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Abstract: This paper considers the problem of enlarging the estimate for the domain of attraction of singular linear
systems with saturated linear feedback. We partition the input space into several regions. In the interior of each of these
regions, the time derivatives of partial states, which are not present in the system model, can be explicitly expressed. A
quadratic Lyapunov function of all states of the system is employed to establish a set of conditions under which a level
set of this quadratic Lyapunov function is contractively invariant with respect to the singular system, and thus results in an
estimate of the domain of attraction. These conditions can be expressed in terms of bilinear matrix inequalities (BMIs).
Based on these BMIs, a constrained optimization problem is formulated for obtaining the largest such estimate of the
domains of attraction. An iterative algorithm is developed to solve this BMI problem. Simulation results show that the
estimate thus obtained is significantly larger than an existing estimate.

Key words: singular systems; actuator saturation; stability analysis; domain of attraction; set invariance

1 Introduction systems. The presence of actuator saturation can lead to

Over the past decades, considerable attention has been the performance degradation or, in the extreme case, in-
devoted to the study of singular linear systems, also called stability, of control systems. In recent years, much atten-
descriptor systems. Singular linear systems, described by tion from research community has been paid to the anal-
a set of differential and algebraic equations, are used in  ysis and synthesis of control systems with actuator sat-
modeling many practical systems, such as power systems, uration. Global asymptotic stabilization and semi-global
electrical networks, biological systems, social economic asymptotic stabilization of open loop systems that are not
systems!'?l. A large number of results on fundamental ~ exponentially unstable have been investigated in [12-15],
concepts“‘z], stability and stabilization [3-6] a5 well as per- and local stability and stabilization have been studied ex-
formance of such systems!’” have been reported in the lit- tensively for exponentially unstable open loop systems (see
erature. Many control problems for non-singular systems [16-22] for a small sample of the literature). The majority
have also been formulated and effectively solved as prob- of the literature on control systems with actuator saturation
lems for singular systems!!'*-11, focus on non-singular systems.

Actuator saturation is ubiquitous in practical control Deriving from extensive studies on both singular lin-
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ear systems and non-singular linear systems subject to ac-
tuator saturation, several results have been obtained in re-
cent years on the stability analysis and stabilization of sin-
gular linear, or even nonlinear, systems subject to actua-
tor saturation!>32/ Specially, the problem of estimating
the domain of attraction of singular systems with actua-
tor saturation has been drawn much interest!*2"3!1, For
example, sufficient conditions were established in [27] un-
der which the closed-loop system under a given saturated
linear partial state feedback is locally asymptotically sta-
ble. Conditions in the form of linear matrix inequalities
(LMIs) were established in [4] under which an ellipsoid is
contractively invariant, and thus can be used as an estimate
of the domain of attraction, for a singular linear systems
with input saturation. The set invariance problem for Lip-
schitz nonlinear singular systems with actuator saturation
has been considered in [3], and sufficient conditions have
been established to guarantee the contractive invariance of
the closed-loop system with respect to a given ellipsoid.
Further, L5 gain and £, performance analysis and design
for singular linear systems with actuator saturation were
carried out in [32].

In this paper, we consider the problem of estimat-
ing the domain of attraction for a singular linear system
subject to actuator saturation. In the existing literature
where the same problem has been addressed!*27-2%321 3
quadratic Lyapunov function of the partial state whose
time-derivative is present in the system model is adopted
to obtain an estimate of the domain of attraction in the
form of a contractively invariant level set of the quadratic
function, which is an ellipsoid. These Lyapunov functions
do not involve the remaining part of the state, whose time
derivative is not present in the system model. Less conser-
vative results could be expected if the partial state whose
time derivative is not present in the system model is also re-
flected in the Lyapunov function. To explore this possibil-
ity for improvement, we will unearth further details inher-
ent in the differential and algebraic equations of the system
model. To this end, we will partition the input space into
several regions according to the saturation status of each
input. In the interior of each of these regions, the time
derivative of each state whose time derive is not present
in the system model can be explicitly expressed. Thus, an
alternative system model can be formed where the deriva-
tives of all states are present. A quadratic Lyapunov func-
tion of all system states will then be adopted whose time
derivative can be evaluated along the trajectory of the full
state of the system. Clearly, this Lyapunov function pro-
vides addition degrees of freedom in estimating the domain
of attraction. Conditions will be established under which a
level set of the Lyapunov function is contractively invariant
with respect to the singular system and is thus an estimate
of the domain of attraction. These conditions improve the
existing ones established in [4]. These conditions can be
expressed in terms of bilinear matrix inequalities (BMIs).
Based on these BMISs, a constrained optimization problem
is formulated for arriving at the largest such estimate of the
domain of attraction. An iterative algorithm is developed
to solve this BMI problem. Simulation results show that

the estimate thus obtained is significantly larger than the
estimate obtained by using the method of [4].

The remainder of our paper is organized as follows.
In Section 2, we recall some basic definitions of singu-
lar systems and the convex hull representation of a satu-
rated linear feedback. We will derive an expression for the
time derivative of the partial state whose derivative is not
present in the system model. In Section 3, a quadractic
Lyapunov function of the full state of the system is con-
structed and conditions are established under which a level
set of the constructed Lyapunov function, which is an el-
lipsoid, is contractively invariant and thus results in an esti-
mate of the domain of attraction. An optimization problem
with BMI constraints is formulated to maximize this esti-
mate of the domain of attraction. Section 4 provides some
simulation results to illustrate the effectiveness of the re-
sults in Section 3. Section 5 concludes the paper.

Notation Denote [, as the identity matrix of dimen-
sion m, and 0, x.,, as the n x m zero matrix. For a square
matrix A, He(A) := A+ AT. For two integers [; and I, >
Iy, I[l1, 2] denotes the set of integers {l1,1; + 1,--- ,l2}.
For an integer m, let D be the set of m x m diagonal ma-
trices whose diagonal elements are either 1 or 0. There are
2™ elements in D. Suppose that these elements of D are
labeled as D;, i € I[1,2™]. Without loss of generality, we
denote Dy = I,,, and Dam = Opyxm. Let D7 =1 — D;.
Clearly, D; € D. Let d;; be the jth diagonal element of
D;. LetJ;={j: dij #0, j € I[1,m]} and 7, = I[1,
m] \ J;. Let J; be the number of the elements of 7, .
For i # 1, we denote the jth column of D] as ¢;;, and
let ¢; be the matrix formed by all ¢;; such that j € 7.

Clearly, ¢; € R™*7i . In addition, we denote ¢; = 0,,,x1
and J; = 1. Clearly, ¢;cf = D; . For a matrix P € R"
with P = PT > 0,&(P) :={zx e R": 2T Px < 1}.

2 Preliminaries

Consider a singular linear system under a saturated lin-
ear state feedback

{E:t = Az + Bsat(u),

u= Fux,

(D

where © € R" is the state, u € R™ is the control input, and
sat : R™ — R™ is the vector valued standard saturation
function

sat(u) = [sat(uy) sat(us) sat(um)]",

with sat(u;) = sgnu; min{1, |u;|},j € I[1,m]. A signal
u; is said to saturate if |u;| > 1, and it is said to unsaturate
of |u;| < 1. w; is said to critically saturate if |u;| = 1. Let
rank(E) = g. It is also without loss generality to assume
that (E, A, B, F) are in the following form,

|1y 0 A Ap
E{o o]’A[Azl AQQ]’

B= BI,F:FlFQ.
o] r=in R

We will partition the state vector accordingly as

x _
x:{ 1},@6]1%‘1, To € R"7Y,
)
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Before stating our basic assumptions on system (1),
we recall some basic definitions for singular linear sys-
tems. The open loop system (F, A) is said to be regular
if det(sE — A) is not identically zero. The system (£, A)
is said to be impulse free if deg(det(sE— A)) = rank(E).
The system (F, A) is said to be stable if {s € C, det(sFE —
A) =0} C {s € C,Re(s) < 0}, where C is the set of all
complex numbers. It has been established in [4] that sys-
tem (1) is regular and impulse free if the matrix Ao +
By D; F; is nonsingular for each ¢ € I[1,2™]. In this pa-
per, we will assume that Asg + B D; F is nonsingular and
system (E, A + BF), which describes system (1) in the
absence of actuator saturation, is stable. The stability of
(E, A 4+ BF') guarantees the existence of the domain of
attraction of the origin for system (1).

We next recall the treatment of a saturated linear feed-
back sat(F'z) from [17]. The saturated linear feedback
sat(Fx) can be expressed on a convex hull of a group of
auxiliary linear feedbacks. For an H € R™*" let

L(H) = {z € R": |nye| < 1,5 € I[L,ml},

where h; represents the jth row of H. We note that L(H)
denotes the region in R™ where Hx does not saturate. The
following lemma is adopted from [17].

Lemmal Let F,H € R™*™. Then, for any z €
L(H),

sat(Fz) € co{D;Fz + D; Hz,i € I[1,2™]},

where co stands for the convex hull.

This representation of the saturated linear feedback
sat(F'x) has been extensively used to solve various con-
trol problems for linear systems under actuator saturation,
such as stability analysis, set invariance analysis, and Lo
gain analysis!*!7-1%:32]_ These control problems can be cast
into and solved as optimization problems involving as part
of the constraints 2™ linear or bilinear matrix inequalities,
each of which is associated with a vertex of the convex hull
in Lemma 1.

Note that each input u; contains two different statuses,
saturation and non-saturation. Thus we could partition the
input space into 2" regions according to the saturation sta-
tus of each input u;. We use D;, ¢ € I[1,2™ —1], to denote
the region in which, for any j € J;, the jth input does not
saturate. In addition, we denote the region where all inputs
saturate as Dom. Clearly, a region D; is associated with a
unique D;. Let DS be the interior of D;, i € I[1,2™].

Consider the algebraic constraint of the closed-loop
system (1)

0= Ag1x1 + Aspwo + Bgsat(Fx). 2)

If Fx € DY, i € I[1,2™], the algebraic constraint (2) can

be rewritten as
0= Aniz1 + Axoxo + BoDiFrag +
ByD; Fyxo + Bocisat(c; Fix). 3)

Note that each element of sat(cf Fz) € R7: is either 1 or
—1if Fz € D¢. Thus the time derivative of sat(c} Fz)

exists when F'z € D7, and

dsat(cf Fz)
dt
By differentiating both sides of (3) we obtain

=0.

0 = (Ag1 + B2D;F1)iq + (Aaa + B D Fi)is.

Denote Ay = Ag; + BpD; Fy, k1 = 1,2,¢ € I[1,2™].
Since, by the assumption we made in Section 2, matrices
Ajoo = Asgg + Bo D, Fy are nonsingular, we have

B9 = — Ay A1y =
— A Aioi (A1171 + Ajaze + Bysat(Fx)) =
—Ab Aio1 ((A11 + B1D;Fy)wy +
(A12 + B1D;Fy)zs + Bicgsat(c] Fz)) =
—AsAint (An1m1 + Aigxs + Bicsat(c] Fu)).
Noting that the algebraic constraint (2) is equivalent to
0 = Aj171 + Aizawa + Bacisat(cf Fz), we obtain the

following system, which is an alternative form of system
(1) and contains the explicit expression of Z5,

Ex = Ajx + Bisat(Fix),i € I]1,2™], “4)
where
g — I'I'L

L O(n—g)xn
r Ainr Az

A= | —ApAint A — Agp Aint Aita | |
i Aioq Ao
I Blci

Bi = —./47;722./42'213102' 5 .7:1 = C;FF.
L BQCi

For the singular linear system under actuator satura-
tion (1), we are interested in the domain of attraction of its
equilibrium at the origin, which is the set of all compatible
initial conditions from which the trajectories converge to
the origin. In this paper, we will use the following form of
estimate of the domain of attraction

Ev(z):={x eR":z € E(P),
Aglxl + AQQZQ + Bgsat(Fx) = 0},

where P € R™*™ is a positive definite matrix. This esti-
mate involves a quadratic Lyapunov function of the form

V(z) = 2" Px.

Let V(z) denote the time derivative of V(z) whenever it
dsat(cf Fz)
dt
cally, we conclude from (3) that @5 exists for almost all
z1 € RY, and thus V() exists for almost all z € R™. If
V(z) < 0 for almost all z in a set S containing the ori-
gin, then S is contractively invariant, that is, the origin is
locally asymptotically stable for system (1) and all trajec-
tories starting compatible initial conditions in S will tend

to the origin''®l,

exists. Since exists if no u; saturates criti-
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3 Main results

In this section, we will utilize the expression for 5
obtained in Section 2 to establish conditions under which
Ev (P) is a contractively invariant set of system (1).
3.1 Set Invariance conditions

To present the main result of this section, we construct
the following matrices

D, D P 1% . m
P, =[P PBJ, P, = , 1€ I[1,2™], (®)]
Py;

where P € R™*™ is positive definite, P;; € R9*("~9) and
Py, € Rm—a)x(n=a)  The following theorem establishes
set invariance conditions for &y (P).

Theorem 1 For a given P > 0, if there exist

matrices P; of the form (5) and matrices H; € R’ x,
i € I[1,2™], such that

ki € I[1,27: ], € I[1,2™], ©
and £(P) C L(H;), i € I[1,2™], then V(z) < 0 for
almost all z € &y (P), and thus, the set Ey(P) is a con-
tractively invariant set of system (1).

Proof Before we set off to prove the theorem, we ob-
serve that, by the assumption that Ao+ Bo D; F5 is nonsin-
gular for all ¢ € I]1,2™], system (1) is regular and impulse
free.

To prove the theorem, we will show that that V' (z) < 0
forall z € Ev(P) \ {0} such that Fx € DY, i € I[1,2™].
By the definition of £y (P), it is clear that &y (P) C E(P).
Then, for all i € I[1,2™], condition £(P) C L(H;)
implies that & (P) C L(H;). By Lemma 1, for every
x € Ev(P) such that Fx € DY,

sat(F;z) € co{ Dy, Fix + D Hyw : k; € I[1,27 ]}

where Dy,,’s are the J;~ x J, diagonal matrices whose
diagonal elements are either 1 or 0. It follows that

Az + Bisat(}"im) S
co{(Ai+B; Dy, Fix+B; Dy, Hi)x: k; €1[1,27 ]} (7)

Since @7 exists on every Dy, the time derivative of the

quadratic Lyapunov function V (z) = 2™ Pz along the tra-
jectory of the closed loop system (1) is given by

V(z) = TPz + 2T P& =
PTEYPrr + 2T PiER =
22T P;(A; + Bisat(Fix)). 8
By (7), we have

V(x) = 2xT”Pi(.Ai + B;sat(Fix)) <
max 2z P;(A; + B; Dy, Fix + B; D}, H,)z,
ki€I[1,2% |

for any x € Ev (P) such that u € DS. In view of (6), we
have V(z) < Oforallz € &y (P)\{0} such that Fz € Df.

It follows that V' (z) < 0 for almost all z € £y (P), which
indicates that the set &y (P) is contractively invariant for
system (1).

Theorem 1 presents a set of sufficient conditions under
which Ey (P) is a contractively invariant set for system (1).

If we set
A0 5 _ | Ps
=[5 o) 7= [R)

where P € R?*9 is positive definite, Py € R7*(n—q)
and P, € R~ 9x("=4) the quadratic Lyapunov func-
tion V(x) = 2T Pz will degenerate to V() = =T Pyz;.
Moreover, the presence of i in 2T P; £ in (8) will vanish
and the term 2T P;E4 becomes =T PE#, where

5| P P

P15 5]
This results in the conditions of Theorem 1 in [4]. In other
words, Theorem 1 in [4] is a special case of Theorem 1
of the current paper, The generalization is made possible
by two factors. On the one hand, the quadratic Lyapunov
function adopted in the current paper can be viewed as a
generalization of Vz(z) = x{ Pi2; used in [4]. On the
other hand, we explore the information of x5 in the inte-
rior of every region in the input space, and the general-
ized quadratic Lyapunov function effectively incorporates
this information. Both of these two factors result from the
exploration of 5 and lead to the less conservativeness of
conditions in Theorem 1 than those in Theorem 1 in [4].

3.2 Estimation of the domain of attraction

The set Ey (P) satisfying conditions in Theorem 1 is
a contractively invariant set of system (1), and thus can be
used as an estimate of the domain of attraction for it. Ob-
taining a maximized estimate of the domain of attraction
then boils down to the determination of the largest contrac-
tively invariant set £y, (P). Recall the definition of £y (P).
It is clear that & (P) is not a convex set due to the alge-
braic constraint (2). The size of &y (P) can be measured
with respect to a shape reference set R by the largest o
such that R C E(P,;,) for some i € I[1,2™], where
Paio = ME)‘PMZO and

M, Lo
' —A;égv‘liozl

Although the relationship between £(P,;,) and Ey (P) is
not clear, our simulation experience shows the effective-
ness of this measurement. Let R be a polyhedron of the
form R = {ri,re,--- ,rp}, 1 € R, 1 € I[1,p]. Then
aR C E(P,;,) is equivalent to rlTMirgPMiOrl < v,

0
5

late an optimization problem based on Theorem 1 for a

maximized estimate of the domain of attraction of system

(1):

1
l € I1,q], where v = —. In what follows, we formu-
o

min Y, &)
P>O,Pli,PQ,;,Hi,iGI[1,27”],’L’0€I[1,27n]

s.t.a) v M PM;,ry < v, 1 € I[1,p],
k; € I[1,27],i € I[1,2™,
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1 hij

9) W p >0,jelll,J],ieI[l1,2™],
17

where Constraint ¢) is equivalent to £(P) C L(H;), i €
I[1,2™], and h;; is the jth row of H,;.

Since the inequalities in Constraint b) contain prod-
uct terms among pairs of the unknown matrices, the opti-
mization problem (9) is a bilinear matrix inequality (BMI)
problem, whose global solution is hard to obtain. Various
iterative algorithms have been developed to deal with BMI
problems, such as the direct iteration method and the path-
following method. In this paper, we will use the direct it-
eration method to solve the optimization problem (9). The
resulting iterative algorithm is given as follows.

Algorithm 1  Solution of optimization problem (9).

Step 1

rived in [4],

Solve the LMI optimization problem de-

min , 10
Q1>O,G’1,Q3,Q4’y (10)

T

st a) Dl 81} >0, 1el[l,pl,

b) He((A+B(D;FQ+D; G)))<0, ieI[1,2™],
1 glj:| .
c i'>0,5€Il,m],
where G' = [G1 Opyx(n—q)] and gy is the jth row of G.
Denote the solution as (Q1,G1, Qs,Q4). Let H = GQl_l.
Set H; = cIH forall i € I[1,2™]. Lets = 1, and
S(s) = 0. Set a small positive scalar 6.

Step 2 Set s = s + 1. Solve the following LMI
optimization problem, which results from the optimization
problem (9) with fixed H,;’s,

(11)

P>()»P1ivP2i’i€Irfl[llr}2m],ioel[1,2m] i
s.t. a) rlTME(;PMiOrl <7, LeI1,p],
b) He(P;i(A; + B; Dy, F; + BiD;, H;)) <0,
ki € I[1,27],4 € I[1,2™],

c) [hlrr lﬂ >0, jel[l,J]],ielll,2m].

Denote the solution as (Yopt, P, P1i, P2;). Let S(s) =
Yopt- If [S(s) — S(s — 1)] < 4, stop, else, go to Step
3.

Step3  Solve the following LMI optimization prob-
lem which is the optimization problem (9) with fixed P,
P3; and Py;,

i , 12
Hi7{2[132m]’7 (12)

1 h,‘j
T
hij P
b) Constraints b) and c) in (9).

s.t. a) >0,jelIll,J],ieI[l1,2™],

Denote the solution as H;. Go to Step 2.

In the above algorithm, the optimal solution of (10)
from [4] is set as the initial values of the iteration proce-
dure. Such a choice of the initial values does not guarantee

that the solution obtained from our algorithm is globally
optimal. However, since the initial values of the iteration
procedure are inherited from the optimal solution derived
with the existing set invariance conditions, the result ob-
tained from our algorithm will be at least as good as that
obtained from the existing set invariance conditions!*!.
Compared with the optimization problem (10) with 2™
LMIs in Constraint b), the optimization problem (9) for-
m
mulated in this paper contains Y. C! 2m~! BMIs in its

1=0
Constraint b). Larger estimates can be obtained from (9)

at the cost of heavier computational burden. Thus, a trade-
off should be considered between the conservativeness of
the results and the computational burden. If the number of
saturated inputs is small, we can use Theorem 1 to obtain
a larger estimate of the domain of attraction. However, if
the number of saturated inputs is large, the approach in [4]
can be adopted to avoid excessive computation.

4 A numerical example

In this section, a numerical example is provided to
demonstrate the effectiveness of our proposed approach.
Let us consider system (1) with the following parameters,

100 0.6 —0.8 0.5
E=|010|,4= |08 06 4|,
000 06 1 038

1 1
B=|1 1 ,F:H - j]
0.5 2

To apply Algorithm 1, let R = {r}, r; = [1 15]7T,
and solve the LMI optimization problem (10) to obtain

PLin and Lv _ 0.1194 —0.0327
! —0.0327 0.0184 |-

We select
Iq
M, = 1
Al Ai21

for the measurement of &y (P). We carry out Algorithm 1
and obtain

0.1145 —0.0565 —0.0130
pTheoreml — | _ 0565 0.0748  0.0249
—0.0130  0.0249  0.0087

We plot both &( P and L) and gy (pTheoreml) jp
Fig.1 for comparison. As is apparent in this figure, the
estimate based on Theorem 1, &y (PTheoreml) g gignifi-
cantly larger than &( P 814 V) resulting from Theorem
1 in [4]. This illustrates that the set invariance conditions
in Theorem 1, where 22 was explored and used to estab-
lish these improved conditions, are less conservative than
those in [4] without employing the explicit expression of
i5. To verify the contractive invariance of &y, (PTheoreml)]
we plot in Fig.1 a converging trajectory starting from the
boundary of &y (PTheoreml) The evolutions of its states,
the underling control inputs and the quadratic Lyapunov
function V (x) = ¥ PTheoremly are respectively depicted
in Figs.2—4.
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157 - Theorem 1 in Lin and Lu
— Theorem 1

101

Fig. 1 The estimates of the domain of attraction and
a converging trajectory starting from
the boundary of &y (PTheoremly,

I5r
10y

t/s

Fig. 2 The evolutions of the system states.

1.0+
0.8 — sat(u,)
0.6 ...... Sat(uz)
041
3 02
= :
S 0.0 _.:'70.90_ .........................
021 g.951
04 0o
-0.6F
o8l 0.0sL——1
: ;/0.00 0.05 0.10,
—I.OC_/ I I 1 1 |
0 1 2 3 4 5
t/s

Fig. 3 The evolutions of the control inputs

1.0
S
g 0.5
00 1 L 1 ]
0 1 2 3 4 5
t/s
0
g\ -~
S8
S
,10 1 1 1 1 ]
0.0 0.2 0.4 0.6 0.8 1.0
t/s

Fig. 4 The evolutions of the quadratic Lyapunov function
V(z) = zT PTheoremly and its time derivative

Moreover, in the lower subplot of Fig.4, we can clearly
see that a jump of signal at about £ = 0.05s in the evolution
of V(z). This implies that V () does not exist at that point
in time. As we know, this phenomenon occurs when one
of inputs critically saturates. A close observation of Fig.3
which shows that the input uo indeed critically saturates at
about ¢ = 0.05s manifests this point.

5 Conclusions

This paper revisited the problem of estimating the do-
main of attraction for a singular linear system subject to
actuator saturation and proposed a new approach to solv-
ing the problem. We divided the input space into 2™ re-
gions, and explored the information of the time derivative
of x5 in the interior of each of these regions. With the ob-
tained explicit expression for the time derivative of x5, a
quadratic Lyapunov function of the full system state was
utilized to establish conditions under which a level set of
the Lyapunov function results in a contractively invariant
set of the singular linear system with actuator saturation.
These conditions cover the existing conditions in [4] as a
special case and result in a significantly larger estimate of
the domain of attraction than those!*! could. Simulation
results demonstrate the effectiveness of our proposed ap-
proach.
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