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Stability analysis for switched singular Boolean networks

LI Hai-tao', WANG Yu-zhen
(School of Control Science and Engineering, Shandong University, Jinan Shandong 250061, China)

Abstract: The stability analysis of gene regulatory networks is a hot topic in systems biology. We investigate the
stability of switched singular Boolean networks (SSBNs) by using the semi-tensor product of matrices. First, the dynamics
of SSBNs is converted to an algebraic form, based on which a necessary and sufficient condition is established for the
uniqueness of solution of SSBNs. Second, several necessary and sufficient conditions are presented for the stability of
SSBNs under arbitrary switching signal and the switching stabilizability of SSBNs, respectively, by converting an SSBN
into an equivalent switched Boolean network. Two illustrative examples are presented to show that the main results obtained
in this paper are effective in analyzing the stability of SSBNs.
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1 Introduction

Boolean network is a proper model in the study of
gene regulatory networks!!!. In this model, the gene ex-
pression is quantized as ‘1’ or ‘0’ to represent active
or inactive. Unlike continuous model of gene regula-
tory networks that contains several parameters, the dy-
namics of Boolean networks is parameter free and much
simpler, which has been extensively studied in many ex-
cellent works!>!,

Recently, the semi-tensor product of matrices was
proposed by Cheng!>® to analyze Boolean networks.
Using this tool, Cheng and his colleagues convert the
logic dynamics of a Boolean network into an equiva-
lent algebraic form, which has the same form as a linear
system. Based on the algebraic form, many fundamen-
tal results on the analysis and control of Boolean net-
works have been presented, which include the control-
lability and observability!”!3!, the stability and stabi-
lization!'#2%!, the disturbance decoupling!?!'=>*!, the op-
timal control® 231 and the synchronization!?6-?71. Be-
sides, the semi-tensor product method has also been
used in many other fields such as the general logical
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system!2-2%! the fuzzy control®®32!, the calculation of
Boolean derivative?3>3%. the finite automata® 3¢ the
graph coloring"*”! and the game theory!®-3,

It should be pointed out that, due to the external in-
terventions and the asynchronous dynamics, the dynam-
ics of gene regulatory networks in practice is often gov-
erned by different switching models. A typical exam-
ple is the genetic switch in the bacteriophage A, which
contains two distinct models: lysis and lysogeny!“’!.
Boolean networks with switching models are called
switched Boolean networks (SBNs), which have been
studied in some recent works!!7-26:41-441 " On the other
hand, the singular Boolean network, which is a gener-
alization of ordinary singular systems/*>%! to Boolean
networks, was firstly proposed in™*! and then studied
in.  Although there are many results on switched
Boolean networks and singular Boolean networks, re-
spectively, there are, to our best knowledge, fewer re-
sults on the study of switched singular Boolean net-
works (SSBNs). In fact, this is a very challenging
topic and the existing methods on ordinary switched
systems!=31 can hardly be used.
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In this paper, using the semi-tensor product
method, we investigate the stability of switched singu-
lar Boolean networks. Firstly, we convert the dynamics
of SSBNs into an algebraic form, and establish a nec-
essary and sufficient condition for the uniqueness of so-
Iution of SSBNs. Secondly, we propose the concept of
switching point reachability and obtain a necessary and
sufficient condition for the switching point reachabil-
ity by converting the SSBN into an equivalent switched
Boolean network. Thirdly, based on the switching point
reachability, we present several necessary and sufficient
conditions for the stability of SSBNs under arbitrary
switching signal and the switching stabilizability of SS-
BNs, respectively.

The rest of the paper is organized as follows. Sec-
tion 2 gives some necessary preliminaries on the semi-
tensor product of matrices. Section 3 studies the sta-
bility of SSBNs and presents the main results of this
paper. Two illustrative examples are given to show the
effectiveness of the main results in Section 4, which is
followed by a brief conclusion in Section 5.

2 Preliminaries

First, we introduce some notations, which will be
used in the sequel.

- §i denotes the i-th column of the identity matrix
1.

- Ap:i={6li=1,2,--- k},and A := A,.

-1, =1 1].

—

- D := {1,0}. To use the matrix expression, ‘1’
and ‘0’ are identified as 1 ~ &5 and 0 ~ 43, respec-
tively, where ‘~’ denotes two different forms of the
same object.

- An n X t matrix A is called a logical matrix, if

A = [0 62 --- §it]. We express A briefly as A =
Onliy 42 -+ ;). Denote the set of n X ¢ logical matrices

by L, xs-

Col;(A) and Row;(A) denote the i-th column
and the j-th row of the matrix A, respectively. The set
of columns of A is denoted by Col(A). (A);; denotes
the (4, 7)-th entry of A.

Next, we recall some definitions and basic proper-
ties on the semi-tensor product of matrices. For details,
please refer to [5].

Definition 1 The semi-tensor product of two
matrices A € R™*™ and B € RP*? is defined as

AMB:(A®I%)(B®I%), (1)
where o« = lem(n, p) is the least common multiple of
n and p, and ® is the Kronecker product.

Remark 1

tensor product of matrices becomes the conventional matrix

One can see that when n = p, the semi-

product. Thus, we can omit ‘x * if no confusion raises.

Lemma 1 The semi-tensor product has the fol-

lowing properties:

i) Let X € R**! be a column vector and A €
R™"™ Then X x A= ([; ® A) x X.

ii) Let X € R™! and Y € R™*! be two col-
umn vectors. Then Y x X = Wy, ,) X X x Y, where
Wim,n € RM™X™™ s the swap matrix.

In the following, we present a fundamental result
on the matrix expression of logical functions, which is
based on the semi-tensor product of matrices.

Lemma 2 Let f(x1,29, -+ ,25) : D* +— Dbe
a Boolean function. Then, there exists a unique matrix
My € Loy, called the structural matrix of f, such
that

[z, 20, ,xs) = My X,y x; €A, (2)
where X7 _,z; = 21 X -+ X Zs.

Finally, we list the structural matrices of some basic
logical operators which will be used later.

Negation (—): M,, = §5]2 1]; Conjunction (A):
M, = d5[1 2 2 2]; Disjunction (V): My = d2[1 11 2];
Conditional (—): M; = d3[1 2 1 1]; Biconditional
(<) M, = 63[1 2 2 1]; Exclusive Or (V): M, =
0,]2112].

3 Main results

This section studies the stability of SSBNs, and
presents the main results of this paper. First, the prob-
lem formulation is presented. Then the SSBN is con-
verted into an equivalent SBN. Finally, based on the
equivalent SBN, the stability of SSBNs under arbitrary
switching signal and the switching stabilizability of SS-
BNs are investigated, respectively.

3.1 Problem formulation
Consider the following switched Boolean network
with n nodes and m models:
gi‘E:(X(t +1)) = fZ;(X(t)),
9o (X(t+1)) = f77(X(1)),

3)

gV (X(t+1)) = f7O(X (1),
where 0 : N — A = {1,2,--- ,m} is the switching
signal, X (t) = (x1(¢), z2(t),- - ,2,(t)) € D", and
ij,gf :D"—D,i=1,---,n, j=1,2,--- ,mare
Boolean functions.

Using the vector form of logical variables and set-
ting x(t) = &} x;(t) € Agn, by Lemma 2, the SBN
(3) can be expressed as

QTa(t +1) = Wy a(t),
Q3"a(t +1) = Wy (t),

“)

QrWa(t+1) = WrWa(t),
where Qf(t) € Loyon and Wf(t) € Loy 9n are uniquely
determined by g7 and f7"), respectively. Multiply-
ing the equations in (4) together yields the following
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algebraic form:
Eowz(t+1) = Lyyz(), (5)
where Fo (1), Loty € Lonxan,

Coli(Ey) = x Col(@Q7"), i=1,--- 2",

and

S

Coly(Lyry) = % Col(W7 ™), i=1,--. 2"
j=1
When rank(E;) < 2", Vi € A, the system (3) is
called switched singular Boolean network. In this case,
(5) has the same form as the ordinary switched singu-
lar system!*%431 Throughout this paper, we assume that
rank(E;) < 2", Vie A

Remark 2

can convert E;x(t + 1) =

It is noted that when rank(FE;) = 2", one
Liz(t) to x(t + 1) = (B 'L;)x(t),
which is the algebraic form of a Boolean network.

Remark 3  The system (3) and its algebraic form (5)
are equivalent. One can obtain the logical form (3) from the
algebraic form (5) by the following procedure:

1) Calculate Q;’(t)
spectively, as

and Wf(t) from E; ;) and Ly, re-

Q7" =sp Esy, W, D= sp Loty (6)
where Sln =11 ®1L® 12717-;, 1=1,2,---  n.

2) Partition Q?(t) € Loyon as

Q7Y =" Q7

where QZ 1 ,Q ) ¢ Loy on—1. Then,
gio-(t)(mlMfo" axn) =
(1:1 A gzgt) (5627 o 7$n)) \ (ﬁ‘rl A g’Z;t) (5627 o 7xn))7

where Q?(lt)

9;7(2 ), respectively. Repeating this procedure, one can obtain

gq(t). fiff(t) t)

7

and Q?(;) are structural matrices for gfgt) and

can be obtained from Wig( by using the same

procedure.

We give two examples to show the dynamics of
switched singular Boolean networks.

Example 1 Consider a game between a dealer
and two players, and assume that the dealer and two
players choose a bet from D, respectively*!!. Denote
by x;(t), i = 1,2 and u(t) the action of the players and
the dealer at the ¢-th step, respectively. Moreover, we
assume that at each time, at least one of x;(t), i = 1,2
and u(t) takes the bet ‘1’ . Then, the dynamics of the
game given in [41] becomes the following SSBN:

g (X(t+1)) = [7(X(1)),
g (X(t+1)) = f(X(1)), )
g7 (X(t+1)) = f7(X (1)),

where o : N +— {1, 2} is the switching signal, X (t) =
(z1(t), 22(), u(t), 91 = g1 = =1, 95 = g5 = %o,
=g =1fl=xVu f2 =2 Axs A,
fo =a1 & X, f§ =y VasVu,and f3 = f§ =
x1VxoVu.

Example 2 Consider the following apoptosis
network!#!:

x1(t+1) = —xa(t) Au(t),

2ot + 1) = =2y (£) A 25(t), )

x3(t+1) = x2(t) V u(t),
where the concentration level (high or low) of the in-
hibitor of apoptosis proteins (IAP) is denoted by x, the
concentration level of the active caspase 3 (C3a) by 1,
and the concentration level of the active caspase 8 (C8a)
by x3; the concentration level of the tumor necrosis fac-
tor (TNF, a stimulus) is regarded as the control input
u.

When modeling the system (8) as the determinis-
tic asynchronous Boolean network and keeping TNF in
the high concentration level, one can convert it into the
following SSBN:

ri(t+1) = ff(t)(xl(t),:rQ
zo(t+1) = f79 (x4 (t), x

™)
/N N TN
4~ S o
S— N N

8

w

—~

~

N~—

—~

~

N—

~—

~

O

~

.’E3(t+1): g(t)(xl(t)axQ .’E3(t>,’u,t )
1 =u(t),
where o : N — {1,2,--- 8} is the switching signal,

and

f11 = T, le = T2, fgl = I3,
fi=—my Nu, f3 =x9, f§ = s,
L=, 3 =-m A, f§ = s,
fi=a1, fi =20, f§ =22 Vu,

fr = s N, f3 = —xy Aas, fi = s,
fP=xa Nu, f3 =29, f§ =22V 1,
i =1, fi =—x1 ANas, f]=x2Vu,

f18:_‘$2/\u, f28:—|:1:1/\x3, f§:x2\/u.

Next, we give a necessary and sufficient condition
for the uniqueness of solution of the SSBN (3) under
arbitrary switching signal.

Lemma 3 The solution of the system (3) is
unique for any initial point and arbitrary switching sig-
nal, if and only if the following two conditions hold:

Al) rank([E L)) = rank( i), Vie A,

AD S (Lo £ 0= S(Eu = 1 Vi €
.AV]—12 , 2.

Proof It is easy to see that the system (3) has
a unique solution for any initial point and arbitrary
switching signal, if and only if for any ¢ € A, the
singular Boolean network E;x(t + 1) = L;x(t) has a
unique solution for any initial point. Based on Theorem
6 in [50], the conclusion follows.
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In the following, we always assume that Al) and
A2) hold. The objective of this paper is to study the
following two issues:

1) (stability under arbitrary switching signal) es-
tablishing a necessary and sufficient condition for the
stability of the SSBN (3) under arbitrary switching sig-
nal;

2) (state feedback consistent stabilizability) de-
signing a state feedback switching signal under which
the SSBN (3) is consistently stabilizable to an equi-
librium X, = (f,---,2%) (or in the vector form
Te = XD x5 = 0h).

3.2 Switching point reachability

This part introduces a concept of switching point
reachability for SSBNs, which is an important tool for
the stability analysis.

Definition 2 (Switching point reachability) Con-
sider the system (3). Let Xy = (2,(0),---, 2,(0)) €
D". Then, a point X = (zy, - ,z,) € D" is said
to be switching reachable from Xg, if one can find an
integer £ > 0 and a switching signal o, such that un-
der the switching signal, the trajectory of the system (3)
starting from X reaches X at time k.

To facilitate the analysis, we convert the system (5)
into an equivalent switched Boolean network.
For each i € A, define L; € Lonyon as

Vji=1,2,---,2"
Then, we have the following result.

Lemma 4 Assume that Al) and A2) hold. The
system (5) is equivalent to the following switched
Boolean network:

ot +1) = Lowa(t). (an

Proof For any initial point 2(0) = &, and any
switching signal o (), denote the solution to the system
(5) by z(t; (0), o), and the solution to the system (11)
by Z(t; £(0), o). We need to show that

z(t;2(0),0) = 2(t; 2(0),0), Vt € Z;.

Next, we prove it by induction.
When t = 1, a simple calculation shows that
. A o k7 ©®
#(1;2(0),0) = Lyo@(0) = Col,(Loo) = b5
On the other hand, since E,)x(1;2(0),0) =
Lg(o)l‘(()) = COlj (La(o)) = COlkq(o) (EU(O)), we have

2(132(0),0) = 85 = #(1;2(0), 0).

z(0),0) = &(¢t;2(0),0) holds for t = 1.
Assume that the conclusion holds for ¢ = k. More-

over, we set z(k; £(0), o) = &(k; £(0),0) = 534. We

Thus, x(t;

now consider the case of t = k£ + 1. In this case, for
the system (5), since

Eoryz(k + 1;2(0),0) = Loyz(k; 2(0),0) =
Coljy (Lo(w)) = Colyew (Eow),
o (k)

I
one can see that z(k + 1;2(0),0) = d,2" . For the
system (11), it is easy to obtain that

2(k + 1;2(0),0) = Loz (k; 2(0),0) =
R kg
Colj, (Lo(y) = 692"
which implies that z(k + 1; (0), o) = Z(k + 1; 2(0),
o).
By induction, x(¢;z(0),0) = Z(t;2(0),0) holds
forany t € Z,..
Based on Lemma 4, and similar to the proof of The-
orem 1 in [42], we have the following result on the
switching point reachability of the system (3).

Theorem 1 Assume that Al) and A2) hold.
Then,

1) x = &b, is switching reachable from z:(0) = 44,
at time k, if and only if

(M"),q >0, (12)
where M = > L;, and L; is defined in (10);
i=1

2) x = 6%, is switching reachable from z(0) =

0., if and only if

Rpg >0, 13)

where o
R =3 M (14)

k=1

3.3 Stability under arbitrary switching signal

Based on the switching point reachability, this sub-
section studies the stability of the system (3) under ar-
bitrary switching signal. To this end, we need the fol-
lowing result.

Lemma5 Let M = > L;. Then,

=1
2'IL .
D (M’“)H — k¥ =1,2,---,2"  (I5)
i=1 ¥

holds for any & € Z,, where m is the number of sub-
networks of the system (3).

Proof The proof of this lemma is similar to that
of Proposition 4 in [42], and thus we omit it.

Lemma 5 tells us that starting from any initial point
and under arbitrary switching signal, there are m* paths
at time k. On the other hand, since the system (3) has
2™ different points in the state space, one can see that
if the system (3) is globally stable at x, = d4, under
arbitrary switching signal, then, the trajectory starting
from any initial point reaches x, within time 2" under
any switching signal. Based on the above analysis, we
have the following result.
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Theorem 2 Assume that Al) and A2) hold.
Then, the system (3) is globally stable at z, = 05, un-
der arbitrary switching signal, if and only if there exists
a positive integer k£* < 2™ such that

Row, (M*") = m* 1,a, (16)

where M = > L;, and m is the number of sub-
1=1
networks for the system (3).

3.4 State feedback consistent stabilizability

In this part, based on the switching point reacha-
bility, we investigate the state feedback switching sig-
nal design for the consistent stabilizability of the sys-
tem (3). Noting that the system (3) is equivalent to the
system (11), we study this problem for the system (11).

Identifying o (t) € A ~ A,,, we have o(t) = i ~
6t LetL = [Ly -+ L] = Ognliy dp -+ iman] €
Lonxman. Forx, = 04, and k € Z, , denote by Ry ()
the set of all the initial states of the system (11) which
reach z, at the k-th step, that is,

Ry (x.) = {xg€ Agn : there exists a switching signal
o(t) such that x(k; xg,0) = z.}.  (17)
Then, we have the following result.
Theorem 3  Assume that A1) and A2) hold. The
system (3) is consistently stabilizable to x, = d4. by

a state feedback switching signal, if and only if there
exists an integer 1 < 7 < 2" such that

Te € Ry(x,),
{R,(:ce) — Agn. (18)

Proof Sufficiency. Assuming that (18) holds, we
prove that the system (3) is consistently stabilizable to
T by a constructed state feedback switching signal.

Set

Ry (ze) = R (we) \ Ri—a(ze), k=1,---
where Ry(z.) := 0.

One can see that R} (z.) R} (z.) =2,V ki, ko €
{1, ,7} k1 # ko, and | Ry (z.) = Agn. Thus,

k=1
for any integer 1 < j < 2", there exists a unique inte-
ger 1 < k; < 7 such that 63, € R} ().

For k; = 1, there exists an integer 1 < p; < m

, 7, (19)

7; P n 5
such that 52(:7'7 DI — x.; for 2 < k; < 7, there ex-
. . i(ps—1)2m 4
ists an integer 1 < p; < m such that 52(51 v

Rkjfl(l'e)-

Now, we set G = 0,,[p1 p2 -+ Pan] € Lopxan.
Then, under the state feedback switching signal o (t) =
Gx(t), along the trajectory of the system (11) start-
ing from any initial state 2(0) = 6}, € Agn, it is
easy to see that if k; = 1, (1) = LGz(0)z(0) =
67‘(Pj—1)2"+J

on = x.; otherwise, if 2 < ki <7, 2(1) =
LGz(0)z(0) = b5’ " € Ry, —1(x.). Thus, z(k;)

= T, V1< j < 2" Since z, € Ry(x.), one can see
that
x(t) = xe, VE =T,

which together with Lemma 4 imply that the system (3)
is consistently stabilizable to z. by the state feedback
switching signal o (t) = Gxz(t).

Necessity. Suppose that the system (3) is consis-
tently stabilizable to x. by a state feedback switching
signal, say, o(t) = Gz(t), G € Ly,x2n. Then, the
closed-loop system consisting of the system (11) and
o(t) = Gxz(t) becomes

z(t+1) = La(t), (20)
where L = LG®,,, and @, = diag{0L.,02.,--- , 62}
€ Lo2nyon.

Obviously, the Boolean network (20) is globally
stable at .. Thus, z, € Ri(x.). Let T, < 2" be
the transient time!®! of the system (20). Then, it is easy
to see that (18) holds for 7 = T} < 2”. This completes
the proof.

m

Remark 4  One can check (18) via M = . L;.
i=1

Specifically, ze € Rj(ze) if and only if MM,H > 0, and
R+ (ze) = Agn if and only if Row,,(M7) has no zero columns.

From the proof of Theorem 3, we can design state
feedback switching signals as follows:

Theorem 4 Let L = Jon [iy G2 - Qman] be
given. Suppose that there exists an integer 1 < 7 < 2"
such that (18) holds. For each integer 1 < 7 < 27
which corresponds to a unique integer 1 < k; < 7 such
that 63, € R (z.), let 1 < p; < m be such that

i(pj—1)2m +j
6271, = Te, kj - 1,
Upj—1)2"+j
52’”] 6 Rkjfl(xe)7 2 g kj < T.

Then, the state feedback switching signal can be de-
signed as o (t) = Gz(t) with

G = 5m[p1 D2

21

“+ panl. (22)

4 Illustrative examples
This section presents two illustrative examples to

show how to use the results obtained in this paper to
check the stability of SSBNs.

Example 3  Consider the following SSBN:

FOXE+)) = FIUXO). gy
9O+ 1) = [OX ),

where X (t) = (z1(t),22(t)), gf = 21 V X9, g3 =
Ty, [l = 221 N g, fy = 0,97 = ~21 A 29, g5 =
1 N\ xo, f£ = 21 < 29 and f§ = x,Vay. The ob-
jective is to check whether or not the system (23) is
globally stable at X, = (0, 0) under arbitrary switching
signal.

First, we can convert the system (23) into the fol-
lowing algebraic form:
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Erwa(t +1) = Lowx(t), (24)

where El == 54[]. 31 4], L1 = (54[4 4 3 4], E2 =
04[3 4 4 2] and Ly = 442 3 3 2]. Moreover, X, ~
To = 52. Obviously, (A1) and (A2) hold for the system
(23).

Second, based on Lemma 4, we have the following
equivalent system for (24):

w(t 4 1) = Lowz(t), (25)

where L, = 04[4 4 2 4] and Ly = 6,4 1 1 4].
Set M = I:l + ﬁg. A simple calculation shows that

M? =

oo OO
oo OO
o O oo
o O OO

By Theorem 2, the system (23) is globally stable at
5 ~ X. (0,0) under arbitrary switching
signal.

Example 4 Consider the following SSBN:

gl (X (t+ 1) = f79(X(1)),

GO ) = £Oxm),

where X (t) = (z1(t), x2(t)), 91 = f{ =—21Vxo, g2
= T2, f21 = 0 g% = /\1'2, g% - _"1"1/\_'1:27 fl -
—x1 N X9 and f2 = x7 V —xy. Our objective is to

design a state feedback switching signal which consis-
tently stabilizes the system (26) to X, = (1, 1).

The system (26) can be converted into the following
algebraic form:

E,wyx(t + 1) = Loy (t), 27

where B} = 4[4 1 2 1], Ly = 044 2 2 2], By =
04]2 4 4 3] and Ly = 44[3 3 2 3]. Moreover, X, ~
z, = d;. Itis easy to see that the system (26) satisfies
Al) and A2).

Based on Lemma 4, we have the following equiva-
lent system for (27):

T(t+ 1) = Lygz(t), (28)

where Ly = 04[1 3 3 3] and L, = 6,[4 4 1 4].

It is easy to see that Ry (z,) = {4}, 5} and Ry (x.)
= A,. Thus, (18) holds for 7 = 2.

A simple calculation shows that p; = 1, py =
1, p3 = 2 and p, = 1. Thus, by Theorem 4, we ob-
tain a state feedback switching signal, that is, o(t) =
5 Conclusion

In this paper, we have studied the stability of
switched singular Boolean networks by using the semi-
tensor product of matrices. Based on the algebraic form
of SSBNs, we have obtained a necessary and sufficient
condition for the uniqueness of solution of the system.

In addition, we have presented several necessary and
sufficient conditions for the stability of SSBNs under ar-
bitrary switching signal and the switching stabilizabil-
ity of SSBNs, respectively, by converting an SSBN into
an equivalent switched Boolean network. The study of
two illustrative examples showed that the main results
obtained in this paper are effective in analyzing the sta-
bility of SSBNs.
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