, ¢, 0,t) € R™ is the fric-
tion force and external disturbance (we omit arguments
of functions where no confusions may arise).

Assumption 1 The functions M(-), V(-), G(-),
and T'(-) are continuous (Lebesgue measurable in t).
Furthermore, the bounding set 2’ is known and com-
pact.

Assumption 2 i) For each entry of g, (i.e., ¢(ty)),
namely qo;, © = 1,2,--- ,n, there exists a fuzzy set
(Qo; in a universe of discourse =; C R characterized by
a membership function p1=, : =; — [0, 1]. That is

Qoi = {(qois =, (q0i))q0i € =3} (2)
Here =} is known and compact. ii) For each entry of
the vector o(t), namely o;(t), i = 1,2,---,p, the

function () is Lebesgue measurable. iii) For each
0;(t), there exists a fuzzy set .S; in a universe of dis-
course J; C R characterized by a membership function
i 2 X — [07 1],

Si = {(04, pi(os))|os € i} (3)
Here J/; is known and compact.
Remark 1  Assumption 2 imposes fuzzy restriction

on the uncertainty go and o(¢). We employ the fuzzy descrip-
tion on the uncertainties in the mechanical system. This fuzzy
description earns much more advantage than the probability av-
enue which often requires a large number of repetitions to ac-
quire the observed data (always limited by nature).

Assumption 3 The inertia matrix M (g, o,t) in
mechanical systems is uniform positive definite, that is,
there exists a scalar constant v > 0 such that

M(q,0,t) =71, “)
forall ¢ € R".

Remark 2 We emphasize that this is an assumption,
not a fact. There are cases that the inertia matrix may be posi-
tive semi-definite (hence, v = 0). One example is documented
in [15] where the generaliged inertia matrix
mi3 cos? 0y 0

0 ng} ‘

MI{ &)

Thus det[M] = 0if 2 = (2n + 1)%, no=0+1,42 .
That is to say, the generalized inertia matrix M is singular.
When 03 = (2n+ 1)%, n=0,+1,4+2,- .-, the kinetic energy
%q'TM q=0, V6; which means the rotation does not bring up

kinetic energy.

Assumption 4 There is a constant 7y, such that
for all (¢,t) € R” x R, o0 € X, the inertial matrix
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M(q,o,t) is bounded as
1M (g, 0, t)]] < 7- (6)

Unless otherwise stated, || - || always denotes the Eu-
clidean norm (i.e., || - ||2). The [;-norm are sometimes
used and indicated by subscript 1.

Theorem 1 There always exists the factorization

V(g 4,0,t) = C(q,4,0,)q; (7
such that M (q, q,0,t) — 20(q,q,0,t) is skew sym-
metric!'®!. Here M (q,q,0,t) is the time derivative of
M(q,o0,t).

Remark 3  To satisfy V = €4, the matrix C' may not

be unique. But if you also want M — 2C to be skew symmetric,

then the particular choice of C should be defined as
1 5m” omyy,

Cii = =
“ 22:1 g, 2 kzl( dq;

where c;; is the ij-element of matrix C.

8mjk

)qk7 (®

3 Robust control design of fuzzy mechanical
systems
We wish the mechanical system to follow a desired
trajectory q4(t),t € [to,t1], with the desired velocity
G4 (t). Assume ¢*(-) : [ty, 00] — R™ is of class C? and
q4(t), ¢4 (t) and ¢ (t) are uniformly bounded. Let
e(t) = q(t) — ¢*(t), ©)
and hence é(t) = ¢(t) — ¢4(t), é(t) = G(t) — ¢4(¢).
The system (1) can be rewritten as
M(e+q% 0,t)(E+¢) +Cle+q%é+¢%o,t)-
(e+¢Y) +Gle+qo,t) +
T(e+q% e+ ¢ 0t) =1 (10)

The functions M (-), C(-), G(-) and T'(-) can be de-
composed as

M(e+q% o,t) =

M(e+q%t) + AM(e+ ¢%, 0,t),

Cle+q%é+q¢to,t)=

Cle+q%é+q%t) + AC(e + ¢, é+ 4%, 0,t),
(e+q 0,t) =
(
(
7(

QD

e+q%t) + AG(e + ¢4, 0,1),

e+ql e+ ¢t o t) =

e+qt e+t t)+ AT (e +q% e+ ¢ o,t),
(11D

where M s C_’, G and T are the nominal terms of corre-

sponding matrix/vector and AM, AC, AG, and AT

are the uncertain terms which depend on 0. We now
define a vector

(e, é,0,t) :=—AM(e + ¢, 0,t)(§* — S¢) —
AC(e+q%, ¢+ 4%, 0,t)(¢* — Se) —
AG(e+q%,0,t) —

AT (e +q%é+ ¢ o,t), (12)

T

where S = diag[s;],xn, i > 0 is a constant, i =
1,2,--- ,n. Obviously ¢ = 0 if all uncertain terms
vanish.

Assumption 5 There are fuzzy numbers (g9,
G4, e, é,0,t)’s and scalars pi (¢, 44, e, é,0,t)s, k =
1,2,---,r, such that

2] < [61 52 s CAr] P1 P2 -+ ﬁr]T =
CT(e,é,0,t)ple, é,t). (13)
From Eq.(13), we have
11l < ICHIAl = ¢p- (14)

Remark 4  One can employ fuzzy arithmetic and de-
composition theorem (see Appendix) to calculate the fuzzy
number ¢ based on the fuzzy description of o;’s (Assumption
2).

We introduce the following desirable deterministic
dynamical system performance.

Definition 1 Consider a dynamical system

§(t) = f(&(1),1), &(to) = &o- (15)
The solution of the system (suppose it exists and can
be continued over [t(, 00)) is uniformly bounded if for
any r > 0 with ||| < 7, there is d(r) > 0 with
IE@)|| < d(r) for all t > to. It is uniformly ulti-
mately bounded if for ||| < r, there are d(r) > 0
and T'(d(r),r) > 0 such that ||£(¢)| < d(r) for all
t =ty +T(d(r),r).

Let

e(t) == (e(t), e(t))". (16)

The control design is to render the tracking error vector
e(t) to be sufficiently small. We propose the control as

T(t) = M(§* — Sé) + C(¢* — Se) + G+ T —

Pe — Dé — y(é + Se)p?, (17)
where P, D are positive definite diagonal matrices and
the scalar 4 := ~" > 0. The scalar v is a constant

design parameters.

Theorem 2 Subject to Assumptions 1-5, the con-
trol (17) renders e(t) of the system (10) to be uniformly
bounded and uniformly ultimately bounded. In addi-
tion, the size of the ultimate boundedness ball can be
made arbitrarily small by suitable choices of the design
parameters.

Remark 5  The control 7(¢) is based on the nominal
system, the traking error e(t), the bound of uncertainty and the
design parameters. Therefore, this proposed control is deter-
ministic and is not if-then rules-based.

4 Proof of Theorem 2

The mechanical system with the proposed control
is proved to be stable in this section. The chosen Lya-
punov function candidate is shown to be legitimate and
then the proof of stability follows via Lyapunov mini-
max approach!!7-18],
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The Lyapunov function candidate is chosen as
1
Vie) = §(é + Se)TM(é + Se) +

%eT(PnL SD)e. (18)

To prove V is a legitimate Lyapunov function candidate,
we shall prove that V' is (globally) positive definite and
decrescent.

By Eq.(4), we have

1 1
Vie) =2 §1Hé + Sel|* + §6T(P +SD)e =
1 = 1n
—v Y (€242s,65ei+57€2) += > (pi+sid;)e? =
2*1‘:1 2 i=1
12 . €;
5;[81 ei]wi [éj ) (19)

where s;, p;’s and d;’s are from Eqs.(12) and (17), e;
and é; are the ¢-th components of e and é, respectively,
and
87 +po, +sido, VS
v, = |—" ’ C= (20)
S b
It can be easily verified that ¥; > 0, Vi. Thus by letting
1 1
A= min(g)\m(i/l),--- ,iAm(Wn)) (hence A > 0),

V' is shown to be positive definite
1 n
V235 X An(@)(ef +¢7) = Alel”. @D
=1

By Assumption 4, we have
V < ||é+ Se|*y + " (P + SD)e. (22)
For the first term on the right-hand side,
Flé + Sell? = 4(é + Se)T(é + Se) =

a5

L [s2s -
MM[S 1] lel® =: 75ell*. (23)

For the second term on the right-hand side, by
Rayleigh’s principle,

e"(P+SD)e < Ay (P + SD)lel>. (24

With Inequalities (23) and (24) into Inequality (22), we
have

V < 38lel® + Au (P + SD) [le]|” =: Mel?, (25)
where A = 75+ A\ (P + SD). Note that \ in Inequal-
ity (25) is a strictly positive constant, which implies that
V' is decrescent. From Inequalities (21) and (25), V is
a legitimate Lyapunov function candidate.

Now, we prove the stability of the mechanical sys-
tem with the proposed control. For any admissible £(-),
the time derivative of V' along the trajectory of the con-
trolled mechanical system of Eq.(10) is given by

. 1 .
V= (é+8Se)"M(é+ Sé) + §(é + Se)TM(é +

Se) +e' (P + SD)é, (26)

by applying ¢ = § — ¢¢ and Eq.(1), the first two terms
become

(é+Se)TM(é+Sé)+%(é + Se)TM(é+Se)=
1 .

(é+Se)T(Mij—Mc'jd+MSé+§M(é + Se)) =

(e+Se)'(r—Clée+¢H-G—-T—

M + MSé+1/2M (e + Se)) =

(e+Se)T(r—C(¢* —Se) —G—T —

Mt +MSé—C(é4Se)+ %M(é + Se)) =

(e+8e)T(r —C(¢* — Se) — G —T — MG +

1 .

MSé) + (é+Se)T(§M— C)(é+ Se). (27)
With Theorem 1, Egs.(11) and (17), we can get
(é+Se)TM(é+Sé)+%(é—l—Se)TM(é—i—Se):
(e+8e)T(1—C(¢*—Se)—G—T M +MSeé)=
(e+Se)T{M(§—Se)— M (§*—S¢é)+C (¢ —
Se)—C(¢"— Se)+G—G+T—T —
vp*(é + Se) — Pe — Dé} =
(¢ + Se) {—=AM(§* — S¢) — AC(¢* — Se) —
AG — AT — vp*(é + Se) — Pe — Dé}. (28)
By Eqs.(12)—(14),

1 .
(é+Se)TM('e'+Sé)+§(é+Se)TM(é+Se):
(€4 Se)t[@ — yp*(é + Se) — Pe — Dé] <
I+ Sell[|@]] —vp* [|é + Sel” —

(é + Se)T(Pe + Dé) <
Cpllé + Sell = vp* ¢ + Sel|* -
(¢ + Se)T(Pe + Dé) <

fy — (¢ + Se)T(Pe + D). (29)
Since
—(é+ Se)" (Pe + Dé) =
—e'PSe —¢"'Dé — et (P+ SD)é,  (30)
we have

1 .
(€ + Se)TM(é+Sé)—|—§(é—|—Se)TM(é+Se) <

2
4y
Substituting Inequality (31) into Eq.(26), we get

—e"PSe —¢TDé — eT(P + SD)é. (31)

. )
V<= —et'PSe—¢TDé —
v

e"(P+SD)é+e"(P+ SD)é =
4‘2

—eTPSe —¢é¢TDe <
4y
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2
> — XAllel® 32
Al (2
where A = min{Auin(PS), Amin(D)}. This in turn
means that V' is negative definite for all ||e|| such that

1)
— = Aell” <o, (33)
0

2

where § = T Since all universes of discourse X;’s

are compact (hence closed and bounded), § is bounded.
In addition, both  and A are crisp. Thus, Vs neg-
ative definite for sufficiently large ||e||. The uniform
boundedness performance follows [3]. That is, given
any r > 0 with |le(to)|| < r, where ¢, is the initial
time, there is a d(r) given by

oy rAAZ, > R,
(r) = SR - < R (34

0.1
—z,
Ar
such that [le(t)|| < d(r) for all ¢ > t,. Uniform ul-
timate boundedness also follows. That is, given any d
with

R=]| (35)

d>R[MA®, (36)
we have ||le(t)|| < d, Vt > to + T(d,r), with
0, r <R,
T(d,r) =< M2 — \R? , (37)
—=———, otherwise,
NEBZ — 6/~
R=d[MA]*. (38)

The stability of the mechanical system is guaranteed
and tracking error ||e|| can be made arbitrarily small by
choosing large A and/or 7.

Remark 6  We have shown that fundamental proper-
ties explored in Section 3 are quite useful in constructing the le-
gitimate Lyapunov function. The first five terms of the control
scheme (17) are only for the nominal system (i.e. the system
without uncertainty) while the last term is to compensate the
uncertainty. For the last term, the magnitude ~ is still free for
we still have freedom on designing v to determine the size of
the ultimate boundedness. The larger the value of v, the smaller
the size. This stands for a trade-off between the system perfor-
mance and the cost which suggests an interesting optimal quest
for the control design. We will pursue the optimal design in the
following section.

S Optimal gain design

Sections 3 and 4 show that a system performance
can be guaranteed by a deterministic control scheme.
By the analysis, the size of the uniform ultimate bound-
edness region decreases as <y increases. As <y ap-
proaches to infinity, the size approaches to 0. This
rather strong performance is accompanied by a (pos-
sibly) large control effort, which is reflected by v (as-

suming 7 has been chosen). From the practical design
point of view, the designer may be interested in seek-
ing an optimal choice of v for a compromise among
various conflicting criteria. This is associated with the
minimization of a performance index.

We first explore more on the deterministic perfor-
mance of the uncertain mechanical system. Define

A
X7
where \ is from Inequality (25), X is from Inequality
(32) and k > 0. Then by Inequalities (25) and (32), we
get

K= (39)

L S Y A A )
v 7R YR
with Vo = V(to) = V(e(to)). This is a differen-
tial inequality!!”! whose analysis can be made according
to [20] (see Appendix: analysis of differential inequal-
ity).

Therefore

V(t) <r(t), (41)
or 5 1 5
K K
Vt) < (Vo — ?) eXp[—;(t —to)] + o (42)

for all t > ty. By the same argument, we also have, for

any ts and any 7 > tg,

Lo+ 2 @
K Y

where V, = V(t,) = V(e(ts)). The time t4 is when

the control scheme (17) starts to be executed. It does

not need to be ¢,.

By Inequality (21), V(e) > Al|le||?, the right-hand
side of (43) provides an upper bound of A||e||?. This in
turn leads to an upper bound of ||e||?. For each T > t,,
let

Vir) < (Vi - *”f)«exp[

07080 = (Vo= ) expl (7 = )], 44)
Moo (0,7) 1= ) (45)
~
Notice that for each 6, ~, ts, n(d,y,7,t5) — 0as 7 —
00.

One may relate 7(d,7,t,ty) to the transient per-
formance and 7).,(9,7y) the steady state performance.
Since there is no knowledge of the exact value of un-
certainty, it is only realistic to refer to 1(d, vy, ¢, to) and
7o (0, 7y) while analyzing the system performance. We
also notice that both 1(d, v, t,ty) and 7. (9,y) are de-
pendent on 0. The value of J is not known except that it
is characterized by a membership function.

We now propose the following performance index:
for any %, let

ﬂ%m:Dms
aD[n% (8,7)] + B =:

o0

0 (8,7, 7, ts)dr] +
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Jl(r%ts) + aJ2(’Y) + BJ3(’Y)7 (46)

where o, 3 > 0 are scalars. The performance index
consists of three parts. The first part .J; (v, t;) may be
interpreted as the average (via the D-operation) of the
overall transient performance (via the integration) from
time t,. The second part J5(-y) may be interpreted as the
average (via the D-operation) of the steady state perfor-
mance. The third part J3(7) is due to the control cost.
Both « and (3 are weighting factors. The weighting of
J; is normalized to be unity. Our optimal design prob-
lem is to choose v > 0 such that the performance index
J (7, ts) is minimized.

Remark 7 A standard linear-quadratic-Gaussian
(LQG) (i.e., linear-quadratic-Gaussian) problem in stochastic
control is to minimize a performance index, which is the aver-
age (via the expectation value operation in probability) of the
overall state and control accumulation. The proposed new con-
trol design approach may be viewed, loosely speaking, as a
parallel problem, though not equivalent, in fuzzy mechanical
systems. However, one cannot be too careful in distinguishing
the differences. For example, the Gaussian probability distri-
bution implies that the uncertainty is unbounded (although a
higher bound is predicted by a lower probability). In the cur-
rent consideration, the uncertainty bound is always finite. Also,
LQG does not take parameter uncertainty into account.

One can show that
f n*(6,7,7,t)dr =
ts

(u-fffjfkmﬂ—@-¢gm7_
KO o, K o
(Ve — 7) (—§)exp[—*(7 t)ldr| =
(v, — 0yt @7)

Taking the D-operation yields
DI t,)dr] =
[ 6.7, t)dr]

s

KO gk,

D[(VS_T) 51 =
9 KO KOy K,
DV - 20 + (25 -

2
(Dwﬁ—agpnwy+%pwmg. (48)

The last equality is due to Lemma 1 in Appendix D-
operation. Next, we analyze the cost Jy(7y). Again by
Lemma 1, we have

) K2

D[n%(8,7)] = D[( S )] = ;DW}-

(49)
With Egs.(48) and (49) into Eq.(46), we also have

J(v,t,) = (D[V2] - 2§D[vsé1 +

2 2
B pisE 4 o pis? 2
“DIP)G + a3 DI 4y =

K
Fi——+ = t+a—+ 8y, (50)
Y Y

where k; = (k/2)D[V?], ke = k*DI[V.0], k3 =
(k%/2)D[6?], k4 = K*DI[6?].

The optimal design problem is then equivalent to
the following constrained optimization problem: for
any tg,

m’yin J(7,ts) s.t.y > 0. (51)

By using the performance index in Eq. (50), we then
pursue the optimal solution (see Appendix: the closed-
form solution of optimal gain) .

By using Eq. (A18), the cost J in Eq. (50) can be
rewritten as

Koy K K
T == a4 =
K
fsl——(ﬁgfy+2ﬂ’y4)+%+a—3 +38y° =
1 K
K1——[2(ks + a/ﬁ4)]+%+ %—I—3ﬁ’y2:
K K
1— g OK% + 35')’2 =
Y
1
iil—?(/ig + ary — 387Y). (52)

With Eq.(A29), the minimum cost is given by
4

Va+tvatyam?

(s + s = T60(VE +V/E + VA,
(53)

Jmin =K1 —

Remark 8 Combining the results of Sections 47, the
robust control scheme (17) using the optimal design of v > 0
renders the tracking error e of the closed-loop mechanical sys-
tem uniformly ultimately bounded (with the initial state e(ts)).
In addition, the performance index J in Eq.(50) is globally min-
imized.

The optimal design procedure is summarized as fol-
lows:

Step 1 For a given inertia matrix M, obtain -y and

.

Step 2 According to ||®|| in Eq.(12), obtain ¢ and
p in Eq.(14).

Step 3 Based on the V' (e) in Eq.(18), solve for
the \ in Eq.(25). For given S, P’s, and D’s, solve for
the X in Inequality (32). Thus, & is given in Eq.(39).

Step 4 Using the ¢ obtained in Step 2 and the V;
in Inequality (43), calculate K1, Ko, k3, k4 in Eq.(50)
based on the D-operation.

Step 5 For given o and f3, solve for the 7, in
Eq.(A29) and the minimum cost given in Eq.(53).

Step 6 The optimal robust control scheme is given
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in Eq.(17). an (24l [ sint
. q(t) = 64| — |1.5 —cost|’
6 Illustrative example ROV
Consider a vehicle with an inverted pendulum () = ﬂ?d _ |cos t] (59)

hinged to the center as shown in Figure 1. Assume that _9d_ sint |’

there is no friction between the vehicle and the ground. (547 [ sint

The vehicle’s mass is M (uncertain) and an external q't)= gi| = | cost ] .

force F' (the control) is imposed. The mass of the in-
verted pendulum is m (uncertain) and the length is [.
An external torque 7 (the control) is imposed on the
pendulum.

x M

’ ’ no friction

Fig. 1 Vehicle with an inverted pendulum

We choose two generalized coordinates ¢ :=
[¢1 g2]™ = [z 0]T to describe the mechanical system,
where x denotes the displacement of the vehicle and 6
denotes the rotatory angle of the pendulum. The two
coordinates are independent of each other. The kinetic
energy of the mechanical system is

1 1. .
T = 5(M +m)a? + 5ml202 —mlifsinf. (54)

The potential energy is

V =mglsinb, (55)
where g is gravitational acceleration. Then the La-
grange’s equation

d oL oL
—( =)= 56
at'aq) " ag =" ©0)

can be written out where the Lagrangian L =T — V,
u is the external control force. The equation of motion
can be written in matrix form from using Lagrange’s
equation as

H(q)i+C(q,4)q + G(q) = u, (57)
where

R ]

| M+m —mlsind
H(q) = [—ml sin 6 ml? ] ’
. 0 —mlfcosf
Cq,q) = [0 " OCOS } ,
=] " (58)
= mglcos@|’

The desired trajectory ¢“(t), the desired velocity and
acceleration ¢4(t), G(t) are given by

Byusingg =e+¢q%, ¢ =¢é+ 4%, §=¢+ g,
Eq.(57) can be rewritten as
H(e+q")é+H(e+q")§" + Cle+¢%,¢ +

¢*)(e+ ") + Gle +q%) = u, (60)
where
dy M"‘ m
Hfe+4q7) = [—ml sin(ez + 1.5 — cost)

—mlsin(ez + 1.5 — cost)
ml2 )
Cle+qhe+q?) =
[0 — ml(éy + sint) cos(ex + 1.5 — cos t)]
0 0 ’

0

dy _
Gletd) = [mgl cos(ez + 1.5 — cost)

] . (61)

The masses M, m are uncertain with M = M +
AM(t), m = m+ Am(t), where M, m are the con-
stant nominal values and AM, Am are the uncertainty.
So, nominal matrices are given by
= M + 1
~ | —milsin(ey + 1.5 — cost)
—mlsin(es + 1.5 — cost)
mZQ )

O =

A [O —ml(éy + sint) cos(ez + 1.5 — cos t)}
0 0 ’

0
a [mgl cos(ez + 1.5 — cos t)] ' (62)

The uncertainty matrices are given by

_ AM + Am
AH = —Amlsin(e; + 1.5 — cost)
—Amlsin(es + 1.5 — cost)
Aml? ’
AC — 0 —Aml(éy+sint)cos(es+1.5—cost) 7
0 0
AG = v (63)
~ |Amglcos(ex + 1.5 —cost)|

We choose S to be a 2 x 2 identity matrix. Therefore,
we can get

@ :=—AM(G* — Sé) — AC(¢" — Se) — AG, (64)
2] < ¢ (e, é,0,t)p(e, é,t) < [ICNIAI = Cp, (65)

where
- HAMH] . [,01} 66
C_|:||AmH y P = 02| (66)
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and
p1 = ||é1 +sint|,
p2 = ||é1 +sint|| + ||l sin(ex + 1.5 — cost)(éx —

cost)| + ||{(é2 + sint) cos(ez + 1.5 —
cost)(ey —sint)| + ||/ sin(ex + 1.5 —
cost)(é, + sint)|| + [|I?(éa — cost)|| +

llgl cos(es + 1.5 — cost)||. (67)

For the mechanical system, we choose M
1,7 = 1 and assume the uncertainties AM, Am are
all ‘close to 0’ and governed by the membership func-
tion

1+ 10y, —0.1<v <0,
1—10v, 0< v <0.1.

Set the design parameters P, and D to be the iden-
tity matrix I5-. Follow the design procedure, we have
A= 2433, A = land K 24.33. By using the
fuzzy arithmetic and decomposition theorem, we obtain
K1 = H761.30, ko = 48.56, k3 = 0.24, k, = 0.02.
By selecting five sets of weighting « and (3, the optimal
gain 7y,p,¢ and the corresponding minimum cost J,;,, are
summarized in Table 1.

HAM,Am = { (68)

Table 1 Weighting/optimal gain/minimum cost

(a, ﬂ) Oé/ﬂ Yopt Jmin
1,1 1 3.3097 5793
(1, 10) 0.1 1.5386 5832
(1, 100) 0.01 0.7165 5915
(10, 1) 10  3.3128 5794
(100, 1) 100  3.3428 5795

We choose t; = 0 and the initial condition e(0)
[1 0 0 0.1]". For numerical simulation, we choose the
uncertainties as AN = 0.1, Am = 0.1sin(10¢). Two
different classes of uncertainties (i.e., constant, high fre-
quency) are used to test the proposed control scheme.
Simulation results are as follows.

Figure 2 shows comparison of the tracking error
norm ||e|| trajectory with the proposed control (under
Yopt = 3.3097 when ov = 3 = 1), without any control
and with the nominal PD control (without the part of
control that governs the uncertainty i.e., v = 0). The
trajectory ||e|| with the proposed control enters a much
smaller region around O after some time (hence ulti-
mately bounded) than the trajectory only with the nom-
inal PD control. The uncontrolled trajectory ||e|| moves
far away from 0.

Figure 3 shows the corresponding trajectories of the
proposed control T = [u; uy]T.

Figure 4 shows the tracking error norm trajectories
for all five op¢’s (by using different (<, 3) combina-
tions). The use of v = 0 (not optimal) is also shown for
a comparison.

Figure 5 shows the corresponding histories of con-
trol efforts ||7(¢)]|.

Fig.

llell 7 1

1 2 T T T T
— with the proposed control
10F woeeee without control 1
--- with nominal PD control
81 .
6F e N
4+ .
2p. 1
0 \1{ P .
0 2 4 6 8 10

t/s

2 Comparison of fuzzy mechanical system performances

U, U,/ (N - m)

llell / 1

Fig

(/7 (N - m)

20 T T T T
-20 \/ i
_40 - -
,60 = _ ul -
80+ U,
-100 | B
-120 | B
-140 | 4
-160 - B

,180 1 1 1 1

0 2 4 6 8 10
t/s
Fig. 3 Control histories

1.6 T T T T

14 Voni™ 3.3097 |
...... Yop—1.5386

1.2 -—= Vo= 0.7165 E

t/s
.4 Comparison of system performances under
different yopt

250 T T T T
Yop=3-3097

...... ~1.5386

200 o ¥Z§:=0.7165 1
e =3.3128

150f e op=3.3428 .
= Vo= 0

100 % -

0 2 4 6 8 10
t/s

Fig. 5 Comparison of control efforts under different vyopt
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In order to show the results explicitly, we list the
area S between the tracking error norm trajectory (un-
der different 7,) and the coordinate axes, and also the
area R between the control effort trajectory (under dif-
ferent 7,p¢) and the coordinate axes in Table 2.

Table 2 S and R under different 7y,

Yopt 3.3097 1.5386 0.7165 3.3128 3.3428 0
S 1.6502 1.7140 1.7852 1.6488 1.6471 3.2715
R 80.8343 81.5461 84.2688 80.8033 80.7629 90.3669

7 Conclusions

Fuzzy description of uncertainties in mechanical
systems is employed and we incorporate fuzzy uncer-
tainty and fuzzy performance into the control design. A
new robust control scheme is proposed to guarantee the
deterministic performance (including uniform bound-
edness and uniform ultimately boundedness). The con-
trol is deterministic and is not if-then rules-based. The
resulting controlled system is stable proved via the Lya-
punov minimax approach®'!. A performance index is
proposed and by minimizing the performance index, the
optimal design problem associated with the control can
be solved. The solution of the optimal gain is unique
and closed-form. The resulting control design is sys-
tematic and is able to guarantee the deterministic per-
formance as well as minimizing the cost.
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Appendix Fuzzy mathematics

We briefly review some preliminaries regarding fuzzy
numbers and their operations®?':

1) Fuzzy number. Let G be a fuzzy set in R, the real num-
ber. G is called a fuzzy number if: i) G is normal, ii) G is
convex, iii) the support of G is bounded, and iv) all a-cuts are
closed intervals in R.

Throughout, we shall always assume the universe of dis-
course of a fuzzy set number to be its 0-cut.

2) Fuzzy arithmetic. Let G and H be two fuzzy numbers
and Go = 94,92 |, Ha = [ha, hd] be their a-cuts, o € [0, 1].
The addition, substraction, multiplication, and division of G
and H are given by, respectively,

(G+ H)a = lga + ha»ga + ), (A1)
(G — H)o = [min(gy — ha, g4 — hd),
max(ga — ha,g9a — hd)l, (A2)
(G- H)a = [min(ga ha, ga hd , 94 b, g4 h),
max(ga ha 9o hit, 94 har, 94 W), (A3)

(G/H)o = [min(ga /ha s 9o /i, 90 [ha s 94 /),



No. 5 ZHEN Sheng-chao et al: Optimal robust control design of uncertain mechanical systems: a fuzzy approach 663

max(ga /ha s 9o /hd s 92 [y 90 JhE)]. (A4)

3) Decomposition theorem. Define a fuzzy set Vi in
U with the membership function puy, = aly (x) where

Iy (v) = lifz € Vo and Iy, (z) = 0if x € U — Va. Then

the fuzzy set V' is obtained as
V= U Va, (AS)
ael0,1]

where |J is the union of the fuzzy sets (that is, sup over
a € [0,1]).

Based on these, after the operation of two fuzzy numbers
via their a-cuts, one may apply the decomposition theorem to
build the membership function of the resulting fuzzy number.

Appendix Analysis of differential inequality

91 can be made ac-

The analysis of differential inequality
cording to [20]:

Definition 2 If w(, t) is a scalar function of the scalars
i,t in some open connected set D), we say a function
P(t), to <t < t, t > tgis a solution of the differential
inequality!!”!

P(t) < w(t),t) (A6)

on [tg,?) if ¥(t) is continuous on [tg,?) and its derivative on
[to, ) satisfies Inequality (A6).

Theorem 3 Letw(¢(¢),t) be continuous on an open con-
nected set De R? and such that the initial value problem for the
scalar equation!!”!

o(t) = w(e(t), 1), ¢(to) = do (A7)
has a unique solution. If ¢(¢) is a solution of Eq.(A7) on
to < t < ¢ and ¥(t) is a solution of Inequality (A6) on
to < t < t with ¥(tg) < é(to), then () < ¢(t) for
to <t<t

Instead of exploring the solution of the differential inequal-
ity, which is often non-unique and not available, the above the-
orems suggests that it may be feasible to study the upper bound
of the solution. The reason is, however, based on that the solu-
tion of Eq.(A7) is unique.

Theorem 4 Consider the differential inequality Inequal-
ity (A6) and the differential equation Eq.(A7). Suppose that for
some constant L > 0, the function w(-) satisfies the Lipschitz
condition”!

|lw(vi,t) — w(va, t)| < Livy — val, (A8)
for all points (v1,t), (v2,t) € D. Then any function ¢ (¢) that
satisfies the differential Inequality (A6) for ¢y < ¢ < # satisfies
also the inequality
Y(t) < (1), (A9)
fortg <t <t
We consider the differential equation
1

IO B
#(t) = (t)+7,

. r(to) = Vo.

(A10)
The right-hand side satisfies the global Lipschitz condition with
L = 1/k. We proceed with solving the differential equation
(A10). This results in

r(t) = (Vo — ’%exp[ w0

—%(t —to)] + PR

(A1)
Appendix D-operation

We can see D-operation in [23]:

Definition 3 Consider a fuzzy set

N ={(v,un¥))lv € N}.

For any function f : N — R, the D-operation D[f(v)] is given
by

(A12)

_ Jy I0m )y

D[f(w)] = (A13)
[ un(@)dv

Remark 9 In a sense, the D-operation D|[f(v)] takes an
average value of f(v) over pun(v). In the special case that
f(v) = v, this is reduced to the well-known center-of-gravity
defuzzification method 2. Particularly, if N is crisp (i.e.,
pn(v) =1forallv € N), D[f(v)] = f(v).

Lemma 1 For any crisp constant a € R,

[ af @)y @)dv
Dlaf(v)]= =
Sy @)

Ay F Wy ()
Jy v @)v

—aD[f().  (Al4)

Appendix The closed-form solution of optimal
gain

The closed-form solution of optimal gain can be seen in
[23-26]:

For any ts, taking the first order derivative of J with re-

spect to 7y
oJ K2 K3 K4
S22 B2 988 9n™ L opy =
by T2 s s
1
T(KW — 2Kg — 2aky + 287%). (A15)
That
oJ
— = Al6
oy ) (Al6)
leads to 4
Koy — 2Kk3 — 2akg + 20y =0, (A17)
or 4
Koy + 207" = 2(k3 + aky). (A18)

Eq.(A18) is a quartic equation.

Theorem 5 Suppose D[d] # 0. For given k1, k2, K3, K4,
the solution v > 0 to Eq.(A18) always exists and is unique,
which globally minimizes the performance index (50).

Proof Let 0(v) := ko7 + 267 Then §(0) = 0 and 6(-)
is continuous in . In addition, since k3 > 0 and 3 > 0, 6(-)
is strictly increasing in «. Since D[d] # 0, we have D[d] > 0,
D[52] > 0, k3, k4 > 0, and therefore 2(x3 + arq) > 0 (notice
that o, k > 0). As a result, the solution v > 0 to Eq.(A18)
always exists and is unique. For the unique solution y > 0 that
solves Eq.(A18),

2

% = —%(527 — 2K3 — 20k +207") +
%(Kz +88v%)>0. (Al19)
Therefore the positive solution v > 0 of the quartic Eq.(A18)
solves the constrained minimization problem (51).

1
7*3(@ +867°) =

Remark 10 In the special case that the fuzzy sets are
crisp, D[6] = 8, D[6%] = §2. The current setting still applies.
The optimal design can be found by solving Eq.(A18).

The solutions of the quartic Eq.(A18) depend on the cubic
resolvent!?’!

2% 4 (—4r1)z — 15 =0, (A20)

where
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1 K
= —B(K:a + aka), (A21) J(v) = ala(v) + BJ3(y) = 0673 + By, (A30)
ro = 5723 ‘ (A22) The quartic Eq.(A18) is reduced to
) R . By' = any. (A31)
Let p; := —4ry,pa := —rj5. The discriminant H of the cubic . L
resolvent is given by Its positive solution is given by
a (1
H=(5)"+ ()" (A23) Yopt = (Gra) . (A32)
Since r < 0, H > 0. The solutions of the cubic resolvent are With Eq.(A31) into Eq.(A30),
i b 1 2
given by J = —(aky + ﬁ'y‘l) = ou;4 (A33)
z1=u+w, (A24) ) T ) v
(u+ w) 3 Using Eq.(A32), the minimum cost is then
w4 w .
Zp = — 5 + (u— w)l\/;, (A25) Tmin = 27/ aBk4. (A34)
B (u+ w) /3 A6 If the weighting @ — oo, then in the quartic equation, the
BETTT T (u—w)i 2’ (A26) positive solution v — oo. This simply means that the relative
where o . cost of the ultimate boundedness region (as is given by a.Ja2 (7))
u = (—? +VH)3, (A27) is high and the control gain, which is relatively cheap, is turned
high.
_ P2 1 g
w= (_7 ~ VH)s. (A28) If 3 — oo, then in the quartic equation, the positive so-

The cubic resolvent possesses one real solution and two com-
plex conjugate solutions. This in turn implies that the quartic
equation has two real solutions and one pair of complex conju-
gate solutions. The maximum real solution, which is positive
and is therefore the optimal solution to the constrained opti-
mization problem, of the quartic equation is given by

Yopt = 5 (VET + VE + VFB). (A29)

Appendix Some limiting performance

This can be seen in [23-26]:

As was shown earlier, the tracking error e of the controlled
system enters the uniform ultimate boundedness region after
a finite time and stays within the region thereafter. Thus it is
interesting to consider, in the limiting case, only the cost asso-
ciated with this portion of performance.

In the limiting case, the transient performance cost
J1(7,ts) is not considered. The cost is then dictated by that
of the steady state performance and the control gain:

lution v — 0. This shows the other extreme case when the
control is very expensive.
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