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摘要:基因调控网络的稳定性分析是系统生物学的研究热点问题之一.本文利用矩阵半张量积方法研究了切换
奇异布尔网络的稳定性问题.首先给出了切换奇异布尔网络的代数表示,基于该代数表示,建立了系统解存在唯一
的充要条件.然后通过将切换奇异布尔网络转化为等价的切换布尔网络,分别得到了系统在任意切换下稳定以及切
换可稳的充要条件.最后给出例子验证所得结果的有效性.
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Stability analysis for switched singular Boolean networks
LI Hai-tao†, WANG Yu-zhen

(School of Control Science and Engineering, Shandong University, Jinan Shandong 250061, China)

Abstract: The stability analysis of gene regulatory networks is a hot topic in systems biology. We investigate the
stability of switched singular Boolean networks (SSBNs) by using the semi-tensor product of matrices. First, the dynamics
of SSBNs is converted to an algebraic form, based on which a necessary and sufficient condition is established for the
uniqueness of solution of SSBNs. Second, several necessary and sufficient conditions are presented for the stability of
SSBNs under arbitrary switching signal and the switching stabilizability of SSBNs, respectively, by converting an SSBN
into an equivalent switched Boolean network. Two illustrative examples are presented to show that the main results obtained
in this paper are effective in analyzing the stability of SSBNs.
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1 Introduction
Boolean network is a proper model in the study of

gene regulatory networks[1]. In this model, the gene ex-
pression is quantized as ‘1’or ‘0’to represent active
or inactive. Unlike continuous model of gene regula-
tory networks that contains several parameters, the dy-
namics of Boolean networks is parameter free and much
simpler, which has been extensively studied in many ex-
cellent works[2–4].

Recently, the semi-tensor product of matrices was
proposed by Cheng[5–6] to analyze Boolean networks.
Using this tool, Cheng and his colleagues convert the
logic dynamics of a Boolean network into an equiva-
lent algebraic form, which has the same form as a linear
system. Based on the algebraic form, many fundamen-
tal results on the analysis and control of Boolean net-
works have been presented, which include the control-
lability and observability[7–13], the stability and stabi-
lization[14–20], the disturbance decoupling[21–23], the op-
timal control[24–25] and the synchronization[26–27]. Be-
sides, the semi-tensor product method has also been
used in many other fields such as the general logical

system[28–29], the fuzzy control[30–32], the calculation of
Boolean derivative[33–34], the finite automata[35–36], the
graph coloring[37] and the game theory[38–39].

It should be pointed out that, due to the external in-
terventions and the asynchronous dynamics, the dynam-
ics of gene regulatory networks in practice is often gov-
erned by different switching models. A typical exam-
ple is the genetic switch in the bacteriophage λ, which
contains two distinct models: lysis and lysogeny[40].
Boolean networks with switching models are called
switched Boolean networks (SBNs), which have been
studied in some recent works[17, 26, 41–44]. On the other
hand, the singular Boolean network, which is a gener-
alization of ordinary singular systems[45–48] to Boolean
networks, was firstly proposed in[49] and then studied
in[50]. Although there are many results on switched
Boolean networks and singular Boolean networks, re-
spectively, there are, to our best knowledge, fewer re-
sults on the study of switched singular Boolean net-
works (SSBNs). In fact, this is a very challenging
topic and the existing methods on ordinary switched
systems[51–55] can hardly be used.
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In this paper, using the semi-tensor product
method, we investigate the stability of switched singu-
lar Boolean networks. Firstly, we convert the dynamics
of SSBNs into an algebraic form, and establish a nec-
essary and sufficient condition for the uniqueness of so-
lution of SSBNs. Secondly, we propose the concept of
switching point reachability and obtain a necessary and
sufficient condition for the switching point reachabil-
ity by converting the SSBN into an equivalent switched
Boolean network. Thirdly, based on the switching point
reachability, we present several necessary and sufficient
conditions for the stability of SSBNs under arbitrary
switching signal and the switching stabilizability of SS-
BNs, respectively.

The rest of the paper is organized as follows. Sec-
tion 2 gives some necessary preliminaries on the semi-
tensor product of matrices. Section 3 studies the sta-
bility of SSBNs and presents the main results of this
paper. Two illustrative examples are given to show the
effectiveness of the main results in Section 4, which is
followed by a brief conclusion in Section 5.

2 Preliminaries
First, we introduce some notations, which will be

used in the sequel.
· δi

k denotes the i-th column of the identity matrix
Ik.

· ∆k := {δi
k|i = 1, 2, · · · , k}, and ∆ := ∆2.

· 1n := [1 · · · 1︸ ︷︷ ︸
n

].

· D := {1, 0}. To use the matrix expression, ‘1’
and ‘0’ are identified as 1 ∼ δ1

2 and 0 ∼ δ2
2 , respec-

tively, where ‘∼’ denotes two different forms of the
same object.

· An n × t matrix A is called a logical matrix, if
A = [δi1

n δi2
n · · · δit

n ]. We express A briefly as A =
δn[i1 i2 · · · it]. Denote the set of n×t logical matrices
by Ln×t.

· Coli(A) and Rowj(A) denote the i-th column
and the j-th row of the matrix A, respectively. The set
of columns of A is denoted by Col(A). (A)ij denotes
the (i, j)-th entry of A.

Next, we recall some definitions and basic proper-
ties on the semi-tensor product of matrices. For details,
please refer to [5].

Definition 1 The semi-tensor product of two
matrices A ∈ Rm×n and B ∈ Rp×q is defined as

AnB = (A⊗ Iα
n
)(B ⊗ Iα

p
), (1)

where α = lcm(n, p) is the least common multiple of
n and p, and ⊗ is the Kronecker product.

Remark 1 One can see that when n = p, the semi-
tensor product of matrices becomes the conventional matrix
product. Thus, we can omit ‘n’ if no confusion raises.

Lemma 1 The semi-tensor product has the fol-

lowing properties:
i) Let X ∈ Rt×1 be a column vector and A ∈

Rm×n. Then X nA = (It ⊗A)nX .
ii) Let X ∈ Rm×1 and Y ∈ Rn×1 be two col-

umn vectors. Then Y nX = W[m,n] nX n Y , where
W[m,n] ∈ Rmn×mn is the swap matrix.

In the following, we present a fundamental result
on the matrix expression of logical functions, which is
based on the semi-tensor product of matrices.

Lemma 2 Let f(x1, x2, · · · , xs) : Ds 7→ D be
a Boolean function. Then, there exists a unique matrix
Mf ∈ L2×2s , called the structural matrix of f , such
that

f(x1, x2, · · · , xs) = Mf ns
i=1 xi, xi ∈ ∆, (2)

where ns
i=1xi = x1 n · · ·n xs.

Finally, we list the structural matrices of some basic
logical operators which will be used later.

Negation (¬): Mn = δ2[2 1]; Conjunction (∧):
Mc = δ2[1 2 2 2]; Disjunction (∨): Md = δ2[1 1 1 2];
Conditional (→): Mi = δ2[1 2 1 1]; Biconditional
(↔): Me = δ2[1 2 2 1]; Exclusive Or (∨̄): Mp =
δ2[2 1 1 2].
3 Main results

This section studies the stability of SSBNs, and
presents the main results of this paper. First, the prob-
lem formulation is presented. Then the SSBN is con-
verted into an equivalent SBN. Finally, based on the
equivalent SBN, the stability of SSBNs under arbitrary
switching signal and the switching stabilizability of SS-
BNs are investigated, respectively.
3.1 Problem formulation

Consider the following switched Boolean network
with n nodes and m models:




g
σ(t)
1 (X(t + 1)) = f

σ(t)
1 (X(t)),

g
σ(t)
2 (X(t + 1)) = f

σ(t)
2 (X(t)),

...
gσ(t)

n (X(t + 1)) = fσ(t)
n (X(t)),

(3)

where σ : N 7→ A = {1, 2, · · · ,m} is the switching
signal, X(t) = (x1(t), x2(t), · · · , xn(t)) ∈ Dn, and
f j

i , gj
i : Dn 7→ D, i = 1, · · · , n, j = 1, 2, · · · ,m are

Boolean functions.
Using the vector form of logical variables and set-

ting x(t) = nn
i=1xi(t) ∈ ∆2n , by Lemma 2, the SBN

(3) can be expressed as



Q
σ(t)
1 x(t + 1) = W

σ(t)
1 x(t),

Q
σ(t)
2 x(t + 1) = W

σ(t)
2 x(t),

...
Qσ(t)

n x(t + 1) = W σ(t)
n x(t),

(4)

where Q
σ(t)
i ∈ L2×2n and W

σ(t)
i ∈ L2×2n are uniquely

determined by g
σ(t)
i and f

σ(t)
i , respectively. Multiply-

ing the equations in (4) together yields the following
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algebraic form:

Eσ(t)x(t + 1) = Lσ(t)x(t), (5)

where Eσ(t), Lσ(t) ∈ L2n×2n ,

Coli(Eσ(t))=
n
n

j=1
Coli(Q

σ(t)
j ), i = 1, · · · , 2n,

and

Coli(Lσ(t)) =
n
n

j=1
Coli(W

σ(t)
j ), i = 1, · · · , 2n.

When rank(Ei) < 2n, ∀ i ∈ A, the system (3) is
called switched singular Boolean network. In this case,
(5) has the same form as the ordinary switched singu-
lar system[46, 48]. Throughout this paper, we assume that
rank(Ei) < 2n, ∀ i ∈ A.

Remark 2 It is noted that when rank(Ei) = 2n, one
can convert Eix(t + 1) = Lix(t) to x(t + 1) = (E−1

i Li)x(t),
which is the algebraic form of a Boolean network.

Remark 3 The system (3) and its algebraic form (5)
are equivalent. One can obtain the logical form (3) from the
algebraic form (5) by the following procedure:

1) Calculate Q
σ(t)
i and W

σ(t)
i from Eσ(t) and Lσ(t), re-

spectively, as

Q
σ(t)
i = Sn

i Eσ(t), W
σ(t)
i = Sn

i Lσ(t), (6)

where Sn
i = 12i−1 ⊗ I2 ⊗ 12n−i , i = 1, 2, · · · , n.

2) Partition Q
σ(t)
i ∈ L2×2n as

Q
σ(t)
i = [Q

σ(t)
i,1 Q

σ(t)
i,2 ],

where Q
σ(t)
i,1 , Q

σ(t)
i,2 ∈ L2×2n−1 . Then,

g
σ(t)
i (x1, x2, · · · , xn) =

(x1 ∧ g
σ(t)
i,1 (x2, · · · , xn)) ∨ (¬x1 ∧ g

σ(t)
i,2 (x2, · · · , xn)),

where Q
σ(t)
i,1 and Q

σ(t)
i,2 are structural matrices for g

σ(t)
i,1 and

g
σ(t)
i,2 , respectively. Repeating this procedure, one can obtain

g
σ(t)
i . f

σ(t)
i can be obtained from W

σ(t)
i by using the same

procedure.

We give two examples to show the dynamics of
switched singular Boolean networks.

Example 1 Consider a game between a dealer
and two players, and assume that the dealer and two
players choose a bet from D, respectively[41]. Denote
by xi(t), i = 1, 2 and u(t) the action of the players and
the dealer at the t-th step, respectively. Moreover, we
assume that at each time, at least one of xi(t), i = 1, 2
and u(t) takes the bet ‘1’. Then, the dynamics of the
game given in [41] becomes the following SSBN:




g
σ(t)
1 (X(t + 1)) = f

σ(t)
1 (X(t)),

g
σ(t)
2 (X(t + 1)) = f

σ(t)
2 (X(t)),

g
σ(t)
3 (X(t + 1)) = f

σ(t)
3 (X(t)),

(7)

where σ : N 7→ {1, 2} is the switching signal, X(t) =
(x1(t), x2(t), u(t)), g1

1 = g2
1 = x1, g1

2 = g2
2 = x2,

g1
3 = g2

3 = 1, f1
1 = x1 ∨ u, f2

1 = x1 ∧ x2 ∧ u,
f1
2 = x1 ↔ x2, f2

2 = ¬x1 ∨ x2 ∨ u, and f1
3 = f2

3 =
x1 ∨ x2 ∨ u.

Example 2 Consider the following apoptosis
network[4]:




x1(t + 1) = ¬x2(t) ∧ u(t),
x2(t + 1) = ¬x1(t) ∧ x3(t),
x3(t + 1) = x2(t) ∨ u(t),

(8)

where the concentration level (high or low) of the in-
hibitor of apoptosis proteins (IAP) is denoted by x1, the
concentration level of the active caspase 3 (C3a) by x2,
and the concentration level of the active caspase 8 (C8a)
by x3; the concentration level of the tumor necrosis fac-
tor (TNF, a stimulus) is regarded as the control input
u.

When modeling the system (8) as the determinis-
tic asynchronous Boolean network and keeping TNF in
the high concentration level, one can convert it into the
following SSBN:




x1(t + 1) = f
σ(t)
1 (x1(t), x2(t), x3(t), u(t)),

x2(t + 1) = f
σ(t)
2 (x1(t), x2(t), x3(t), u(t)),

x3(t + 1) = f
σ(t)
3 (x1(t), x2(t), x3(t), u(t)),

1 = u(t),

(9)

where σ : N 7→ {1, 2, · · · , 8} is the switching signal,
and

f1
1 = x1, f1

2 = x2, f1
3 = x3,

f2
1 = ¬x2 ∧ u, f2

2 = x2, f2
3 = x3,

f3
1 = x1, f3

2 = ¬x1 ∧ x3, f3
3 = x3,

f4
1 = x1, f4

2 = x2, f4
3 = x2 ∨ u,

f5
1 = ¬x2 ∧ u, f5

2 = ¬x1 ∧ x3, f5
3 = x3,

f6
1 = ¬x2 ∧ u, f6

2 = x2, f6
3 = x2 ∨ u,

f7
1 = x1, f7

2 = ¬x1 ∧ x3, f7
3 = x2 ∨ u,

f8
1 = ¬x2 ∧ u, f8

2 = ¬x1 ∧ x3, f8
3 = x2 ∨ u.

Next, we give a necessary and sufficient condition
for the uniqueness of solution of the SSBN (3) under
arbitrary switching signal.

Lemma 3 The solution of the system (3) is
unique for any initial point and arbitrary switching sig-
nal, if and only if the following two conditions hold:

A1) rank([Ei Li]) = rank(Ei), ∀ i ∈ A;

A2)
2n∑

k=1

(Li)jk 6= 0 ⇒
2n∑

k=1

(Ei)jk = 1, ∀ i ∈
A, ∀ j = 1, 2, · · · , 2n.

Proof It is easy to see that the system (3) has
a unique solution for any initial point and arbitrary
switching signal, if and only if for any i ∈ A, the
singular Boolean network Eix(t + 1) = Lix(t) has a
unique solution for any initial point. Based on Theorem
6 in [50], the conclusion follows.



No. 7 LI Hai-tao et al: Stability analysis for switched singular Boolean networks 911

In the following, we always assume that A1) and
A2) hold. The objective of this paper is to study the
following two issues:

1) (stability under arbitrary switching signal) es-
tablishing a necessary and sufficient condition for the
stability of the SSBN (3) under arbitrary switching sig-
nal;

2) (state feedback consistent stabilizability) de-
signing a state feedback switching signal under which
the SSBN (3) is consistently stabilizable to an equi-
librium Xe = (xe

1, · · · , xe
n) (or in the vector form

xe = nn
i=1x

e
i = δµ

2n).
3.2 Switching point reachability

This part introduces a concept of switching point
reachability for SSBNs, which is an important tool for
the stability analysis.

Definition 2 (Switching point reachability) Con-
sider the system (3). Let X0 = (x1(0), · · · , xn(0)) ∈
Dn. Then, a point X = (x1, · · · , xn) ∈ Dn is said
to be switching reachable from X0, if one can find an
integer k > 0 and a switching signal σ, such that un-
der the switching signal, the trajectory of the system (3)
starting from X0 reaches X at time k.

To facilitate the analysis, we convert the system (5)
into an equivalent switched Boolean network.

For each i ∈ A, define L̂i ∈ L2n×2n as

Colj(L̂i)=δ
ki

j

2n , if Colj(Li)=Colki
j
(Ei), (10)

∀ j = 1, 2, · · · , 2n.

Then, we have the following result.

Lemma 4 Assume that A1) and A2) hold. The
system (5) is equivalent to the following switched
Boolean network:

x(t + 1) = L̂σ(t)x(t). (11)

Proof For any initial point x(0) = δj
2n and any

switching signal σ(t), denote the solution to the system
(5) by x(t;x(0), σ), and the solution to the system (11)
by x̂(t;x(0), σ). We need to show that

x(t;x(0), σ) = x̂(t;x(0), σ), ∀ t ∈ Z+.

Next, we prove it by induction.
When t = 1, a simple calculation shows that

x̂(1;x(0), σ) = L̂σ(0)x(0) = Colj(L̂σ(0)) = δ
k

σ(0)
j

2n .

On the other hand, since Eσ(0)x(1;x(0), σ) =
Lσ(0)x(0) = Colj(Lσ(0)) = Col

k
σ(0)
j

(Eσ(0)), we have

x(1;x(0), σ) = δ
k

σ(0)
j

2n = x̂(1;x(0), σ). Thus, x(t;
x(0), σ) = x̂(t;x(0), σ) holds for t = 1.

Assume that the conclusion holds for t = k. More-
over, we set x(k;x(0), σ) = x̂(k;x(0), σ) = δj1

2n . We

now consider the case of t = k + 1. In this case, for
the system (5), since

Eσ(k)x(k + 1;x(0), σ) = Lσ(k)x(k;x(0), σ) =
Colj1(Lσ(k)) = Col

k
σ(k)
j1

(Eσ(k)),

one can see that x(k + 1; x(0), σ) = δ
k

σ(k)
j1

2n . For the
system (11), it is easy to obtain that

x̂(k + 1;x(0), σ) = L̂σ(k)x(k;x(0), σ) =

Colj1(L̂σ(k)) = δ
k

σ(k)
j1

2n ,

which implies that x(k + 1; x(0), σ) = x̂(k + 1; x(0),
σ).

By induction, x(t;x(0), σ) = x̂(t;x(0), σ) holds
for any t ∈ Z+.

Based on Lemma 4, and similar to the proof of The-
orem 1 in [42], we have the following result on the
switching point reachability of the system (3).

Theorem 1 Assume that A1) and A2) hold.
Then,

1) x = δp
2n is switching reachable from x(0) = δq

2n

at time k, if and only if
(M̂k)pq > 0, (12)

where M̂ =
m∑

i=1

L̂i, and L̂i is defined in (10);

2) x = δp
2n is switching reachable from x(0) =

δq
2n , if and only if

Rpq > 0, (13)
where

R =
2n∑

k=1

M̂k. (14)

3.3 Stability under arbitrary switching signal
Based on the switching point reachability, this sub-

section studies the stability of the system (3) under ar-
bitrary switching signal. To this end, we need the fol-
lowing result.

Lemma 5 Let M̂ =
m∑

i=1

L̂i. Then,

2n∑
i=1

(
M̂k

)
ij

= mk, ∀ j = 1, 2, · · · , 2n (15)

holds for any k ∈ Z+, where m is the number of sub-
networks of the system (3).

Proof The proof of this lemma is similar to that
of Proposition 4 in [42], and thus we omit it.

Lemma 5 tells us that starting from any initial point
and under arbitrary switching signal, there are mk paths
at time k. On the other hand, since the system (3) has
2n different points in the state space, one can see that
if the system (3) is globally stable at xe = δµ

2n under
arbitrary switching signal, then, the trajectory starting
from any initial point reaches xe within time 2n under
any switching signal. Based on the above analysis, we
have the following result.
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Theorem 2 Assume that A1) and A2) hold.
Then, the system (3) is globally stable at xe = δµ

2n un-
der arbitrary switching signal, if and only if there exists
a positive integer k∗ 6 2n such that

Rowµ(M̂k∗) = mk∗12n , (16)

where M̂ =
m∑

i=1

L̂i, and m is the number of sub-

networks for the system (3).

3.4 State feedback consistent stabilizability
In this part, based on the switching point reacha-

bility, we investigate the state feedback switching sig-
nal design for the consistent stabilizability of the sys-
tem (3). Noting that the system (3) is equivalent to the
system (11), we study this problem for the system (11).

Identifying σ(t) ∈ A ∼ ∆m, we have σ(t) = i ∼
δi

m. Let L̂ = [L̂1 · · · L̂m] = δ2n [i1 i2 · · · im2n ] ∈
L2n×m2n . For xe = δµ

2n and k ∈ Z+, denote by Rk(xe)
the set of all the initial states of the system (11) which
reach xe at the k-th step, that is,

Rk(xe)= {x0∈∆2n : there exists a switching signal

σ(t) such that x(k;x0, σ) = xe}. (17)

Then, we have the following result.

Theorem 3 Assume that A1) and A2) hold. The
system (3) is consistently stabilizable to xe = δµ

2n by
a state feedback switching signal, if and only if there
exists an integer 1 6 τ 6 2n such that{

xe ∈ R1(xe),
Rτ (xe) = ∆2n .

(18)

Proof Sufficiency. Assuming that (18) holds, we
prove that the system (3) is consistently stabilizable to
xe by a constructed state feedback switching signal.

Set

R◦
k(xe)=Rk(xe) \Rk−1(xe), k=1, · · · , τ, (19)

where R0(xe) := ∅.
One can see that R◦

k1
(xe)∩R◦

k2
(xe)=∅, ∀ k1, k2∈

{1, · · · , τ}, k1 6= k2, and
τ⋃

k=1

R◦
k(xe) = ∆2n . Thus,

for any integer 1 6 j 6 2n, there exists a unique inte-
ger 1 6 kj 6 τ such that δj

2n ∈ R◦
kj

(xe).
For kj = 1, there exists an integer 1 6 pj 6 m

such that δ
i(pj−1)2n+j

2n = xe; for 2 6 kj 6 τ , there ex-

ists an integer 1 6 pj 6 m such that δ
i(pj−1)2n+j

2n ∈
Rkj−1(xe).

Now, we set G = δm[p1 p2 · · · p2n ] ∈ Lm×2n .
Then, under the state feedback switching signal σ(t) =
Gx(t), along the trajectory of the system (11) start-
ing from any initial state x(0) = δj

2n ∈ ∆2n , it is
easy to see that if kj = 1, x(1) = L̂Gx(0)x(0) =
δ

i(pj−1)2n+j

2n = xe; otherwise, if 2 6 kj 6 τ , x(1) =
L̂Gx(0)x(0) = δ

i(pj−1)2n+j

2n ∈Rkj−1(xe). Thus, x(kj)

= xe, ∀ 1 6 j 6 2n. Since xe ∈ R1(xe), one can see
that

x(t) = xe, ∀ t > τ,

which together with Lemma 4 imply that the system (3)
is consistently stabilizable to xe by the state feedback
switching signal σ(t) = Gx(t).

Necessity. Suppose that the system (3) is consis-
tently stabilizable to xe by a state feedback switching
signal, say, σ(t) = Gx(t), G ∈ Lm×2n . Then, the
closed-loop system consisting of the system (11) and
σ(t) = Gx(t) becomes

x(t + 1) = L̃x(t), (20)

where L̃ = L̂GΦn, and Φn = diag{δ1
2n , δ2

2n , · · · , δ2n

2n}
∈ L22n×2n .

Obviously, the Boolean network (20) is globally
stable at xe. Thus, xe ∈ R1(xe). Let Tt 6 2n be
the transient time[5] of the system (20). Then, it is easy
to see that (18) holds for τ = Tt 6 2n. This completes
the proof.

Remark 4 One can check (18) via M̂ =
mP

i=1
L̂i.

Specifically, xe ∈ R1(xe) if and only if M̂µ,µ > 0, and
Rτ (xe) = ∆2n if and only if Rowµ(M̂τ ) has no zero columns.

From the proof of Theorem 3, we can design state
feedback switching signals as follows:

Theorem 4 Let L̂ = δ2n [i1 i2 · · · im2n ] be
given. Suppose that there exists an integer 1 6 τ 6 2n

such that (18) holds. For each integer 1 6 j 6 2n

which corresponds to a unique integer 1 6 kj 6 τ such
that δj

2n ∈ R◦
kj

(xe), let 1 6 pj 6 m be such that{
δ

i(pj−1)2n+j

2n = xe, kj = 1,

δ
i(pj−1)2n+j

2n ∈ Rkj−1(xe), 2 6 kj 6 τ.
(21)

Then, the state feedback switching signal can be de-
signed as σ(t) = Gx(t) with

G = δm[p1 p2 · · · p2n ]. (22)

4 Illustrative examples
This section presents two illustrative examples to

show how to use the results obtained in this paper to
check the stability of SSBNs.

Example 3 Consider the following SSBN:{
g

σ(t)
1 (X(t + 1)) = f

σ(t)
1 (X(t)),

g
σ(t)
2 (X(t + 1)) = f

σ(t)
2 (X(t)),

(23)

where X(t) = (x1(t), x2(t)), g1
1 = x1 ∨ x2, g1

2 =
x2, f1

1 = ¬x1 ∧ x2, f1
2 = 0, g2

1 = ¬x1 ∧ ¬x2, g2
2 =

x1 ∧ x2, f2
1 = x1 ↔ x2 and f2

2 = x1∨̄x2. The ob-
jective is to check whether or not the system (23) is
globally stable at Xe = (0, 0) under arbitrary switching
signal.

First, we can convert the system (23) into the fol-
lowing algebraic form:



No. 7 LI Hai-tao et al: Stability analysis for switched singular Boolean networks 913

Eσ(t)x(t + 1) = Lσ(t)x(t), (24)

where E1 = δ4[1 3 1 4], L1 = δ4[4 4 3 4], E2 =
δ4[3 4 4 2] and L2 = δ4[2 3 3 2]. Moreover, Xe ∼
xe = δ4

4 . Obviously, (A1) and (A2) hold for the system
(23).

Second, based on Lemma 4, we have the following
equivalent system for (24):

x(t + 1) = L̂σ(t)x(t), (25)

where L̂1 = δ4[4 4 2 4] and L̂2 = δ4[4 1 1 4].
Set M̂ = L̂1 + L̂2. A simple calculation shows that

M̂ 3 =




0 0 0 0
0 0 0 0
0 0 0 0
8 8 8 8


 .

By Theorem 2, the system (23) is globally stable at
xe = δ4

4 ∼ Xe = (0, 0) under arbitrary switching
signal.

Example 4 Consider the following SSBN:{
g

σ(t)
1 (X(t + 1)) = f

σ(t)
1 (X(t)),

g
σ(t)
2 (X(t + 1)) = f

σ(t)
2 (X(t)),

(26)

where X(t)=(x1(t), x2(t)), g1
1 =f1

1 =¬x1∨¬x2, g1
2

= ¬x2, f1
2 = 0, g2

1 = x1∧x2, g2
2 = ¬x1∧¬x2, f2

1 =
¬x1 ∧ x2 and f2

2 = x1 ∨ ¬x2. Our objective is to
design a state feedback switching signal which consis-
tently stabilizes the system (26) to Xe = (1, 1).

The system (26) can be converted into the following
algebraic form:

Eσ(t)x(t + 1) = Lσ(t)x(t), (27)

where E1 = δ4[4 1 2 1], L1 = δ4[4 2 2 2], E2 =
δ4[2 4 4 3] and L2 = δ4[3 3 2 3]. Moreover, Xe ∼
xe = δ1

4 . It is easy to see that the system (26) satisfies
A1) and A2).

Based on Lemma 4, we have the following equiva-
lent system for (27):

x(t + 1) = L̂σ(t)x(t), (28)

where L̂1 = δ4[1 3 3 3] and L̂2 = δ4[4 4 1 4].
It is easy to see that R1(xe) = {δ1

4 , δ
3
4} and R2(xe)

= ∆4. Thus, (18) holds for τ = 2.
A simple calculation shows that p1 = 1, p2 =

1, p3 = 2 and p4 = 1. Thus, by Theorem 4, we ob-
tain a state feedback switching signal, that is, σ(t) =
δ2[1 1 2 1]x(t) = x1(t) ∨ ¬x2(t).

5 Conclusion
In this paper, we have studied the stability of

switched singular Boolean networks by using the semi-
tensor product of matrices. Based on the algebraic form
of SSBNs, we have obtained a necessary and sufficient
condition for the uniqueness of solution of the system.

In addition, we have presented several necessary and
sufficient conditions for the stability of SSBNs under ar-
bitrary switching signal and the switching stabilizabil-
ity of SSBNs, respectively, by converting an SSBN into
an equivalent switched Boolean network. The study of
two illustrative examples showed that the main results
obtained in this paper are effective in analyzing the sta-
bility of SSBNs.
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