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摘要:本文综述高维拟线性抛物型方程、拟线性复Ginzburg-Landau方程以及只含一个控制变量的高维耦合拟线
性抛物型方程组的能控性方面的一些近期的结果.通过使用不动点技术,采用主部具有C1系数的线性抛物型方程

或方程组一些新的精细的Carleman估计.这一方法的要点是在古典解的框架下考虑能控性问题,并且当给定的数据
具有一定的正则性时,线性抛物型方程或方程组在Hölder空间中来选取控制函数. 利用类似的方法,还建立了拟线
性抛物型方程不灵敏控制的存在性,其关键是将不灵敏问题转化为由拟线性抛物型方程和线性抛物型方程构成的
耦合方程组在单个控制下一个非标准的能控性问题.
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Recent progress in controllability of multidimensional quasilinear
parabolic systems

FU Xiao-yu1, LIU Xu2 , ZHANG Xu1†
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2. School of Mathematics and Statistics, Northeast Normal University, Changchun Jilin 130024, China)

Abstract: We overview some recent controllability results for multidimensional quasilinear parabolic equations, quasi-
linear complex Ginzburg-Landau equations, and coupled quasilinear parabolic systems with single control variable. When
using the fixed point technique, we employ the main tools to investigate some new and delicate Carleman estimates for
suitable linear parabolic equations/systems with C1coefficients in principal parts. The key points of the approach are to
formulate the controllability problems in the frame of classical solutions and to seek the control functions in the Hölder
spaces for linear parabolic equations/systems with given data having certain regularity. By means of a similar approach,
the existence of insensitizing controls for quasilinear parabolic equations is also established. The key point is to transform
this insensitizing problem into a nonstandard controllability problem for some nonlinear cascade system governed by a
quasilinear parabolic equation and a linear parabolic equation with single control variable.

Key words: null controllability; approximate controllability; quasilinear parabolic equation; complex Ginzburg-Landau
equation; insensitizing controls

1 Introduction
Many physical processes can be described by parabo-

lic-type partial differential equations. For example, sup-
pose that there is a body, whose temperature at the location
x ∈ Rn (n ∈ N) and at the time t ∈ [0,∞) is denoted by
y(x, t). By the conservation law, one has yt + divJ = 0,
where J denotes the heat flux. Since the temperature prop-
agates along the fast descending direction, a simple model
for the diffusion process can be formulated by J = −a∇y,
where a is the diffusion coefficient. If a is a constant, then
we obtain the standard heat equation yt− a∆y = 0. If, in-
stead, the heat conduction coefficient depends on the distri-
bution in a way such as a = a(y), then the corresponding

equation becomes a quasilinear parabolic equation:

yt = div(a(y)∇y). (1)

In the last decades, there are many works address-
ing the controllability problems for linear and semilinear
parabolic equations/systems (e.g. [1–7] and the rich refer-
ences therein). A natural problem is whether the quasilin-
ear parabolic equations like (1) are controllable. This prob-
lem was first considered by M. Beceanu[8]. Nevertheless,
in [8], the author only obtained the local null controllabil-
ity of the diffusion equation in one space dimension.

In the literature, there exist many interesting works on
the controllability problems for the time-reversible quasi-
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linear systems, say [9–11] and the references therein.
However, these works use essentially the time-reversibility
of the underlying systems, and therefore, it seems that their
approach cannot be applied to time-irreversible systems.
For the time-irreversible systems, we refer to [12–13] for
the controllability of Newtonian filtration equation, which
is a typical quasilinear degenerate parabolic equation (a(y)
= ym, m > 1 in (1)). In these two papers, the special
structure of a(y) plays a crucial role. Hence, the methods
in [12–13] cannot be applied to the general quasilinear
parabolic equations, either.

It is well known that in general, for a linear parabolic
equation, Carleman estimates require that the coefficient of
the principal operator belongs to the space W 1,1

∞ . There-
fore, in order to apply the fixed point technique to the
quasilinear problems, one has to search for a fixed point
in a space at least being contained in the space W 1,1

∞ .
Moreover, this space must have some compactness and
can guarantee that the solution of the linearized system
has good estimates for the fixed point mapping. Notice
that this limitation is not required for semilinear parabolic
equations. This is the main difficulty in solving the con-
trollability problems for quasilinear parabolic equations,
compared to the semilinear case. In order to establish
the desired estimates for the weak solutions of the corre-
sponding linearized equation, [8] essentially makes use of
a special Sobolev embedding relation, which is valid only
for one space dimension. Therefore, the same argument
in [8] does not work in the multidimensional space. The
purpose of this paper is to present our recent works on
controllability of multidimensional quasilinear parabolic
equations/systems and some related control problems.

The rest of this paper is organized as follows. Section
2 is devoted to the controllability of multidimensional
quasilinear parabolic equations. In Section 3, the local
controllability results for coupled quasilinear parabolic
systems by one control are established. Section 4 addresses
the controllability of quasilinear complex Ginzburg-
Landau equations. Finally, in Section 5, the existence of
insensitizing controls for quasilinear parabolic equations
is addressed.

2 Local controllability of multidimensional
quasilinear parabolic equations
In this section, we review the local controllability re-

sults of multidimensional quasilinear parabolic equations.
The detailed proofs of these results can be found in [14].

To begin with, we introduce some notations. Let Ω

be a nonempty bounded domain of Rn with C3 boundary
Γ , and ω, O, ω0 and ω1 are given nonempty open subsets
of Ω such that ω̄0 ⊆ ω1, ω̄1 ⊆ ω and ω̄ ⊆ Ω. For any
given T > 0, put Q = Ω × (0, T ) and Σ = Γ × (0, T ).
Denote by χω the characteristic function of ω. For any
k, m ∈ N, θ ∈ (0, 1) and p ∈ [1,∞], we refer to the
book [15] for definitions of the spaces Ck,m(Q̄), Ck(Ω̄),
Ck+θ,m+ θ

2 (Q̄), C2+θ(Ω̄), Lp(Q) and W k,m
p (Q). Denote

by spaces Ck+θ,m+ θ
2 (Q̄; C) and Ck,m(Q̄; Rn×n) the

counterparts taking value in C and Rn×n, respectively.
In the sequel, C denotes a generic positive constant which
may change from line to line.

Throughout this paper, f(·) ∈ C2(R) is a given func-
tion with f(0) = 0, and ajk(·) ∈ C3(R) (j, k = 1, 2, · · · ,
n) are given functions satisfying ajk(s) = akj(s), ∀ s ∈
R, and for some constant ρ > 0,

n∑
j,k=1

ajk(s)ξj ξ̄k > ρ|ξ|2,

∀ (s, ξ) ≡ (s, ξ1, · · · , ξn) ∈ R× Cn.

Let us consider the following quasilinear parabolic
equation with an internal controller:




yt −
n∑

j,k=1

(ajk(y)yxj
)xk

+ f(y) = χωu, in Q,

y = 0, on Σ,

y(0) = y0, in Ω,

(2)

where u is the control variable and y is the state variable.
Unlike the case of one space dimension in [8], the con-

trollability of the system (2) is analyzed in the frame of
classical solutions. For this purpose, we need to establish
a global Carleman estimate for general linear parabolic
equations with C1 coefficients of the principal parts.

2.1 A pointwise estimate and global Carleman
estimate for linear parabolic equations

First, we establish a pointwise inequality for second
order parabolic operators with symmetric coefficients.

Consider the following linear parabolic equation:



vt + div(B∇v) + div(Cv) + dv = g, in Q,
v = 0, on Σ,
v(T ) = vT , in Ω,

(3)

where C = (cj)16j6n ∈ C1,0(Q̄;Rn), d ∈ L∞(Q) and
g ∈ L2(Q). Throughout this paper, B = (bjk)16j,k6n ∈
C1(Q̄;Rn×n) is a given matrix satisfying bjk(x, t) =
bkj(x, t) (j, k = 1, 2, · · · , n) and for some constant ρ > 0,

n∑
j,k=1

bjk(x, t)ξj ξ̄k > ρ|ξ|2, ∀ (x, t, ξ) ∈ Q̄× Cn. Put

B = 1 + |B|2C1(Q̄;Rn×n), H = B + |d|2L∞(Q)

and
D = |C|2C1,0(Q̄;Rn) + |d|2L∞(Q).

Then one has the following pointwise ineuqality for a
general parabolic-like operator.

Lemma 1 Assume that v, ` ∈ C2,1(Q̄), and D =
(djk)16j, k6n ∈ C1(Q̄; Rn×n) is a symmetric matrix. Set
z = e`v. Then

1
2
e2`|vt + div(D∇v)|2 >
n∑

j,k=1

[djkzxj
zt −

n∑
j′,k′=1

(2djkdj′k′`xj′ zxj
zxk′−

djkdj′k′`xj
zxj′ zxk′ )− Edjk`xj

z2]xk
−

1
2
(

n∑
j,k=1

djkzxj
zxk

− Ez2)t +
n∑

j,k=1

cjkzxj
zxk

−

2
n∑

j,k=1

n∑
j′,k′=1

(djkzxj )xk
dj′k′`xj′xk′ z + Fz2,
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where

Ψ = −
n∑

j,k=1

(djk
xk

`xj
+ 2djk`xjxk

),

E = −`t +
n∑

j,k=1

(djk`xj
`xk

− djk
xk

`xj
−

djk`xjxk
)− Ψ,

F = −1
2
Et +

n∑
j,k=1

[(Edjk`xj
)xk

−

1
2
(djk

xk
`xj

)2 − 2Edjk`xjxk
],

cjk =
n∑

j′,k′=1

[2djk′(dj′k`xj′ )xk′ −

(djkdj′k′ lxj′ )xk′ ] +
1
2
djk

t .

By [4], one can find a function ψ ∈ C2(Ω̄) such
that ψ(x) > 0 in Ω,ψ(x) = 0 on Γ, and |∇ψ(x)| >
0 in Ω̄ \ ω0. For any given parameter µ > 0, put

ϕ(x, t)=
eµψ(x)

t(T − t)
and α(x, t)=

eµψ(x) − e2µ|ψ|C(Ω̄)

t(T − t)
.

Based on Lemma 1, we have the following global Car-
leman estimate for the system (3).

Lemma 2 There exists a constant C > 0, depending
only on ρ, n, ω,Ω and T , such that for any µ > CB and
λ > C(D + e2µ|ψ|C(Ω̄)), solutions of Eq.(3) satisfy

w
Q

(
λµ2e2λαϕ|∇v|2 + λ3µ4e2λαϕ3v2

)
dxdt 6

Cλ3µ4(B + D)
w T

0

w
ω0

e2λαϕ3v2dxdt +

C
w

Q
e2λαg2dxdt, ∀vT ∈ L2(Ω).

Remark 1 Compared with the known results on global
Carleman estimates for the linear parabolic equation (e.g. [2]),
Lemma 2 provides an explicit estimate on the constant (in the
right side of Carleman inequality) with respect to C1 coeffi-
cients on the principal operator. Such kind of weighted in-
equalities are quite useful in the study of control theory and
inverse problems for various kinds of partial differential equa-
tions (see [6] and the references therein).

2.2 Null controllability of linear parabolic equa-
tions

In order to establish the local controllability of (2) by
means of the fixed point technique, one needs to consider
the following linearized system of (2):




yt − div(B∇y)− dy = %u, in Q,
y = 0, on Σ,

y(0) = y0, in Ω,
(4)

where % ∈ C∞0 (ω) satisfying % = 1 in ω0 and y0 ∈ L2(Ω).
The key point is to construct a Hölder continuous control
function starting from an L2–control function. This strat-
egy makes it possible to solve the nonlinear controllability
problem in the frame of classical solutions.

To this aim, let us consider the following parabolic
equation:





pt + div(B∇p) + dp = 0, in Q,
p = 0, on Σ,

p(T ) = pT , in Ω.
(5)

Using Lemma 2, one can show the following explicit
observability estimate for the linear parabolic equation (5).

Proposition 1 Solutions of Eq.(5) satisfy the follow-
ing inequality w

Ω
p2(x, 0)dx 6

CeeCH
w T

0

w
ω

e2λαϕ3p2dxdt,

for any pT ∈ L2(Ω), µ > CH and λ > CeCH .
Furthermore, by Proposition 1 and an iteration

method, we have the following null controllability result
for the linear parabolic equation (4). Also, we give an ex-
plicit cost estimate for the control function.

Proposition 2 For any y0 ∈ L2(Ω), there exists a
control u ∈ C

1
2 , 1

4 (Q̄) such that the corresponding solution
y of the system (4) satisfies y(T ) = 0 in Ω. Moreover,

|u|
C

1
2 , 1

4 (Q̄)
6 CeeCH |y0|L2(Ω).

2.3 Main results
By Proposition 2 and Kakutani’s fixed point theorem,

one can have the following local controllability result for
Eq.(2).

Theorem 1(Local null controllability) There is a
positive constant δ1, such that for any given initial value
y0 ∈ C2+ 1

2 (Ω̄) satisfying |y0|
C2+ 1

2 (Ω̄)
6 δ1 and the

first order compatibility condition, one can find a control
u ∈ C

1
2 , 1

4 (Q̄) with supp u ⊆ ω × [0, T ] so that the corre-
sponding solution y of the system (2) satisfies y(T ) = 0
in Ω. Moreover, |u|

C
1
2 , 1

4 (Q̄)
6 CeeCA |y0|L2(Ω), where

A =
n∑

j,k=1

(1 + sup
|s|61

|ajk(s)|2 + sup
|s|61

|(ajk)′(s)|2 +

sup
|s|61

|f ′(s)|2).

As a consequence of Theorem 1, we have the follow-
ing local approximate controllability result.

Theorem 2(Local approximate controllability) There
is a positive constant δ2, such that for any ε > 0, and any
given functions y0, y1 ∈ C2+ 1

2 (Ω̄) satisfying |y0|
C2+ 1

2 (Ω̄)

+ |y1|
C2+ 1

2 (Ω̄)
6 δ2 and the first order compatibility

condition, one can find a control u ∈ C(Q̄) with supp
u ⊆ ω × [0, T ] so that the corresponding solution y of
the system (2) satisfies |y(T )− y1|

C2+ 1
2 (Ω̄)

< ε.

3 Local controllability of coupled quasilin-
ear parabolic systems by one control
Similarly, one can establish the local controllability

for coupled quasilinear parabolic systems by one control.
Coupled quasilinear parabolic systems can be used to de-
scribe the dynamics of two biological groups.

Consider the following coupled quasilinear parabolic
system:



No. 7 FU Xiao-yu et al: Recent progress in controllability of multidimensional quasilinear parabolic systems 867




y1,t −
n∑

j,k=1

(ajk
1 (y1, · · · , ym)y1,xj )xk

+

f1(y1, · · · , ym) = χωu, in Q,

y2,t −
n∑

j,k=1

(ajk
2 (y1, · · · , ym)y2,xj

)xk
+

f2(y1, · · · , ym) = 0, in Q,

y3,t −
n∑

j,k=1

(ajk
3 (y1, · · · , ym)y3,xj

)xk
+

f3(y2, · · · , ym) = 0, in Q,
...

ym,t −
n∑

j,k=1

(ajk
m (y1, · · · , ym)ym,xj

)xk
+

fm(ym−1, ym) = 0, in Q,
y1 = · · · = ym = 0, on Σ,
y1(0) = y0

1 , · · · , ym(0) = y0
m, in Ω,

(6)

where u is the control variable and (y1, · · · , ym) is
the state variable, fν(ν = 1, · · · ,m) are given C2 func-

tions defined onRr with r=
{

m, for ν = 1,
m−ν+2, for ν =2,· · ·,m,

fν(0,· · ·, 0)=0, and ajk
ν (·) ∈ C3(Rm) are given functions

satisfying ajk
ν (s) = akj

ν (s), ∀ s ∈ Rm, ν = 1, · · · ,m
and j, k = 1, · · · , n, and for some constant ρ > 0,

n∑
j,k=1

ajk
ν (s)ξjξk > ρ|ξ|2,

∀ (s, ξ) ≡ (s, ξ1, · · · , ξn) ∈ Rm × Rn and 1 6 ν 6 m.

Furthermore, we assume that fν (ν = 2, · · · ,m) sat-
isfy the following condition:

H)
∂fν

∂yν−1
(0, · · · , 0) 6= 0, ν = 2, · · · ,m.

First, we establish a global Carleman estimate for cou-
pled linear parabolic systems.

3.1 Global Carleman estimate for coupled linear
parabolic systems

Consider the following coupled linear parabolic sys-
tem: 




−p1,t −
n∑

j,k=1

(bjk
1 (x, t)p1,xj

)xk
+

a1
1p1 + a2

1p2 = 0, in Q,

−p2,t −
n∑

j,k=1

(bjk
2 (x, t)p2,xj

)xk
+

a1
2p1 + a2

2p2 + a3
2p3 = 0, in Q,

...

−pm,t −
n∑

j,k=1

(bjk
m (x, t)pm,xj

)xk
+

a1
mp1 + a2

mp2 + · · ·+ am
mpm = 0, in Q,

p1 = · · · = pm = 0, on Σ,
p1(T ) = pT

1 , · · · , pm(T ) = pT
m, in Ω,

(7)

where al
ν ∈ L∞(Q)(l, ν = 1, · · · ,m), and bjk

ν ∈ C1(Q̄)
satisfying bjk

ν (x, t) = bkj
ν (x, t), ∀ j, k = 1, 2, · · ·n, and

for some constant ρ > 0,
n∑

j,k=1

bjk
ν (x, t)ξjξk > ρ|ξ|2,

∀(x, t, ξ) ≡ (x, t, ξ1, · · · , ξn) ∈ Q̄× Rn and 1 6 ν 6 m.
Put a1

0 = 0 and

B1 =
n∑

j,k=1

m∑
ν=1

|bjk
ν |2C1(Q̄)

+
m∑

l=1

m∑
ν=l−1

|al
ν |2L∞(Q).

Moreover, we introduce the following condition:
H1) There exists a nonempty open subset ω∗ ⊆ ω

and a constant r∗ > 0, such that for ν = 1, · · · ,m −
1, aν+1

ν (x, t) > r∗, in ω∗ × (0, T ).
By Lemma 2, we have the following global Carleman

estimate for the system (7).
Lemma 3 Suppose that H1) holds. Then there ex-

ist a constant C > 0 and an integer r∗ > 0, depending
only on ρ, n, ω, Ω and T , such that for any µ > CB1

and λ > C(B1 + e2µ|ψ|C(Ω̄)), solutions of the system (7)
satisfy w

Q
[λµ2e2λαϕ(|∇p1|2 + · · ·+ |∇pm|2) +

λ3µ4e2λαϕ3(p2
1 + · · ·+ p2

m)]dxdt 6

CBr∗
1 λr∗µr∗

w T

0

w
ω0

e2λαϕr∗p2
1dxdt,

∀ (pT
1 , · · · , pT

m) ∈ (L2(Ω))m.

3.2 Null controllability of coupled linear parabo-
lic systems

In order to solve the quasilinear problem, one first
needs to establish the null controllability of the following
coupled linear parabolic system:




y1,t −
n∑

j,k=1

(bjk
1 (x, t)y1,xj

)xk
+

a1
1y1 + a1

2y2 + · · ·+ a1
mym = %u, in Q,

y2,t −
n∑

j,k=1

(bjk
2 (x, t)y2,xj

)xk
+

a2
1y1 + a2

2y2 + · · ·+ a2
mym = 0, in Q,

y3,t −
n∑

j,k=1

(bjk
3 (x, t)y3,xj

)xk
+

a3
2y2 + · · ·+ a3

mym = 0, in Q,
· · ·

ym,t −
n∑

j,k=1

(bjk
m (x, t)ym,xj

)xk
+

am
m−1ym−1 + am

mym = 0, in Q,
y1 = · · · = ym = 0, on Σ,
y1(0) = y0

1 , · · · , ym(0) = y0
m, in Ω.

(8)

By Lemma 3, one can show the following observabil-
ity estimate for the system (7).

Proposition 3 Suppose that H1) holds. Then solu-
tions of the system (7) satisfy the following inequalityw

Ω
[p2

1(x, 0) + p2
2(x, 0) + · · ·+ p2

m(x, 0)]dx 6

CeeCB1
w T

0

w
ω

e2λαϕr∗p2
1(x, t)dxdt,

for any (pT
1 , · · · , pT

m) ∈ (L2(Ω))m, µ > CB1 and λ >
CeCB1 .

By Proposition 3, we have the following null control-
lability result for the system (8).

Proposition 4 Suppose that H1) holds. Then for any
(y0

1 , · · · , y0
m) ∈ (L2(Ω))m, there exists a control u ∈

C
1
2 , 1

4 (Q̄), such that the corresponding solution (y1, · · · ,
ym) of the system (8) satisfies y1(T ) = · · · = ym(T ) =
0 in Ω.
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3.3 Main results
Based on the null controllability of the coupled sys-

tem (8), proceeding similar analysis as [14, Theorem 1.1],
one has the following local controllability results for the
coupled quasilinear parabolic system (6).

Theorem 3(Local null controllability) Suppose that
H) holds. Then there is a positive constant δ3, such that
for any given initial value (y0

1 , · · · , y0
m) ∈ (C2+ 1

2 (Ω̄))m

satisfying |(y0
1 , · · · , y0

m)|
(C2+ 1

2 (Ω̄))m
6 δ3 and the first or-

der compatibility condition, one can find a control u ∈
C

1
2 , 1

4 (Q̄) with supp u ⊆ ω× [0, T ] so that the correspond-
ing solution of the system (6) satisfies y1(T ) = · · · =
ym(T ) = 0 in Ω.

For some special coupled quasilinear parabolic sys-
tems, we can get the local approximate controllability re-
sult. To this aim, introduce the following condition:

H2) ajk
ν ≡ akj

ν (yν , yν+1, · · · , ym), ∀ j, k = 1, · · · ,
n; ν = 1, · · · ,m. We have the following result.

Theorem 4(Local approximate controllability) Sup-
pose that H) and H2) hold. Then there is a positive con-
stant δ4, such that for any ε > 0, and any given functions
(y0

1 , · · · , y0
m), (yT

1 , · · · , yT
m) ∈ (C2+ 1

2 (Ω̄))m satisfying
|(y0

1 , · · · , y0
m)|

(C2+ 1
2 (Ω̄))m

+ |(yT
1 , · · · , yT

m)|
(C2+ 1

2 (Ω̄))m
6

δ4 and the first order compatibility condition, one can
find a control u ∈ C(Q̄) with supp u ⊆ ω × [0, T ] so
that the corresponding solution of the system (6) satisfies
|yk(T )− yT

k |C2+ 1
2 (Ω̄)

< ε, for any k = 1, · · · ,m.

4 Local controllability for quasilinear com-
plex Ginzburg-Landau equations
In this section, we review the local controllability re-

sults of quasilinear complex Ginzburg-Landau equations,
which arise in superconductivity.

Let us consider the following controlled quasilinear
Ginzburg-Landau equation:




(a1 − ia2)yt −
n∑

j,k=1

(ajk(|y|2)yxj
)xk

+

f(|y|2)y = χωu, in Q,
y = 0, on Σ,
y(0) = y0, in Ω,

(9)

where a1 >0, a2 6=0 and i=
√−1. In Eq.(9), u is the con-

trol variable, y is the state variable and both of them are
complex valued. To begin with, as before, we need to es-
tablish a global Carleman estimate for the linear Ginzburg-
Landau equation.

4.1 A pointwise estimate and global Carleman
estimate for linear Ginzburg-Landau equa-
tions

First, define a linear operator by

Pz = (a + ib)zt +
n∑

j,k=1

(bjkzxj
)xk

,

where a, b ∈ C1(Rn+1) and bjk ∈ C1(Rn+1) satisfying
bjk(x, t) = bkj(x, t), ∀ j, k = 1, 2, · · · , n.

We have the following weighted identity.
Lemma 4 Let a1, b1, λ ∈ R be three parameters. Let

z ∈ C2(Rn+1;C) and ς ∈ C2(Rn+1). Put ` = λς and

v = θz = e`z. Then

θ(PzĪ1 + P̄zI1) + Mt +
n∑

k=1

V k
xk

=

2|I1|2 +
n∑

j,k,j′,k′=1

[2(bj′k`xj′ )xk′ b
jk′ −

(bjkbj′k′`xj′ )xk′ +
1
2
(abjk)t − a1bjkbj′k′`xj′xk′ ] ·

(vxk
v̄xj + v̄xk

vxj ) +

[−
n∑

j,k=1

bjk
xk

`xj
+ b1λ](I1v̄ + Ī1v) +

i
n∑

j,k=1

{[(bbjk`xj
)t + bjk(b`t)xj

](v̄xk
v − vxk

v̄) +

[(bbjk`xj
)xk

+ a1bbjk`xjxk
](v̄vt − vv̄t)} −

n∑
j,k=1

bjkaxk
(vxj v̄t + v̄xj vt) + B2|v|2 −

a1
n∑

j,k,j′,k′=1

bjk(bj′k′`xj′xk′ )xk
(v̄xj v + vxj v̄),

where

A1 =
n∑

j,k=1

bjk`xj
`xk

− (1 + a1)
n∑

j,k=1

bjk`xjxk
− b1λ,

I1 = ibvt − a`tv +
n∑

j,k=1

(bjkvxj
)xk

+ A1v,

B2 = (a2`t + b2`t − aA1)t + 2
n∑

j,k=1

[(bjk`xj
A1)xk

−

(abjk`xj `t)xk
+ a1(A1 − a`t)bjk`xjxk

],

M = [(a2 + b2)`t − aA1]|v|2 + a
n∑

j,k=1

bjkvxj
v̄xk

+

ib
n∑

j,k=1

bjk`xj
(v̄xk

v − vxk
v̄),

and

V k =
n∑

j,j′,k′=1

{−ib[bjk`xj
(vv̄t − v̄vt) +

bjk`t(vxj v̄ − v̄xj v)]− abjk(vxj v̄t + v̄xj vt) +

(2bjk′bj′k − bjkbj′k′)`xj (vxj′ v̄xk′ + v̄xj′ vxk′ )−
a1bj′k′`xj′xk′ b

jk(vxj
v̄ +

v̄xj v) + 2bjk(A1 − a`t)`xj |v|2}.
Next, we present a global Carleman estimate for the

following complex Ginzburg-Landau equation:



(a1+ia2)zt+
n∑

j,k=1

(bjk(x, t)zxj )xk
+qz=0, in Q,

z = 0, on Σ,
z(T ) = zT , in Ω,

(10)

where q ∈ C(Q̄) and zT ∈ L2(Ω; C).
Based on Lemma 4, we have the following global Car-

leman estimate for Eq.(10).
Lemma 5 There exists a positive constant µ0 =

µ0(C, a1, a2, q, b
jk) such that for any µ > µ0, one can

find two constants C1 = C1(µ) > 0 and λ0 = λ0(µ) > 0
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so that for any λ > λ0, the corresponding solution z of the
system (10) satisfies

λµ2
w

Q
e2λαϕ|∇z|2dxdt + λ3µ4

w
Q

e2λαϕ3|z|2dxdt 6

C1λ
3µ4

w T

0

w
ω0

e2λαϕ3|z|2dxdt, ∀ zT ∈ L2(Ω; C).

4.2 Null controllability of linear complex Ginz-
burg-Landau equations

Combining Lemma 5 and the usual energy estimate,
we obtain the following observability estimate for the
equation (10).

Proposition 5 There exists a positive constant µ0 =
µ0(C, a1, a2, q, b

jk) such that for any µ > µ0, one can find
two constants C1 = C1(µ) > 0 and λ0 = λ0(µ) > 0 so
that for any λ > λ0, the corresponding solution z of the
system (10) satisfies

w
Ω
|z(x, 0)|2dx 6 C1

w T

0

w
ω

e2λαϕ3|z|2dxdt,

for any zT ∈ L2(Ω; C).
Next, we consider the following linear complex

Ginzburg-Landau equation:



(a1 − ia2)yt −
n∑

j,k=1

(bjkyxj
)xk

− qy = %u, in Q,

y = 0, on Σ,
y(0) = y0, in Ω.

(11)

By Proposition 5, we have the following null controlla-
bility result for the system (11) with some control function
in certain Hölder space.

Proposition 6 For any y0 ∈ L2(Ω; C), there ex-
ists a control u ∈ C

1
2 , 1

4 (Q̄; C) such that the correspond-
ing solution of (11) satisfies y(T ) = 0 in Ω. Moreover,
|u|

C
1
2 , 1

4 (Q̄; C)
6 C∗|y0|L2(Ω; C), where C∗ is a positive

constant depending only on n, T , ω, Ω, a1, a2, |bjk|C1(Q̄)

and |q|L∞(Q).

4.3 Main results
Based on the null controllability of the system (11),

by the fixed point technique, we obtain the following local
controllability result for the quasilinear complex Ginzburg-
Landau system (9).

Theorem 5 There is a positive constant δ5 such
that for any initial value y0 ∈ C2+ 1

2 (Ω̄; C) satisfying
|y0|

C2+ 1
2 (Ω̄; C)

6 δ5 and the first order compatibility con-

dition, one can find a control u ∈ C
1
2 , 1

4 (Q̄; C) with supp
u ⊆ ω × [0, T ] such that the corresponding solution y of
Eq.(9) satisfies y(T ) = 0 in Ω.

As a consequence of Theorem 5, we have the follow-
ing local approximate controllability result.

Theorem 6 There is a positive constant δ6, such
that for any ε > 0, and any given functions y0, y1 ∈
C2+ 1

2 (Ω̄; C) satisfying |y0|
C2+ 1

2 (Ω̄; C)
+|y1|

C2+ 1
2 (Ω̄; C)

6
δ6 and the first order compatibility condition, one can find
a control u ∈ C(Q̄; C) with supp u ⊆ ω × [0, T ] so that
the corresponding solution y of the equation (9) satisfies
|y(T )− y1|

C2+ 1
2 (Ω̄; C)

< ε.

5 The existence of insensitizing controls for
quasilinear parabolic equations
In this section, we review the insensitivity results for

quasilinear parabolic equations. The detailed proofs of the
results in this section can be found in [16].

Consider the following controlled quasilinear
parabolic equation:




yt −
n∑

j,k=1

(ajk(y)yxj
)xk

+ f(y) = η + χωu, in Q,

y = 0, on Σ,

y(0) = y0 + τ ŷ0, in Ω,

(12)

where η and y0 are two known functions, τ is an unknown
small real number, and ŷ0 is an unknown function. In (12),
u is the control variable and y is the state variable.

Next, we define the following (partial) energy func-
tional:

Φ(y) =
1
2

w T

0

w
O
|y(x, t; τ, u)|2dxdt, (13)

where y = y(x, t; τ, u) is the corresponding solution of
Eq.(12) associated to τ and u. In this section, we are inter-
ested in the existence of a control u (depending on η and
y0 but independent of τ and ŷ0), which makes the above
functional Φ be insensitive with respect to small perturba-
tions on the initial value y0. A physical interpretation of
this problem is as follows: if the state variable y stands for
the temperature of a body, then the equation (12) describes
the heat conduction of the body, while the diffusion coeffi-
cients depend on the temperature in a manner as ajk(y). In
Eq.(12), η can be viewed as a given heat source acting on
the body, and one can also act on a local domain ω of the
body by means of a heat source u. Roughly speaking, the
insensitivity problem means that we are expected to find
a local heat source u such that the local energy Φ in O is
almost invariant with respect to small perturbations on the
initial temperature.

Since we are treating a nonlinear problem, for given
functions η ∈ Cθ, θ

2 (Q̄) and y0 ∈ C2+θ(Ω̄) satisfying suit-
able conditions (which will be specified later), we require
that the desired insensitizing control u(∈ Cθ, θ

2 (Q̄)), which
depends on η and y0 but is independent of τ and ŷ0, satis-
fies the following condition:

H3) There exists a τ0 > 0 such that for any |τ | < τ0

and any ŷ0 ∈ C∞0 (Ω) with |ŷ0|C2+θ(Ω̄) = 1, the equation
(12) admits a unique solution y(·, ·; τ, u) ∈ C2+θ,1+ θ

2 (Q̄).
Moreover,

|y|
C2+θ,1+ θ

2 (Q̄)
6

C(n,Ω, Γ, T, ajk, f)(|η|
Cθ, θ

2 (Q̄)
+

|u|
Cθ, θ

2 (Q̄)
+ |y0 + τ ŷ0|C2+θ(Ω̄)).

Now, we introduce the following notion.
Definition 1 For given functions η ∈ Cθ, θ

2 (Q̄) and
y0 ∈ C2+θ(Ω̄), a control u ∈ Cθ, θ

2 (Q̄) with supp u ⊆
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ω × [0, T ] is said to insensitize the functional Φ if u satis-
fies condition H3), and

∂Φ(y(·, ·; τ, u))
∂τ

|τ=0 = 0,

∀ ŷ0 ∈ C∞0 (Ω) with |ŷ0|C2+θ(Ω̄) = 1.
Insensitivity problem was introduced by J.-L. Lions

in [17]. In [18], when ω ∩ O 6= ∅, for y0 = 0 and η
satisfying suitable assumptions, the existence of insensi-
tizing controls was proved for some semilinear heat equa-
tions with globally Lipschitz continuous nonlinearity and
Dirichlet boundary conditions. Later, this result was ex-
tended to semilinear heat equations with superlinear non-
linearities and other boundary conditions (see [19] and the
references therein).

Our main results can be stated as follows.
Theorem 7 Assume that ω ∩ O 6= ∅ and y0 = 0.

Then, there exist two positive constants M1 and δ depend-
ing only on n,Ω, Γ, T, f(·) and ajk(·), such that for any
η ∈ Cθ, θ

2 (Q̄) satisfying

‖η‖
Cθ, θ

2 (Q̄)
+ ‖ exp(

M1

t(T − t)
)η‖L2(Q) 6 δ, (14)

one can find a control u ∈ Cθ, θ
2 (Q̄), which insensitizes the

functional Φ in the sense of Definition 1.
In order to prove the existence of insensitizing con-

trols, as usual, we reduce the problem to a nonstandard
null controllability problem of a nonlinear cascade system
governed by a quasilinear parabolic equation and a linear
parabolic equation, as stated below.

Theorem 8 Assume that η ∈ Cθ, θ
2 (Q̄) satisfies

(14) and y0 = 0. If a control u ∈ Cθ, θ
2 (Q̄) satisfies

the condition H3) and the corresponding solution (w, h) ∈
(C2+θ,1+ θ

2 (Q̄))2 of the following nonlinear cascade sys-
tem:



wt−
n∑

j,k=1

(ajk(w)wxj
)xk

+f(w)=η+χωu, in Q,

w = 0, on Σ,
w(0) = 0, in Ω

(15)

and 



−ht −
n∑

j,k=1

(ajk(w)hxj
)xk

+ f ′(w)h+

n∑
j,k=1

(ajk)′(w)wxj
hxk

= χOw, in Q,

h = 0, on Σ,
h(T ) = 0, in Ω

(16)

satisfies h(0) = 0 in Ω, then u insensitizes the functional
Φ.

In order to prove this controllability result, we need
to establish a global Carleman estimate for linear cascade
parabolic systems.

5.1 Global Carleman estimate for a linear cas-
cade parabolic system

Consider the following linear cascade parabolic sys-
tem:





pt −
n∑

j,k=1

(bjkpxj
)xk
−

n∑
j=1

(cjp)xj
+ d1p = 0, in Q,

−qt −
n∑

j,k=1

(bjkqxj )xk
+ d2q = χOp, in Q,

p = q = 0, on Σ,
p(0) = p0, q(T ) = 0, in Ω,

(17)

where d1, d2 ∈ L∞(Q) and p0 ∈ L2(Ω).
Put

D1 =
n∑

j=1

|cj |2
C1,0(Q̄)

+ |d1|2L∞(Q) + |d2|2L∞(Q).

Then by Lemma 2, we have the following global Carleman
estimate for the system (17).

Lemma 6 For any µ > CB and λ > C(D1 +
e2µ|ψ|C(Ω̄)), solutions of the equation (17) satisfy the es-
timatew

Q
e2λα(λ−2µ−2ϕ|∇p|2 + ϕ3p2 +

λµ2ϕ|∇q|2 + λ3µ4ϕ3q2)dxdt 6

C[1 + (B + D1)3]
w T

0

w
ω1

e2λαλ4µ4ϕ7q2dxdt,

∀ p0 ∈ L2(Ω).

5.2 Controllability of a linear cascade parabolic
system in Hölder spaces

As a key preliminary to prove Theorem 8, we need
to establish the null controllability for the following linear
cascade parabolic system, with a control function in certain
Hölder space:




wt −
n∑

j,k=1

(bjkwxj
)xk

+ d2w = η + %u, in Q,

−ht −
n∑

j,k=1

(bjkhxj
)xk

+
n∑

j=1

cjhxj
+

d1h = χOw, in Q,
w = h = 0, on Σ,
w(0) = 0, h(T ) = 0, in Ω,

(18)

where η ∈ Cθ, θ
2 (Q̄).

By Lemma 6, we have the following null controllabil-
ity result for the system (18).

Proposition 7 For any given function η satisfying

|e
fM

t(T−t) η|L2(Q) < ∞ with M̃ = C(D1 + eCB)2, one can
find a control u ∈ Cθ, θ

2 (Q̄) with supp u ⊆ ω× [0, T ], such
that the corresponding solution of the system (18) satisfies
h(0) = 0. Moreover,

|u|
Cθ, θ

2 (Q̄)
6 C∗(

w
Q

e
2fM

t(T−t) η2dxdt)
1
2 ,

where

C∗ = Cexp{C(1 +
n∑

j,k=1

|bjk|8
C1(Q̄)

+

n∑
j=1

|cj |8
C1,0(Q̄)

+ |d1|4L∞(Q) + |d2|4L∞(Q))}.

Finally, based on the null controllability of the system
(18), proceeding similar analysis as [14, Theorem 1.1], one
can get the existence of insensitizing controls for the quasi-
linear parabolic system (12) (Theorem 7).
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cal result on insensitizing controls for a semilinear heat equation with
nonlinear boundary Fourier conditions [J]. SIAM Journal on Control
and Optimization, 2004, 43(3): 955 – 969.

作者简介:
付付付晓晓晓玉玉玉 (1979–),女,第12届(2006年)《关肇直奖》获奖论文作

者, 2008年起在四川大学数学学院任教,主要研究分布参数系统的控

制理论,曾获中国控制会议“关肇直奖”及“全国优秀博士学位论文

奖”,并获国家自然科学基金优秀青年学者基金资助;

柳柳柳 絮絮絮 (1977–),女,第16届(2010年)《关肇直奖》获奖论文作

者, 2002年起在东北师范大学数学与统计学院任教, 主要研究分布

参数系统的控制理论, 曾获中国控制会议“关肇直奖”, 入选教育

部“新世纪优秀人才支持计划”和吉林省第四批“拔尖创新人才”;

张张张 旭旭旭 (1968–),男,第6届(2000年)《关肇直奖》获奖论文作者,

1999年起在四川大学数学学院任教, 教育部“长江学者”特聘教授,

主要研究数学控制论及相关的偏微分方程与随机分析等,曾独立获

国家自然科学二等奖、教育部自然科学一等奖、中国控制会议“关

肇直奖”等, 得到科技部“973计划”、国家杰出青年科学基金等资

助, 入选第一批国家高层次人才特殊支持计划(即中组部“万人计

划”)、教育部“创新团队发展计划”、中国科学院“百人计划”等.

先后任《中国科学:数学》(中英文版)、《SIAM J. Control Optim.》、

《ESAIM Control Optim. Calc. Var.》、《Sci. Rep.》(Nature子刊)、

《Acta Appl. Math.》、《J. Math. Anal. Appl.》、《Math. Control Re-

lat. Fields》等刊编委、副主编或主编, 并应邀在国际数学家大会上

作45分钟报告.


