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Fixed points of Boolean networks with small number
of elementary circuits
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Abstract: Boolean networks have been studied intensively recently due to their importance as a compact model for
understanding both natural and man-made nonlinear dynamic networks. Fixed points and attractors are keys to predict long
term behavior of Boolean networks. We develop algorithms for finding fixed point of Boolean networks with small number
of elementary circuits, based on a set of equations on variables forming a feedback vertex set. As an application, we also

present a sufficient and necessary condition for checking the global stability for such networks.
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1 Introduction

Boolean networks have been studied intensively re-
cently due to their importance as a compact model for
understanding both natural and man-made nonlinear dy-
namic networks. Fixed points and attractors are key
to predict long term behavior of Boolean networks.
Among literature, using semi-tensor product, [1] es-
tablishes a powerful systematic theory on analysis and
control Boolean networks and provides a linear char-
acterization of fixed points; [2] employs graph theo-
retic methods to analyze complexity of Boolean net-
works; [3] introduces scalar equations to find attractors
of Boolean networks and demonstrated inspiring simple
and beautiful results. Unfortunately, since many anal-
ysis and control problems of Boolean networks have
been shown to be NP-hard (see [2] for a list of them),
it is important to identify tractable special classes of
Boolean networks.

In this paper, we propose efficient fixed point find-
ing algorithms for Boolean networks with small num-
ber of elementary circuits. Our method is based on a
set of equations on variables forming a feedback vertex
setl*. Our result extends the work on a special class of
Boolean networks known as Regulatory Boolean net-
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works (REBN)P! to general Boolean networks. As an
application, we also present a sufficient and necessary
condition for checking global stability!® for such net-
works. It should be noted that the problem of finding
minimum feedback vertex set for general Boolean net-
works is NP—complete!”). In practice, it is sufficient to
work on Boolean networks with small number of cir-
cuits.

The remaining part of the paper is organized as fol-
lows. In Section 2, we introduce notations and defini-
tions to set up the fixed point problem for Boolean net-
works. In Sections 3, we will present the main results:
conditions for finding fixed points of Boolean networks
and checking global stability on reduced sets of vari-
ables (feedback vertex sets). In Section 4, we will show
in general the fixed point problem for Boolean networks
with many elementary circuits is NP-complete. In Sec-
tion 5, we provide an example to demonstrate the theo-
retical results. Finally, Section 6 concludes the paper.

2 Definitions and system description

Definition 1 A (synchronized) Boolean network
X is a directed graph G = (V, E) whose individ-
ual vertices ¢ are attached a Boolean state variable x;,

T Corresponding author. E-mail: zhaogc @tsinghua.edu.cn; Tel.: +86 10-62783612.
This work is supported by National Natural Science Foundation of China (Nos. 61074034, 61021063, 61174072, 61174105).
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i €V ={1,---,n} and updated by a Boolean equa-
tion

(1)
where f;: B!"' I — B is a Boolean function with B =
{0,1}, and I'(i) = {j € V|(4,7) € E} is the set of
head vertices of input arcs of vertex ¢, | I"(7)| is the size
of I'(7). Some time, we also use the notion f;(X) to
indicate f; as a function of X = (x, x5, - ,x,) with
the understanding that f;(X) = fi(z;(t),7 € I'(i)).
The set of functions F' = {f;,i € V} is called vertex
function set of /. We also use the vector form of the
state equation Eq.(1),

X(t+1)=F(X(t),t=0,1,---. )
We use the notations Gy, Vy, Es, I's(i), Fs to em-
phasis the dependent of G, V, E, I'(i), F on X.

Definition 2 A sequence of vertices P = iy, 1o,
-, i, is called a path of X if (i;,7;11) € Ex for
j:1727"' 7p_1
Definition 3 A path C =iy, 49, - -
a circuit of X if ¢, = ...

, 2. 18 called

Definition 4 A circuit C' = 4,49, - , 1. 1S
called an elementary circuit of X' if 7; # 7, for all
Jy k=12 c—1ifj#k.

Definition 5 A network is called acyclic, if it has
no circuits.

Definition 6 A set of vertices V, is called a feed-
back vertex set if the network generated by removing
the vertices in V. and arcs related to vertices in V is
acyclic.

Definition 7 A state X = (x1, 29, -+ ,2,) €
B™ is called a fixed point of X, if x; = f;(X;), for all
i € Vyand X; = (2, j € I's(i)), or in vector form

X =F(X).

Definition 8 A sequence of states X', X?, - |
X¢ € B"is called an attractor of X, if z] = f;(X771),
foralli € Vy,j =2,--- ,cand z; = f;(X°), for all
1 € Vi, or in vector form

X7 = F(Xj_l), j=2,-,c

and X! = F(X°).
3 Elementary circuits and simplified condi-

tions

Without loss of generality, we assume that the
Boolean network under study is strongly connected (for
all pair of vertices 1, j, there is at least one path from
to 7 in the network).

We can define a new network from a given strongly
connected Boolean network.

Algorithm 1 Constructing a new network X’
based on a feedback vertex set V.

Input: a strongly connected Boolean network 3/
whose graph is G = (V, E') and a feedback vertex set
V. (formed by picking one vertex from each elementary
circuit of G3).

Output: an Boolean network 3 having graph G’ =
(V', E") with new set of vertex functions F”.

Step 1 Extend the network by adding a copy of
vertex set V, = {i1,--+ ,4,, } such that the new net-
work has n + n, vertices and assume the added ver-
tices have indices n + 1,n + 2,--- ,n + n, respec-
tively. Or formally, V' = V U V! where V! = {n+1,
n+2,--,n+ne}.

Step 2 Redirect the arcs pointing to vertices in V,
to verticesin V = {n+1,n+2,--- ,n + n.} and
add single input arcs from vertices in V to V,. For-
mally, we set £/ = E\I(V,) U O(V)) U D(V!,V,)
where I(V,) = {(3,j)i € V,5 € V,,(i,j) € E},
O(V.) = {(i,j +n)li € V,j € Ve (irj) € E}, and
D(V., Vo) = {(n+i,i)li € V.}.

Step 3 The set of vertex functions F” is obtained
by associating vertex functions of vertices in V. with
the vertex functions in V, and change vertex func-
tions of vertices in V, to the single input function
fi(xnsi) = x4y, for i € V.. Formally, we set
fl=a,ifi e Vo fl = fiifi e VAV f) ., = fiif
1€ Ve

Remark An important property of the constructed new
Boolean network X is that it can be used to find all fixed points
of X as shown in the following theorem.

Theorem 1 X is a fixed point of X iff (X, X,)
is a fixed point of X', where X, = (x;,i € V) and X’
is defined by Algorithm 1.

Proof It is straight forward to verify based on the
construction of 2.

Algorithm 2 Constructing tree function for ver-
tices in V. in 3.

Input: a network Y.

Output: tree functions of all vertices in V.

Step 1 Remove the arcs in D(V,, V) and obtain
an acyclic network X" .

Step 2 Define a vertex set A = ().

Step 3  Assign each vertex of V, by the tree func-
tion f'(X,) = z;,7 € V, and add V, to A.

Step 4 Assign each vertex ¢ whose input arcs are

directly from vertices in A (or equivalently, I's. (i) C
A) the tree function f(X,) = f;(X7T) to vertex i
where X1 = (f](X.), j € I's(i)). Add vertex i
to the set A.

Step 5 Repeat Step 4 until all vertices in V| are
assigned.

For the set of fixed point equations in 3/, we have

the following equivalent form.

Theorem 2 Let X ™ be a fixed point of 2 and let
X! = (z7,1 € V,). Then X satisfies the following set

e
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No. 7
of equations:
r; = fun(X0), i €V, 3)
where 3 ;18 the tree function obtained for V! by Al-

gorithm 2.

Proof Note the assignment of tree function to ver-
tices in Algorithm 2 is according to the topology sorting
of vertices in X . We will prove first that

frX) =ai, Yie VUV,

This is true for vertices V, according to the definition
of the tree functions f;' for vertices in V,. Next we use
induction to show that this is also true for all vertices in
V\V.. Assume for vertices i, whose topology sorting
position is no more than k£ > 0, it is true that

fiT(X:) =z;.

7

We will prove that for vertex j with topology sorting
position k + 1, it is also true that

X0 = 5.
In fact, we have
FE’(j) = Fz(j)7
FHXO=f(f1(X0),i€l(5) =
fi(ai, i € I's(j)) = 3.
The last equation is due to the fact that X* is a fixed

point of Y. According to induction, we thus established
that fact that

fH(X3) =), VieV.
Then for all vertices ¢ € V, wehavei —n € V, C V,

FEXD) = fimnff (X0),5 € Teli — ) = i,
The proof is completed.

Remark The importance of Theorem 2 lies in the key
observation that the number of equations to check for a fixed
point now reduces to the size of V.. This extends the result for
a special subclass of Boolean networks known as regulatory
Boolean networks (REBN)®! to the general Boolean networks.
If the number of elementary circuits is small, the size of feed-
back vertex set is also small, and the finding of fixed point is
tractable. It is possible to apply our results to networks with
many arcs (at the order of O(n2)) since there are orientations
of complete graphs such that they have no elementary circuits,
i.e., being acyclic (see e.g. [8]). We can employ the power-
ful semi-tensor production theory developed in [1] to check the

conditions in Theorem 2. We will demonstrate this in Section
5.

Theorem 3 Let X = (z},i € V) be a vector
satisfying the following set of equations:
i = fa(X0), 1 € Ve @)
where f;' is the tree function defined by Algorithm 2.
Let X* = (z%, x5, -+ ,x) be a vector constructed as
vl =fi(X0), i€V

e

Then X * is a fixed point of Y.

Proof We use induction to prove
fz(xjvj € FZ(Z)) = :1::7 ieV.
Because
(X0 = fil£7(X0),5 € I's(i)), i € Ve,
x; = fui(X0) i€ Ve,
and
.%': :.f?(X:)v i€V,
we have
v = filf] (X2),j € I'n(i)) =
filz},j € I's(i)), i € V..
Assume for 7 whose topology sorting position is no
more than £ > 0 it holds that

fi(z},j € I's(i)) = ;.

We will prove that for vertex with topology sorting po-
sition is k + 1, it is true that

fi(z},j € I's(i)) = ;.
In fact,
* T * T * . .

zp = f; (X3) = filf5 (X0),J € I's(i) =
The proof is completed.

Remark Algorithm 2 can be applied to find all attrac-
tors if we unfold the network k-times starting from V; (denoted
as X*) until the tree functions repeats. Thus the algorithms

in this section for fixed points can be extended to the study of
global stability of the network.

Definition 9 A network is said to be globally sta-
ble, if it has a fixed point as its only attractor.

Corollary 1  Let V, is a feedback vertex set of a
strongly connected network 3. Then the network Y is
globally stable, iff X’ has a single fixed point and X*,
k > 2 do not have any fixed point.

Remark The number of % to check in the corollary is
bounded above by glVel® + 1 since the set of Boolean functions
on B!Vl are finite and all tree functions generated by unfolding
finite times belong to this set. When £ is small, we can employ
the semi-tensor production theory to check the conditions in
Corollary 1. This will be demonstrated by example in Section
5.

4 NP-hardness of Boolean networks with
many elementary circuits

In this section, we show that the fixed point problem
for Boolean networks with many elementary circuits is
NP-complete. The proof is based on a reduction to the
well-known NP—complete problem 3—SAT.

Theorem 4 For Boolean networks with no less
than 1n elementary circuits (l = 0.5), the problem of
whethcer they have fixed pointscis NP-complete.

Proof Please see the Appendix.
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5 A numerical example fi(C,E)=C, f5(C,E)=C,
In this section,.we give an example to show how f=(C.E)=E, ff(C,E)= fi =C,

the proposed algorithm works. The example comes fg (C,E) = fg(C’, E)+E=C+E,

from [9] as shown in Fig.1. It is an 8 vertex network T B = £ (C B FYC.E) —

X with vertex functions are given as Tu(C,B) = f6(C,.E) - fp(C, B) =

A(t+1) = C(t), B(t +1) = A(1), ; (C+E)-B=FE, ]
( ) () () (t—l—l) C( )7 fC,(C,E):fH(C,E)-fB(C,E):E~C,
B(t-+1) = D(o), Flt+1) = E(), fe(C.E) = /5(C.E) = C.
G(t+1)=D(t) + E(t), H(t + 1) = G(t) - F(t) Then according to Theorem 2, all fixed points of Y

Here and below, we use A,B,C,D,E, F,G,H to
label the 8 state variables xq, x>, - ,xg and vertex
1,2,.-- .8 to avoid complicated indices. So, for in-
stance, by A(t+1) = C(t) wemean z (t+1) = z5(t)
which implies the vertex function f; of vertex 1 is
fi(zi,i € I'(1)) = T3, where I'(1) = {3}.

Fig. 1 An 8 vertex example

The network is strongly connected. It has a feed-
back vertex set V., = {C,E}. In fact the removal
of V. and related arcs (input or output arcs of vertices
C and D) will lead to an acyclic graph. Apply Al-
gorithm 1 and we obtain X’ as shown in Fig.2 where
V] = {C’, E'} are the added vertices and dashed arcs
are the set D(V./, V,).

Fig. 2 Constructed X’ for the network in Fig.1

Starting from V, = {C, E'}, in X, we apply Algo-
rithm 2 to obtain the tree functions for each vertex. The
result is

satisfy the following set of equations given by the tree
functions on V:
C=fi(C,E)=C-E,
E=fLC FE)=C.
Since the size of V is small, it is ideal to employ semi-
tensor production tools developed in [1] to do the anal-

ysis. As usual, we identify logical 1 and O respectively
with the vectors

<ol o~ 1]

Let 6! be the i-th column vector of the identity ma-

(&)

trix I,, of dimension n. For example, §1 = [(1)] and
0
1
of columns of the identity matrix 7,,. A matrix L having
7 rows is called a logical matrix if its columns belong to
A,,. If a logic matrix

= [0 65 -+ O57]

for notational compactness, we write

62 = }Letﬂn ={0"],i=1,2,--- ,n} be the set

A 2 x 2" matrix M, is said to be the structure matrix
of the r-ary logical operator o if

U(p17"'7pr>:Mal><p1'><"'D<pr-

We have

Mn = 52[2 1],

M. =412 2 2]
So, the structure matrix form for Eq.(5) is

C=MMCE=0[2212CE
E=C, ©

and we have
CE =LCFE = 52[2 21 2]C'EC’.

We have L = M.M,CEC = §[2 2 1 2|(I, ®
Wig)) M, = 64[3 3 2 4], where Wy is a swap matrix
and M, is a reduce matrix. It is easy to see due to fixed
point theory developed in [1] (Chapter 5) that the num-
ber of solutions to set of equations Eq.(6) and Eq.(5)
is equal to tr(L). Thus, they have a unique solution
(C,E) = (0,0) since tr(L) = 1. In fact, the only one
appears on the diagonal of L is at 6; ~ (0,0). Based
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on the solution, we can determine a corresponding fixed
point of the original network 3 based on the evaluation
of the tree functions at (C, E') = (0,0) as

fg(0,0) =0= 1, fg(070) =0,
fg(0,0) =0= 1, fg(O?O) =0,
f&(0,0)=040=0, f5(0,0)=0.
The fixed point of X' is (A, B,C,D,E,F,G,H) =
(1,0,0,0,0,1,0,0).
It is clear 2 has a single fixed point. We further
check whether it is globally stable. To do this, we ap-

ply the corollary in Section 3. The k-th unfolding of X
gives the k-fold composition of the tree functions

Fryi(Xe)
as k T ( k-1
9; (Xe) = frsi(gi™ (Xe))
with g} (X.) = f1;(X.). Again, we employ semi-
tensor product to facility the check of solutions of

C=g¢(C, E),
E:g%(C,E),
when k = 2,3, ---. Itis easy to see that we only need

to check tr(L*), k = 2,3,---. We have L? = §,[2 2
3 4] with tr(L?) = 3and L*=L =043 3 2 4]. Since
L? = L, we stop at k = 3. From tr(L?) = 3 we know
that the network has two attractors beside the fixed point
found before, and the system is not globally stable. The
two solutions to CE = L?C'E are 67 and 63 which cor-
responding to (C, E) = (1,0) and (C, E) = (0,1).

6 Conclusions

In this paper, we study the fixed points of Boolean
networks with small number of elementary circuits. Re-
duced size vertex sets known as feedback vertex sets
composed by picking up one vertex from one elemen-
tary circuits are used to find all fixed points of original
networks. As an application, we introduce conditions to
check global stability of such networks. We also prove
the negative result that testing whether networks with
large number of elementary circuits (no less than half of
vertex set size) have fixed points is NP—-complete. Fu-
ture work includes the study of control and observation
of Boolean networks with small number of elementary
circuits. It is also interesting to investigate the stabiliza-
tion problems asked in [6].
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Appendix The proof of Theorem 4

Let x1,x2, -+ ,xn are n Boolean variables. Let ¢y, ca,

-, cm are a set of clauses defined by multiplication of three or

less letters or their negation from x1,x2, - - ,xyn. The 3-SAT

problem is to determine, for the Boolean function f defined by
the sum of the clauses as

m
fX) = > ¢i(X), (A1)
j=1
whether there is an assignment of X = (z1,z2, - ,%n) on
B™ such that
fX)=1.

Here we use c;(X) to emphasis the dependence of ¢; on X.
An example is the function f(x1, 22, z3,24,25) =c1 - c2 -3
where ¢; = x1 + x2, c2 = T2 + ¥3,¢3 = x3 + T4 + X5, OF

f(z1, 22,23, 24, 25) =

(1 + x2) - (w2 + 73) - (x3 + 4 + 5), (A2)
where a stands for the negation of a. It is straightforward to see
the problem in NP since the check of whether a given vector X
is a fixed point is polynomial.

To proof the NP-hardness part of the theorem, we con-
struction a Boolean network Xt for the Boolean function f de-
fined in Eq.(A1) as follows. The Boolean network X has a ver-
texsetV = {1,2,--- ,2n+2m} of size n+m-+m+n vertices
which is divided as four subsets V' = V3 UVoUV3UV,. For ver-
ticesinthe set V1 = {1,2,-- ,n}, we label their state variables
as x1,x2, dots, xn. For vertices in the set Vo = {n + 1,n +
2,--- ,n+m}, we label their state variables as c¢1,c2, -+ , cm.
For vertices inthe set V3 = {n+m+1,n4+m+2,--- ;n+m+
m}, we label their state variables as 01,02, ,om. For ver-
ticesin the set Vy = {n+2m+1,n+2m+2,--- ;n+2m-+n},
we label their state variables as 11,2, - - - ,1n. It has arc set
definedas £ = F1 U Es U B3 U E4 U E5 U Eg U E7 with

By ={(i, )i € {1,2,--- ,n}},
Ey={(i,n+j)lie{l,2,-- n},
x; or its negation appears in ¢; },
Ez={(n+m+jn+m+j+1)je{l,2,--- ,m—1}}
U{(n+1l,n+m+1)},
Ej={(n+m+jn+2m+j)je{l,2,- -
Es={(n+m+2m,n+2m+1)},
E¢ ={(n+2m+i,n+2m+i+1)|ie{1,2,--- ,n —1}},
Er={(n+2m+14,9))i e {1,2,--- ,n}}.
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The vertex function is defined as: for vertex i in V] with state
variable z;, _ -
fi=xi- i+ @i - Py
for vertex n + j in V2 with state variable c;,
fn-‘rj = Cy;
for vertex n + m + j in V3 with stat variable wj,
Jfatmy1 = c1,
fn+m+j =Wj—1-¢C§

if j ={2,---,m}; for vertex n4+2m+1 in V4 with stat variable

Vi,

fn+2m+1 = Wm,
frt2mti =i

if i« = {2,---,n}. For vertices in V3, we can see easily their
vertex functions can also be expressed as

Jj
fn+m+j = II c-
k=1

Fig. A Boolean network solving 3—SAT problem,
a 5 variable example

To illustrate, we provide the construction for the example
in Eq.(A2) in Fig.A.

Notice that the constructed Boolean network X has at
least n 4+ m elementary circuits. So the number of elemen-

tary circuits compared with the scale of the network is at least
n+m

2n + 2m
work, we can solve the 3—SAT problem by testing whether the

network has a fixed point.

On one hand, if there is an assignment of X0 =
(29,29, ---,2%) such that f(X°) = 1, then we know there
must be at least one jg such that ch(XO) = 1, as a result

= 0.5. Below we will show that with such a net-

m
3 ¢, (X%) = 1. In the Boolean network %, if we set the ini-
k=1

tial values of vertices in V7 as x(l), :ch, -+, Tn, the initial values

of vertices in Va as ¢1(X0),c2(X?), -+, en(XY), the initial
Jj

values of vertices in V3 as w;(0) = [] (X9, i=1,---.m

the initial values of vertices in Vj as_wi(o) =1,i=1,---,n

then for vertex 7 in V1, we have

x;(1) = 24(0) - 13 (0) + Z;(0) - 1;(0) =
2i(0) - 1+ 2(0) - 0 = 2;(0) = af;

for vertex n + 7, we have

¢j(1) = ;(X(1)) = ¢;(X°) = ¢;(0);

for vertex n + m + j, we have

for vertex n + 2m + 4, we have

¥i(1) = 11(1) = wm(1) = wm(0) = 1.
If we denote

CO = (Cl(XO)ch(XO)v T 7Cn(X0))a

and ¥° = (1,1,---,1), this implies that X°,C% 2° w9 is a
fixed point of Y.

Meanwhile, let (XO7 0,00, WO) be a fixed point of X
where X0 = (29,29, ,22), % = (&§,69, -, %), 2° =
(w?,wg, e ,w%), 0 = (w‘f,wg, e ,zp%) are vectors spec-
ify the state values of the fixed point in vertex sets Vi, Vo, V3
and V4, respectively. Set the fixed point as the initial state of
the network. Since (XO7 cv, 0, LZ'/O) is a fixed point of the
network, we have for vertices x; in V7 that

wf = a;(1) = fi(X°,0° 2% w°) = &l - ¢) + &) - 7.

This implies that ) = 1,4 =1,2,--- ,n. From ¢{ = 1,

W) =1(1) = faromi1(X%, 00 2% 00) = wn (1),
we know that
wm (1) = 1.
Furthermore, since
m
WW(l) = fn+2m(X07CONQO>WO) = H ck(l)'
k=1
We can establish that
m
[T ex(1) =1
k=1

According to the definition of the vertex function of c;, we
have

0 ~0 ~H0 g0 0
Cj(l):fn+jo(X 70 ,.Q ,':[/ ):Cj(X )
This implies that

ﬁ (X% =1
j=1

and 0
f(X¥) =1
The proof is completed.

To illustrate, let us exam the example and the network in
Fig.A again. It is easy to see that X* = (1,1,1,1, 1) satisfies
F(X9). In the network, we have C° = (1+1,1+40,14+0+1) =
(1,1,1), 2° = (1,1,1) and ¥° = (1,1,1,1,1).
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