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Recent progress in controllability of multidimensional quasilinear
parabolic systems

FU Xiao-yu', LIU Xu? , ZHANG Xu'
(1. School of Mathematics, Sichuan University, Chengdu Sichuan 610064, China;
2. School of Mathematics and Statistics, Northeast Normal University, Changchun Jilin 130024, China)

Abstract: We overview some recent controllability results for multidimensional quasilinear parabolic equations, quasi-
linear complex Ginzburg-Landau equations, and coupled quasilinear parabolic systems with single control variable. When
using the fixed point technique, we employ the main tools to investigate some new and delicate Carleman estimates for
suitable linear parabolic equations/systems with C*coefficients in principal parts. The key points of the approach are to
formulate the controllability problems in the frame of classical solutions and to seek the control functions in the Holder
spaces for linear parabolic equations/systems with given data having certain regularity. By means of a similar approach,
the existence of insensitizing controls for quasilinear parabolic equations is also established. The key point is to transform
this insensitizing problem into a nonstandard controllability problem for some nonlinear cascade system governed by a
quasilinear parabolic equation and a linear parabolic equation with single control variable.

Key words: null controllability; approximate controllability; quasilinear parabolic equation; complex Ginzburg-Landau
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1 Introduction

Many physical processes can be described by parabo-
lic-type partial differential equations. For example, sup-
pose that there is a body, whose temperature at the location
z € R™ (n € N) and at the time ¢ € [0, 00) is denoted by
y(x,t). By the conservation law, one has y; + divJ = 0,
where J denotes the heat flux. Since the temperature prop-
agates along the fast descending direction, a simple model
for the diffusion process can be formulated by J = —aVy,
where «a is the diffusion coefficient. If a is a constant, then
we obtain the standard heat equation y; — aAy = 0. If, in-
stead, the heat conduction coefficient depends on the distri-
bution in a way such as a = a(y), then the corresponding
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equation becomes a quasilinear parabolic equation:

ye = div(a(y)Vy). (1)

In the last decades, there are many works address-
ing the controllability problems for linear and semilinear
parabolic equations/systems (e.g. [1-7] and the rich refer-
ences therein). A natural problem is whether the quasilin-
ear parabolic equations like (1) are controllable. This prob-
lem was first considered by M. Beceanu!®. Nevertheless,
in [8], the author only obtained the local null controllabil-
ity of the diffusion equation in one space dimension.

In the literature, there exist many interesting works on
the controllability problems for the time-reversible quasi-
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linear systems, say [9-11] and the references therein.
However, these works use essentially the time-reversibility
of the underlying systems, and therefore, it seems that their
approach cannot be applied to time-irreversible systems.
For the time-irreversible systems, we refer to [12—13] for
the controllability of Newtonian filtration equation, which
is a typical quasilinear degenerate parabolic equation (a(y)
= y™, m > 11in (1)). In these two papers, the special
structure of a(y) plays a crucial role. Hence, the methods
in [12-13] cannot be applied to the general quasilinear
parabolic equations, either.

It is well known that in general, for a linear parabolic
equation, Carleman estimates require that the coefficient of
the principal operator belongs to the space W L. There-
fore, in order to apply the fixed point technique to the
quasilinear problems, one has to search for a fixed point
in a space at least being contained in the space W1
Moreover, this space must have some compactness and
can guarantee that the solution of the linearized system
has good estimates for the fixed point mapping. Notice
that this limitation is not required for semilinear parabolic
equations. This is the main difficulty in solving the con-
trollability problems for quasilinear parabolic equations,
compared to the semilinear case. In order to establish
the desired estimates for the weak solutions of the corre-
sponding linearized equation, [8] essentially makes use of
a special Sobolev embedding relation, which is valid only
for one space dimension. Therefore, the same argument
in [8] does not work in the multidimensional space. The
purpose of this paper is to present our recent works on
controllability of multidimensional quasilinear parabolic
equations/systems and some related control problems.

The rest of this paper is organized as follows. Section
2 is devoted to the controllability of multidimensional
quasilinear parabolic equations. In Section 3, the local
controllability results for coupled quasilinear parabolic
systems by one control are established. Section 4 addresses
the controllability of quasilinear complex Ginzburg-
Landau equations. Finally, in Section 5, the existence of
insensitizing controls for quasilinear parabolic equations
is addressed.

2 Local controllability of multidimensional
quasilinear parabolic equations

In this section, we review the local controllability re-
sults of multidimensional quasilinear parabolic equations.
The detailed proofs of these results can be found in [14].

To begin with, we introduce some notations. Let {2
be a nonempty bounded domain of R” with C® boundary
I', and w, O, wy and w; are given nonempty open subsets
of {2 such that 0y C wy, w3 C wand w C 2. For any
givenT > 0,put Q = 2 x (0,T) and ¥ = I" x (0, 7).
Denote by x,, the characteristic function of w. For any
kE,m € N, 0 € (0,1) and p € [1,00], we refer to the
book [15] for definitions of the spaces C*™(Q), C*(£2),
CHHOmE5(Q), C?+9(02), LP(Q) and WF™(Q). Denote
by spaces C’“+9””+%(Q; C) and C*™(Q; R™ ") the

counterparts taking value in C and R™*"™, respectively.
In the sequel, C' denotes a generic positive constant which
may change from line to line.

Throughout this paper, f(-) € C?(R) is a given func-
tion with f(0) = 0, and a’*(:) € C3(R) (j,k=1,2,--,
n) are given functions satisfying a’*(s) = a*’(s), V s €
R, and for some constant p > 0,

> a*(s)€&k = plEf?,
§ik=1
V(s,6) = (5,61, ,&) ERXC™.

Let us consider the following quasilinear parabolic

equation with an internal controller:

ve— > (@), oy + F(4) = xot, n Q.

7,k=1
y =0, on X,
y(0) = yo, in {2,

2
where u is the control variable and ¥ is the state variable.
Unlike the case of one space dimension in [8], the con-
trollability of the system (2) is analyzed in the frame of
classical solutions. For this purpose, we need to establish
a global Carleman estimate for general linear parabolic
equations with C'! coefficients of the principal parts.

2.1 A pointwise estimate and global Carleman
estimate for linear parabolic equations
First, we establish a pointwise inequality for second
order parabolic operators with symmetric coefficients.
Consider the following linear parabolic equation:
ve + div(BVv) 4+ div(Cv) + dv = ¢, in Q,
v =0, on X, 3)
o(T) = vp, in £2,
where C = (¢/)1<j<n € CHO(Q;R™), d € L°°(Q) and
g € L*(Q). Throughout this paper, B = (V/¥)1<;r<n €
CY(Q;R™ ™) is a given matrix satisfying b/*(x,t) =
b*i(z,t) (j,k = 1,2,--- ,n) and for some constant p > 0,
gllbj’“(x,t)éjfk > plé?, ¥ (2,1,€) € Q x C™. put
k=
B =1+ \B%I(Q;RW)» H =B+ d|}~q)
and

D = [ClZa0(qmny + T (0)-

Then one has the following pointwise ineuqality for a
general parabolic-like operator.

Lemma 1 Assume that v,/ € C%1(Q), and D =
(d7%)1<;, k<n € CH(Q; R™™) is a symmetric matrix. Set
z = ev. Then

1
§e%|vt + div(DVv)|? >

n n
ik ik 17k’
Do ez — Y 2D Erj,zrjzzk,—
j.k=1 Gk =1
. AN k‘, 2
dik i’k ijzmj,zmk,) — Ed"ly 2%y, —
1, 2 . n .
k 2 k
5( Yo Ay e, —E2) i+ Y a2, —
Ji k=1 j.k=1
n n " - )
2 Z Z (dj Zﬂj)mkdj émj/xk,z + Fz N

jk=1j" k=1
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where

V= 3 (Wl + 20 ),

J,k=1

E=—t+ »gl(djkg% lyy — diF 0, —
P

d]kngxk) - ![/,

1 n .
2 G k=1
L ,
5(@ile))? = 2B 5],
dh= [dek/(dj,kg%/)zk’ B

3’ k=1
. 170 ]_ .
(&7 qi'* Ley )ay] + id%k'

By [4], one can find a function ¢ € C2(§2) such
that ¢(z) > 0in 2,9 (x) = Oonl, and [Vi(z)| >
0in {2 \ wy. For any given parameter x > 0, put

et ()
t(T —t)

et (z) _ 2plYloa)

and a(z,t)= T =1

(p($7t)=

Based on Lemma 1, we have the following global Car-
leman estimate for the system (3).

Lemma 2 There exists a constant C' > 0, depending
only on p,n,w, {2 and T, such that for any u > C'B and
A > C(D + e*!¥le@), solutions of Eq.(3) satisfy

IQ <Au2e2’\°‘g0\Vv|2 4 /\3u462)‘0‘<p3v2)dxdt <
T
CN3u*(B+ D) jo j e p32dadt +
wo
CJQ e g?dxdt, Yor € L2 ().

Remark 1 Compared with the known results on global
Carleman estimates for the linear parabolic equation (e.g. [2]),
Lemma 2 provides an explicit estimate on the constant (in the
right side of Carleman inequality) with respect to C L coeffi-
cients on the principal operator. Such kind of weighted in-
equalities are quite useful in the study of control theory and
inverse problems for various kinds of partial differential equa-
tions (see [6] and the references therein).

2.2 Null controllability of linear parabolic equa-
tions
In order to establish the local controllability of (2) by
means of the fixed point technique, one needs to consider
the following linearized system of (2):
yr — div(BVy) — dy = ou, in @,
y =0, on X, )

y(0) = yp, in {2,

where ¢ € C§°(w) satisfying o = 1inwg and yo € L?(2).
The key point is to construct a Holder continuous control
function starting from an L?—control function. This strat-
egy makes it possible to solve the nonlinear controllability
problem in the frame of classical solutions.

To this aim, let us consider the following parabolic
equation:

pe +div(BVp) +dp =0, in Q,
p=0, onX, 5)

p(T) = pr, in £2.

Using Lemma 2, one can show the following explicit
observability estimate for the linear parabolic equation (5).

Proposition 1  Solutions of Eq.(5) satisfy the follow-
ing inequality

2
jgp (z,0)dx <
T
Cee” jo j e2rep3p?dadt,

for any pr € L2(£2), n > CH and X > Ce®H,

Furthermore, by Proposition 1 and an iteration
method, we have the following null controllability result
for the linear parabolic equation (4). Also, we give an ex-
plicit cost estimate for the control function.

Proposition 2 For any yo € L?(f2), there exists a
control u € C'2°3 (Q) such that the corresponding solution
y of the system (4) satisfies y(7') = 0 in {2. Moreover,

CH
[ulor g g SO Il

2.3 Main results

By Proposition 2 and Kakutani’s fixed point theorem,
one can have the following local controllability result for
Eq.(2).

Theorem 1(Local null controllability) There is a
positive constant d1, such that for any given initial value
yo € C?t2(0) satisfying |y0‘02+%(('2) < &; and the
first order compatibility condition, one can find a control
u e C25(Q) with supp u C w x [0, 7] so that the corre-
sponding solution y of the system (2) satisfies y(7') = 0
in 2. Moreover, |u| o

A=

(1+ sup |a?*(s)|2 + sup |(a?*)'(s)|* +
jik=1 |s|<1 ls|<1

sup | f'(s)[).

Is|<1

CA
%’%(Q) < Ce® |y0|L2(Q),Where

As a consequence of Theorem 1, we have the follow-
ing local approximate controllability result.

Theorem 2(Local approximate controllability) There
is a positive constant d2, such that for any € > 0, and any
given functions yo,y; € C212 (£2) satisfying |y0|c
+ 1] o+ @) < J2 and the first order compatibility
condition, one can find a control u € C(Q) with supp
u € w x [0,7T] so that the corresponding solution y of
the system (2) satisfies |y(T') — y1|c <e.

5 (9)

21 ()
3 Local controllability of coupled quasilin-

ear parabolic systems by one control

Similarly, one can establish the local controllability
for coupled quasilinear parabolic systems by one control.
Coupled quasilinear parabolic systems can be used to de-
scribe the dynamics of two biological groups.

Consider the following coupled quasilinear parabolic
system:
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n .
Y1t — Z (ajlk(yla T 7ym)y1,xj)xk+

Jik=1
fl(yla te 7ym) = Xwl, in Q7
Yot — Z (aék(yla T 7ym)y2,x]‘)xk+
7,k=1
fQ(yla U aym) — O in Qa
Ys — Z (@ (1 s Ym) Y32, )+
Jk=1 ) (6)
f3(y25 e 7ym) = 07 m Q7
ym,t - Z (a%f(y17 e 7ym)ym,xj)zk+
§k=1
fm(ym—lvym) = Oa in Q)
1 ::ymzoa OHZ,
yl(o) = y?? e 7ym(0) = ygna in '(27
where u is the control variable and (y1,---,ym) is
the state variable, f, (v = 1,--- ,m) are given C? func-
tions defined on R” withr=1{ ' forv =1,
m—v+2, forv=2,---,m
£,(0,---,0)=0, and ajk( -) € C3(R™) are given functions
satlsfymg alk(s) = aki(s), Vs e R™, v = 1,--- ,m
and j,k=1,--- ,n, and for some constant p > 0,
all(s)&;&k = plEf?,
jik=1
YV (8,8) = (8,61, ,&) ER™ xR™and 1 < v < m.

Furthermore, we assume that f, (v = 2,---
isfy the following condition:
of,
H 0,---,0)#0, v=2,---,m
) 9o ( ) #
First, we establish a global Carleman estimate for cou-
pled linear parabolic systems.

,m) sat-

3.1 Global Carleman estimate for coupled linear
parabolic systems
Consider the following coupled linear parabolic sys-

tem:

—pri— 2 O (@ t)p1e, e+
4, k=1

aipi +aipz =0, in Q,

—P2,;t — Z (bgk(l‘,t)pg,xj)wk—k
Ji.k=1

azp1 + a3ps +agps =0, in Q,

(7
- ik
_pmat - Z (bz‘n (x7t)pm,17j)l'k+
J,k=1
alpi +a2py+ -+ aTp, =0, inQ,
p1=-=pm=0,onk,
pl(T) = p’lI" T 7pm(T) = p%, in Q,

where @}, € L=(Q)(l,v = 1,--- ,m), and /¥ € C1(Q)
satisfying b/ (z,t) = b%(z,t), Vi, k = 1,2,---n, and
for some constant p > 0,

n .
%: blF (@, )€€k > plEf?,
Gk=1

V(x,t, &) = (2,t, &, ,&,) €EQ xR"and 1 < v < m.

Put a} = 0 and

Z Z Ll o) T Z Z |a'V|L0C(Q)

Jk=1v=1 l=1v=

Moreover, we introduce the following condition:

H;) There exists a nonempty open subset w* C w
and a constant r, > 0, such that forv = 1,--- ,m —
1, a¥*t(z,t) > ry, inw* x (0, 7).

By Lemma 2, we have the following global Carleman
estimate for the system (7).

Lemma 3 Suppose that H;) holds. Then there ex-
ist a constant C' > 0 and an integer r* > 0, depending
only on p, n, w, {2 and 7', such that for any p > CB;
and A > C(B; + **I¥le@), solutions of the system (7)
satisfy

J P2 o(1Vpi - V) +

A3pde 2’\0‘903(?% 4o p2)dadt <
T
PPt 2 7" 2
CBl b\ 1 J\O J\w d.’I;dt

Y (p1,-e o) € (LP(92)™,

3.2 Null controllability of coupled linear parabo-
lic systems
In order to solve the quasilinear problem, one first
needs to establish the null controllability of the following
coupled linear parabolic system:
Yi,t — Z (b{k (l‘, t)y1721/‘j )zk +

ik=1
atyr + adys + - 4 ahym = ou, in Q,

n .
y27t - Z (b;k(l‘7t)y27x1)’£k+

ih=1
aiy L a3yz + -+ aZym = 0, in Q,

n
Yse— D (bjk(f 0)Y3,2; ) e+

jh=1 ¥

asys + -+ ag,ym = 0, in Q,

n

Ym,t — Z (b%c(w7t)ym7$j)zk+
jk=1

U —1Ym—1 + G ym = 0, in Q,
Yyr="-"=ym =0, on 2,
y1(0) =y, -+, ym(0) = yp,, in 2.

By Lemma 3, one can show the following observabil-
ity estimate for the system (7).

Proposition 3 Suppose that Hy) holds. Then solu-
tions of the system (7) satisfy the following inequality

| 13 (2,0) + 3, 0) + -+ + p2, (3, 0)]de <

™ |, 1.

for any (pl P 7pm)
CeCB1,

e p? (2, t)dadt,

€ (L2(2)™, u > CB;y and \ >
By Proposition 3, we have the following null control-
lability result for the system (8).
Proposition 4 Suppose that H; ) holds. Then for any
(v9,-,y%) € (L*(2))™, there exists a control u €

C %’i(Q), such that the corresponding solution (yi,- -,

ym ) of the system (8) satisfies y1(T) = -+ = yn(T) =
0in £2.
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3.3 Main results

Based on the null controllability of the coupled sys-
tem (8), proceeding similar analysis as [14, Theorem 1.1],
one has the following local controllability results for the
coupled quasilinear parabolic system (6).

Theorem 3(Local null controllability) Suppose that
H) holds. Then there is a positive constant d3, such that
for any given initial value (9, --- ,30,) € (C%Tz(2))™
satisfying |(y{, - - < 63 and the first or-
der compatibility condition, one can find a control v €
C'2°3(Q) with supp u C w x [0, T] so that the correspond-
ing solution of the system (6) satisfies y1(T) = --- =
ym(T) =0 in {2

For some special coupled quasilinear parabolic sys-
tems, we can get the local approximate controllability re-
sult. To this aim, introduce the following condition:

Hy) azj;k = a];j(ywyu-‘rl’ T 7ym)a v.]a k = 1.
n; v =1,--- ,m. We have the following result.

Theorem 4(Local approximate controllability) Sup-
pose that H) and Hy) hold. Then there is a positive con-
stant d4, such that for any ¢ > 0, and any given functions
W, 90 (Wl ym) € (C*FE(02))™ satisfying
|(y?7 to ’ygb)‘(c*”%((?))m + |(y’11“’ T ’y7’1;1)|(02+%(ﬁ))m<
04 and the first order compatibility condition, one can
find a control u € C(Q) with supp u C w x [0,7] so
that the corresponding solution of the system (6) satisfies
lyx (T) —yE|C2+%(Q) <e, foranyk=1,--- ,m.

0
Wmliered (aym

4 Local controllability for quasilinear com-

plex Ginzburg-Landau equations

In this section, we review the local controllability re-
sults of quasilinear complex Ginzburg-Landau equations,
which arise in superconductivity.

Let us consider the following controlled quasilinear
Ginzburg-Landau equation:

n .
(a1 —daz)ye — X (" (|y*)ya; )+
k=1

F(y1*)y = xwu, inQ, ©
y =0, onX,
y(0) = yo, in £2,

where a; >0, az#0 and i=+/—1. In Eq.(9), w is the con-

trol variable, y is the state variable and both of them are

complex valued. To begin with, as before, we need to es-
tablish a global Carleman estimate for the linear Ginzburg-

Landau equation.

4.1 A pointwise estimate and global Carleman
estimate for linear Ginzburg-Landau equa-
tions

First, define a linear operator by

Pz=(a+ib)z+ > (V*2z,)a,
j k=1
where a,b € CY(R"*1) and /% € C1(R"T!) satisfying
bF(z,t) = b (z,t), Vi, k=1,2,--- ,n.
We have the following weighted identity.

Lemmad Leta',b', \ € R be three parameters. Let
z € C3(R"C) and ¢ € C?(R"1). Put £ = X¢ and

v = 60z = e’z. Then
0Pzl + PzL) + My + > VE =
k=1
n
2L+ X
J.k,g’ k=1

. N 1 1 k'K’
(bjkb] k g:vj/)wk, + §(ab]k)t - albjkbj g KI.?'IW] '

[2(b7 kexj,)mk,bjk —

(Vi) Vg; + Vg Var;) +

n . _
[— > biFle, + V' \(Io + L) +
jk=1

i > {[(067F Ly, 4 b (b)) (U, v — 05, D) +
j,k=1
[(b67% s, ) gy, + a' by 0, (D0 — V) } —

J

n .
> b ag, (ve; U + Dayvr) + Balv|? —

jk=1
S L G 0
a > ( xj/xkz)xk (’ijv + ’ijv),
Jik,j’ k=1
where
A= Y bjkﬁxjérk —(1+adh) X bﬂ%xﬂk — b,
Jok=1 jk=1

I =ibvy —alpw+ (bjkvggj)gﬂ,c + Ay,
jk=1

B2 = (agﬁt + b2€t — aAl)t + 2 Z [(b]kfa:JAl)zk —
J,k=1
(abjkgijgt)xk + al(Al - a@t)bjkﬂszk]’

M = [(a® + b?)l; — aAq]|v]® + a bk, Ty, +

G k=1
ib > bRl (Vg0 — g, D),
j,k=1 ’
and
Vi =
Z {—Zb[b]kng (’U’Dt — 77’()15) +
G.g k=1

bjk&(vz].z‘) — Ug,;0)] — abjk(vsz‘)t + Vg, 0¢) +
b B — Ry, (Vo) Vays + Vs Va,,) —
albj/k/éz,mk,bjk(vm’l_] +

J J
Ty, ) + 2007 (A1 — aly)ly, [v]*}.

Next, we present a global Carleman estimate for the
following complex Ginzburg-Landau equation:

(a1+iaz)ze+ Y (W*(@,t)24,)0, +9q2=0, in Q,
k=1
z=0, onX,
z(T) = zr, in £2,
(10

where ¢ € C(Q) and zr € L%($2; C).

Based on Lemma 4, we have the following global Car-
leman estimate for Eq.(10).

Lemma 5 There exists a positive constant pg =
1o(C, ay,az,q,b%) such that for any p > po, one can
find two constants C; = Cq () > 0and \g = Ap(pt) > 0
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so that for any A > A, the corresponding solution z of the
system (10) satisfies

M2 | e VzPdadt + Mt | e2r0? 22 dadt <
iz fQ | V2| iz fQ ¢’ lz|

T
Clxm‘lj j e8| 2dadt, V 2 € L2(£2; C).

0 wo

4.2 Null controllability of linear complex Ginz-
burg-Landau equations

Combining Lemma 5 and the usual energy estimate,
we obtain the following observability estimate for the
equation (10).

Proposition 5 There exists a positive constant yiy =
1o(C, ay,az,q,b*) such that for any z > 19, one can find
two constants C7; = Cy(p) > 0 and A\g = Ag(p) > 0 s0
that for any A > )\g, the corresponding solution z of the
system (10) satisfies

T
fQ |z(x,0)]*dz < C; fo fw e 3|22 dadt,

for any 27 € L?(82; C).
Next, we consider the following linear complex

Ginzburg-Landau equation:
n

(a1 —ia2)ye — > (B*ya,)e, — qu = ou, in Q,
k=1

y=0, onX,

y(0) = yp, in {2.

(11)

By Proposition 5, we have the following null controlla-
bility result for the system (11) with some control function
in certain Holder space.

Proposition 6 For any 3o € L%(2; C), there ex-
ists a control u € C'23(Q; C) such that the correspond-
ing solution of (11) satisfies y(7T') = 0 in {2. Moreover,
|u|c%%(Q; o < C*lyolr2(0; ¢)» where C* is a positive
constant depending only on n, T, w, {2, a1, as, |b7k' |cl((3)
and [q| = (q)-

4.3 Main results

Based on the null controllability of the system (11),
by the fixed point technique, we obtain the following local
controllability result for the quasilinear complex Ginzburg-
Landau system (9).

Theorem 5 There is a positive constant d5 such
that for any initial value y, € C2T2(£2; C) satisfying

|y0‘c“% (@ ©) < 65 and the first order compatibility con-

dition, one can find a control u € C'2°1(Q; C) with supp
u C w x [0,T] such that the corresponding solution y of
Eq.(9) satisfies y(T') = 0 in {2.

As a consequence of Theorem 5, we have the follow-
ing local approximate controllability result.

Theorem 6 There is a positive constant dg, such
that for any ¢ > 0, and any given functions yp,y1 €
C2+3(2; C) satisfying |yo|02+%(ﬁ; C)+‘y1|02+%(fl; o <
d¢ and the first order compatibility condition, one can find
a control u € C(Q; C) with supp u C w x [0, T] so that
the corresponding solution y of the equation (9) satisfies

|y(T) - yl‘c2+%(ﬁ; (C) <e.

5 The existence of insensitizing controls for

quasilinear parabolic equations

In this section, we review the insensitivity results for
quasilinear parabolic equations. The detailed proofs of the
results in this section can be found in [16].

Consider the
parabolic equation:

n

Yi — 4k21(aj’“(y)yzj)xk + f(y) =1+ xwu, in Q,
Jik=

y =0, on X,

following controlled quasilinear

y(O) =Y + T@07 in QJ
(12)

where 7 and yq are two known functions, 7 is an unknown
small real number, and ¢jg is an unknown function. In (12),
u is the control variable and y is the state variable.

Next, we define the following (partial) energy func-
tional:

1 0T
oy) =3 [ f, W trwlPdedt,  (3)

where y = y(z,t;7,u) is the corresponding solution of
Eq.(12) associated to 7 and u. In this section, we are inter-
ested in the existence of a control u (depending on 7 and
yo but independent of 7 and gjo), which makes the above
functional @ be insensitive with respect to small perturba-
tions on the initial value yg. A physical interpretation of
this problem is as follows: if the state variable y stands for
the temperature of a body, then the equation (12) describes
the heat conduction of the body, while the diffusion coeffi-
cients depend on the temperature in a manner as a/*(y). In
Eq.(12), n can be viewed as a given heat source acting on
the body, and one can also act on a local domain w of the
body by means of a heat source u. Roughly speaking, the
insensitivity problem means that we are expected to find
a local heat source u such that the local energy @ in O is
almost invariant with respect to small perturbations on the
initial temperature.

Since we are treating a nonlinear problem, for given
functions € C%%(Q) and yo € C2+9(12) satisfying suit-
able conditions (which will be specified later), we require
that the desired insensitizing control u(€ C? % (Q)), which
depends on 7 and ¥, but is independent of 7 and g, satis-
fies the following condition:

H3) There exists a 79 > 0 such that for any |7| < 79
and any o € C§°(£2) with [fo|c210(0) = 1, the equation
(12) admits a unique solution y(-, -; 7, u) € C2H0:12(Q).
Moreover,

‘y|cz+9,1+% ) <

jk
C(TL, 07F7 T7a af)(|77‘ceg@) +

\U|Ce,g@) + [yo + T?)o|cz+9(f2))-
Now, we introduce the following notion.

Definition 1 For given functions € C%%(Q) and
yo € C2T0(02), a control u € C%2(Q) with supp u C
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w x [0,77] is said to insensitize the functional @ if u satis- pr — Zn: %Dy Vo,
fies condition Hs), and jk=1 !
6@(]4(7 5T, u)) ‘ -0 Z (cjp):rrj + dlp =0, in Qa
T e =0, o (17)
N A —q; — V5qy Vg, + dog = , in Q,
Y g0 € C§°(§2) with ‘y0|02+0((2) =1. a j,kzzl( 4 ‘7) k 24 = Xop @
Insensitivity problem was introduced by J.-L. Lions p=qg=0, onX|
in [17]. In [18], when w N O # 0, for yo = 0 and 7 p(0) = po, q(T) =0, in £2,
satisfying suitable assumptions, the existence of insensi- where dy, ds € L™(Q) and py € L2(02).
tizing controls was proved for some semilinear heat equa- Put ’
tions with globally Lipschitz continuous nonlinearity and
Dirichlet boundary conditions. Later, this result was ex- Z |7 ‘Cl 0@+ \di |2 ~@) |d2|Lm(Q

tended to semilinear heat equations with superlinear non-
linearities and other boundary conditions (see [19] and the
references therein).

Our main results can be stated as follows.

Theorem 7 Assume that w N O # @ and yg = 0.
Then, there exist two positive constants M/, and § depend-
ing only on n, 2, I, T, f(-) and a’*(-), such that for any
n € C%%(Q) satisfying

0.5 gy + lexplgmgs llize) <5, (19
one can find a control u € C%% (Q), which insensitizes the
functional @ in the sense of Definition 1.

In order to prove the existence of insensitizing con-
trols, as usual, we reduce the problem to a nonstandard
null controllability problem of a nonlinear cascade system
governed by a quasilinear parabolic equation and a linear
parabolic equation, as stated below.

Theorem 8 Assume that n € C%%(Q) satisfies
(14) and yo = 0. If a control u € C%%(Q) satisfies
the condition H3) and the corresponding solution (w, h) €
(C*H0:145 (())2 of the following nonlinear cascade sys-
tem:

n

W — Z (a]k(w)ww])xk+f(w):77+XwU7 in Qa
j.k=1

w =20, on X,
w(0) =0, in 2
(15)

and
n

35 (@ @hs, b+ ()

iyﬁm>mﬁn
h
h

_h, —

o+

= Xow, in @, (16)

?r'
[

0, on X,
(T )—0, in 2

satisfies h(0) = 0 in {2, then w insensitizes the functional
D.

In order to prove this controllability result, we need
to establish a global Carleman estimate for linear cascade
parabolic systems.

5.1 Global Carleman estimate for a linear cas-
cade parabolic system

Consider the following linear cascade parabolic sys-
tem:

Then by Lemma 2, we have the following global Carleman
estimate for the system (17).

Lemma 6 For any p > CB and A > C(D; +
e?#¥le@), solutions of the equation (17) satisfy the es-
timate

fQ Ao V2 + %% +
APl Val? + A
C[1+ (B + Dy)?] jo L)I e\ 0T dadt,
Vpo € L*(02).

5.2 Controllability of a linear cascade parabolic
system in Holder spaces
As a key preliminary to prove Theorem 8§, we need
to establish the null controllability for the following linear
cascade parabolic system, with a control function in certain
Holder space:

3utedg)dadt <

n )
wy — Y (BFwy, ), +dow =0+ ou, inQ,
i1

—ht — Z (bﬂkh%)xk + Z T ha,+
k=1 = (18)

dih = xow, in @,
w=h=0, on X,
w(0) =0, h(T) =0, in {2,
where p € C%2(Q).

By Lemma 6, we have the following null controllabil-
ity result for the system (18).

Proposition 7 For any given function 7 satisfying
|e%n\p(@ < oo with M = C(D; + ¢“5)2, one can
find a control u € C?% (Q) with supp u C w x [0, T], such

that the corresponding solution of the system (18) satisfies
h(0) = 0. Moreover,

oo g < O™ Tz,

where

_ SIYAL
C. = Cexp{C(1 —|—j’k2;1 |67 |Cl((2) +

Z |c’ |Clo

Fmally, based on the null controllability of the system
(18), proceeding similar analysis as [14, Theorem 1.1], one
can get the existence of insensitizing controls for the quasi-
linear parabolic system (12) (Theorem 7).
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