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摘要:近来作为自然和人造非线性动态网络的一种紧凑模型,布尔网络的研究受到广泛关注. 不动点和吸引子是
预测布尔网络长期行为的关键.本文针对具有少量基本回路的布尔网络,提出了确定不动点的算法. 我们的方法是
基于构成反馈顶点集的变量所满足的一组方程. 作为应用,我们还给出了检验这类布尔网络全局稳定性的充要条
件.
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Fixed points of Boolean networks with small number
of elementary circuits
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Abstract: Boolean networks have been studied intensively recently due to their importance as a compact model for
understanding both natural and man-made nonlinear dynamic networks. Fixed points and attractors are keys to predict long
term behavior of Boolean networks. We develop algorithms for finding fixed point of Boolean networks with small number
of elementary circuits, based on a set of equations on variables forming a feedback vertex set. As an application, we also
present a sufficient and necessary condition for checking the global stability for such networks.
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1 Introduction
Boolean networks have been studied intensively re-

cently due to their importance as a compact model for
understanding both natural and man-made nonlinear dy-
namic networks. Fixed points and attractors are key
to predict long term behavior of Boolean networks.
Among literature, using semi-tensor product, [1] es-
tablishes a powerful systematic theory on analysis and
control Boolean networks and provides a linear char-
acterization of fixed points; [2] employs graph theo-
retic methods to analyze complexity of Boolean net-
works; [3] introduces scalar equations to find attractors
of Boolean networks and demonstrated inspiring simple
and beautiful results. Unfortunately, since many anal-
ysis and control problems of Boolean networks have
been shown to be NP–hard (see [2] for a list of them),
it is important to identify tractable special classes of
Boolean networks.

In this paper, we propose efficient fixed point find-
ing algorithms for Boolean networks with small num-
ber of elementary circuits. Our method is based on a
set of equations on variables forming a feedback vertex
set[4]. Our result extends the work on a special class of
Boolean networks known as Regulatory Boolean net-

works (REBN)[5] to general Boolean networks. As an
application, we also present a sufficient and necessary
condition for checking global stability[6] for such net-
works. It should be noted that the problem of finding
minimum feedback vertex set for general Boolean net-
works is NP–complete[7]. In practice, it is sufficient to
work on Boolean networks with small number of cir-
cuits.

The remaining part of the paper is organized as fol-
lows. In Section 2, we introduce notations and defini-
tions to set up the fixed point problem for Boolean net-
works. In Sections 3, we will present the main results:
conditions for finding fixed points of Boolean networks
and checking global stability on reduced sets of vari-
ables (feedback vertex sets). In Section 4, we will show
in general the fixed point problem for Boolean networks
with many elementary circuits is NP–complete. In Sec-
tion 5, we provide an example to demonstrate the theo-
retical results. Finally, Section 6 concludes the paper.

2 Definitions and system description
Definition 1 A (synchronized) Boolean network

Σ is a directed graph G = (V, E) whose individ-
ual vertices i are attached a Boolean state variable xi,
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i ∈ V = {1, · · · , n} and updated by a Boolean equa-
tion

xi(t + 1)=fi(xj(t), j∈Γ (i)), ∀i∈V, t=0, 1, · · · ,

(1)

where fi : B|Γ (i)|→B is a Boolean function with B=
{0, 1}, and Γ (i) = {j ∈ V |(j, i) ∈ E} is the set of
head vertices of input arcs of vertex i, |Γ (i)| is the size
of Γ (i). Some time, we also use the notion fi(X) to
indicate fi as a function of X = (x1, x2, · · · , xn) with
the understanding that fi(X) = fi(xj(t), j ∈ Γ (i)).
The set of functions F = {fi, i ∈ V } is called vertex
function set of Σ. We also use the vector form of the
state equation Eq.(1),

X(t + 1) = F (X(t)), t = 0, 1, · · · . (2)

We use the notations GΣ, VΣ, EΣ, ΓΣ(i), FΣ to em-
phasis the dependent of G,V,E, Γ (i), F on Σ.

Definition 2 A sequence of vertices P = i1, i2,
· · · , ip is called a path of Σ if (ij, ij+1) ∈ EΣ for
j = 1, 2, · · · , p− 1.

Definition 3 A path C = i1, i2, · · · , ic is called
a circuit of Σ if i1 = ic.

Definition 4 A circuit C = i1, i2, · · · , ic is
called an elementary circuit of Σ if ij 6= ik for all
j, k = 1, 2, · · · , c− 1 if j 6= k.

Definition 5 A network is called acyclic, if it has
no circuits.

Definition 6 A set of vertices Ve is called a feed-
back vertex set if the network generated by removing
the vertices in Ve and arcs related to vertices in Ve is
acyclic.

Definition 7 A state X = (x1, x2, · · · , xn) ∈
Bn is called a fixed point of Σ, if xi = fi(Xi), for all
i ∈ VΣ and Xi = (xi

j, j ∈ ΓΣ(i)), or in vector form

X = F (X).
Definition 8 A sequence of states X1, X2, · · · ,

Xc ∈ Bn is called an attractor of Σ, if xj
i = fi(Xj−1),

for all i ∈ VΣ , j = 2, · · · , c and x1
i = fi(Xc), for all

i ∈ VΣ , or in vector form

Xj = F (Xj−1), j = 2, · · · , c

and
X1 = F (Xc).

3 Elementary circuits and simplified condi-
tions
Without loss of generality, we assume that the

Boolean network under study is strongly connected (for
all pair of vertices i, j, there is at least one path from i
to j in the network).

We can define a new network from a given strongly
connected Boolean network.

Algorithm 1 Constructing a new network Σ′

based on a feedback vertex set Ve.

Input: a strongly connected Boolean network Σ
whose graph is G = (V, E) and a feedback vertex set
Ve (formed by picking one vertex from each elementary
circuit of G).

Output: an Boolean network Σ′ having graph G′ =
(V ′, E′) with new set of vertex functions F ′.

Step 1 Extend the network by adding a copy of
vertex set Ve = {i1, · · · , ine} such that the new net-
work has n + ne vertices and assume the added ver-
tices have indices n + 1, n + 2, · · · , n + ne respec-
tively. Or formally, V ′ = V ∪ V ′

e where V ′
e = {n+1,

n + 2, · · · , n + ne}.
Step 2 Redirect the arcs pointing to vertices in Ve

to vertices in V ′
e = {n + 1, n + 2, · · · , n + ne} and

add single input arcs from vertices in V ′
e to Ve. For-

mally, we set E′ = E\I(Ve) ∪ O(V ′
e ) ∪ D(V ′

e , Ve)
where I(Ve) = {(i, j)|i ∈ V, j ∈ Ve, (i, j) ∈ E},
O(Ve) = {(i, j + n)|i ∈ V, j ∈ Ve (i, j) ∈ E}, and
D(V ′

e , Ve) = {(n + i, i)|i ∈ Ve}.
Step 3 The set of vertex functions F ′ is obtained

by associating vertex functions of vertices in V ′
e with

the vertex functions in Ve and change vertex func-
tions of vertices in Ve to the single input function
fi(xn+i)′ = xn+i, for i ∈ Ve. Formally, we set
f ′i = xn+i if i ∈ Ve; f ′i = fi if i ∈ V \Ve; f ′n+i = fi if
i ∈ Ve.

Remark An important property of the constructed new
Boolean network Σ′ is that it can be used to find all fixed points
of Σ as shown in the following theorem.

Theorem 1 X is a fixed point of Σ iff (X, Xe)
is a fixed point of Σ′, where Xe = (xi, i ∈ Ve) and Σ′

is defined by Algorithm 1.

Proof It is straight forward to verify based on the
construction of Σ′.

Algorithm 2 Constructing tree function for ver-
tices in V ′

e in Σ′.
Input: a network Σ′.
Output: tree functions of all vertices in V ′

e .
Step 1 Remove the arcs in D(V ′

e , Ve) and obtain
an acyclic network Σ′

a.
Step 2 Define a vertex set A = ∅.
Step 3 Assign each vertex of Ve by the tree func-

tion fT
i (Xe) = xi, i ∈ Ve and add Ve to A.

Step 4 Assign each vertex i whose input arcs are
directly from vertices in A (or equivalently, ΓΣ′(i) ⊂
A) the tree function fT

i (Xe) = fi(XT
e ) to vertex i

where XT
e = (fT

j (Xe), j ∈ ΓΣ′(i)). Add vertex i
to the set A.

Step 5 Repeat Step 4 until all vertices in V ′
e are

assigned.
For the set of fixed point equations in Σ′, we have

the following equivalent form.

Theorem 2 Let X∗ be a fixed point of Σ and let
X∗

e = (x∗i , i ∈ Ve). Then X∗
e satisfies the following set
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of equations:
x∗i = fT

n+i(X
∗
e ), i ∈ Ve, (3)

where fT
n+i is the tree function obtained for V ′

e by Al-
gorithm 2.

Proof Note the assignment of tree function to ver-
tices in Algorithm 2 is according to the topology sorting
of vertices in Σ′

a. We will prove first that

fT
i (X∗

e ) = x∗i , ∀i ∈ V ∪ V ′
e .

This is true for vertices Ve according to the definition
of the tree functions fT

i for vertices in Ve. Next we use
induction to show that this is also true for all vertices in
V \Ve. Assume for vertices i, whose topology sorting
position is no more than k > 0, it is true that

fT
i (X∗

e ) = x∗i .

We will prove that for vertex j with topology sorting
position k + 1, it is also true that

fT
j (X∗

e ) = x∗j .

In fact, we have
ΓΣ′(j) = ΓΣ(j),
fT

j (X∗
e )=fj(fT

i (X∗
e ), i∈ΓΣ(j))=

fj(x∗i , i ∈ ΓΣ(j)) = x∗j .

The last equation is due to the fact that X∗ is a fixed
point of Σ. According to induction, we thus established
that fact that

fT
i (X∗

e ) = x∗i , ∀i ∈ V.

Then for all vertices i ∈ V ′
e , we have i− n ∈ Ve ⊂ V ,

fT
i (X∗

e ) = fi−n(fT
j (X∗

e ), j ∈ ΓΣ(i− n)) = x∗i−n.

The proof is completed.
Remark The importance of Theorem 2 lies in the key

observation that the number of equations to check for a fixed
point now reduces to the size of Ve. This extends the result for
a special subclass of Boolean networks known as regulatory
Boolean networks (REBN)[5] to the general Boolean networks.
If the number of elementary circuits is small, the size of feed-
back vertex set is also small, and the finding of fixed point is
tractable. It is possible to apply our results to networks with
many arcs (at the order of O(n2)) since there are orientations
of complete graphs such that they have no elementary circuits,
i.e., being acyclic (see e.g. [8]). We can employ the power-
ful semi-tensor production theory developed in [1] to check the
conditions in Theorem 2. We will demonstrate this in Section
5.

Theorem 3 Let X∗
e = (x∗i , i ∈ Ve) be a vector

satisfying the following set of equations:
x∗i = fT

n+i(X
∗
e ), i ∈ Ve, (4)

where fT
i is the tree function defined by Algorithm 2.

Let X∗ = (x∗1, x
∗
2, · · · , x∗n) be a vector constructed as

x∗i = fT
i (X∗

e ), i ∈ V.

Then X∗ is a fixed point of Σ.

Proof We use induction to prove

fi(x∗j , j ∈ ΓΣ(i)) = x∗i , i ∈ V.

Because
fT

n+i(X
∗
e ) = fi(fT

j (X∗
e ), j ∈ ΓΣ(i)), i ∈ Ve,

x∗i = fT
n+i(X

∗
e ), i ∈ Ve,

and
x∗i = fT

i (X∗
e ), i ∈ V,

we have
x∗i = fi(fT

j (X∗
e ), j ∈ ΓΣ(i)) =

fi(x∗j , j ∈ ΓΣ(i)), i ∈ Ve.

Assume for i whose topology sorting position is no
more than k > 0 it holds that

fi(x∗j , j ∈ ΓΣ(i)) = x∗i .

We will prove that for vertex with topology sorting po-
sition is k + 1, it is true that

fi(x∗j , j ∈ ΓΣ(i)) = x∗i .

In fact,
x∗i = fT

i (X∗
e ) = fi(fT

j (X∗
e ), j ∈ ΓΣ(i)) =

fi(x∗j , j ∈ ΓΣ(i)).
The proof is completed.

Remark Algorithm 2 can be applied to find all attrac-
tors if we unfold the network k-times starting from Ve (denoted
as Σk) until the tree functions repeats. Thus the algorithms
in this section for fixed points can be extended to the study of
global stability of the network.

Definition 9 A network is said to be globally sta-
ble, if it has a fixed point as its only attractor.

Corollary 1 Let Ve is a feedback vertex set of a
strongly connected network Σ. Then the network Σ is
globally stable, iff Σ′ has a single fixed point and Σk,
k > 2 do not have any fixed point.

Remark The number of k to check in the corollary is
bounded above by 2|Ve|2 +1 since the set of Boolean functions
on B|Ve| are finite and all tree functions generated by unfolding
finite times belong to this set. When k is small, we can employ
the semi-tensor production theory to check the conditions in
Corollary 1. This will be demonstrated by example in Section
5.

4 NP–hardness of Boolean networks with
many elementary circuits
In this section, we show that the fixed point problem

for Boolean networks with many elementary circuits is
NP–complete. The proof is based on a reduction to the
well-known NP–complete problem 3–SAT.

Theorem 4 For Boolean networks with no less

than
1
c
n elementary circuits (

1
c

> 0.5), the problem of

whether they have fixed points is NP–complete.

Proof Please see the Appendix.
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5 A numerical example
In this section, we give an example to show how

the proposed algorithm works. The example comes
from [9] as shown in Fig.1. It is an 8 vertex network
Σ with vertex functions are given as

A(t + 1) = C̄(t), B(t + 1) = Ā(t),
C(t + 1) = H(t) · B̄(t), D(t + 1) = C(t),
E(t + 1) = D(t), F (t + 1) = Ē(t),
G(t + 1) = D(t) + E(t), H(t + 1) = G(t) · F̄ (t).

Here and below, we use A,B, C, D, E, F, G, H to
label the 8 state variables x1, x2, · · · , x8 and vertex
1, 2, · · · , 8 to avoid complicated indices. So, for in-
stance, by A(t+1) = C̄(t) we mean x1(t+1) = ¯x3(t)
which implies the vertex function f1 of vertex 1 is
f1(xi, i ∈ Γ (1)) = x̄3, where Γ (1) = {3}.

Fig. 1 An 8 vertex example

The network is strongly connected. It has a feed-
back vertex set Ve = {C, E}. In fact the removal
of Ve and related arcs (input or output arcs of vertices
C and D) will lead to an acyclic graph. Apply Al-
gorithm 1 and we obtain Σ′ as shown in Fig.2 where
V ′

e = {C ′, E′} are the added vertices and dashed arcs
are the set D(V ′

e , Ve).

Fig. 2 Constructed Σ′ for the network in Fig.1

Starting from Ve = {C,E}, in Σ′, we apply Algo-
rithm 2 to obtain the tree functions for each vertex. The
result is

fT
A (C, E) = C̄, fT

D(C, E) = C,

fT
F (C, E) = Ē, fT

B (C, E) = f̄T
A = C,

fT
G(C, E) = fT

D(C, E) + E = C + E,

fT
H(C, E) = fT

G(C, E) · f̄T
F (C, E) =

(C + E) · E = E,

fT
C′(C,E) = fT

H(C,E) · f̄T
B (C, E) = E · C̄,

fT
E′(C, E) = fT

D(C, E) = C.

Then according to Theorem 2, all fixed points of Σ
satisfy the following set of equations given by the tree
functions on V ′

e :

C = fT
C′(C, E) = C̄ · E,

E = fT
E′C, E) = C.

(5)

Since the size of Ve is small, it is ideal to employ semi-
tensor production tools developed in [1] to do the anal-
ysis. As usual, we identify logical 1 and 0 respectively
with the vectors

1 ∼
[
1
0

]
, 0 ∼

[
0
1

]
.

Let δi
n be the i-th column vector of the identity ma-

trix In of dimension n. For example, δ1
2 =

[
1
0

]
and

δ2
2 =

[
0
1

]
. Let ∆n = {δi

n|, i = 1, 2, · · · , n} be the set

of columns of the identity matrix In. A matrix L having
r rows is called a logical matrix if its columns belong to
∆n. If a logic matrix

L = [δi1
2 δi2

2 · · · δim

2 ]

for notational compactness, we write

L = δn[i1 i2 · · · im].

A 2 × 2r matrix Mσ is said to be the structure matrix
of the r-ary logical operator σ if

σ(p1, · · · , pr) = Mσ n p1 n · · ·n pr.

We have
Mn = δ2[2 1],
Mc = δ2[1 2 2 2].

So, the structure matrix form for Eq.(5) is

C = McMnCE = δ2[2 2 1 2]CE,
E = C,

(6)

and we have

CE = LCE = δ2[2 2 1 2]CEC.

We have L = McMnCEC = δ2[2 2 1 2](I2 ⊗
W[2])Mr = δ4[3 3 2 4], where W[2] is a swap matrix
and Mr is a reduce matrix. It is easy to see due to fixed
point theory developed in [1] (Chapter 5) that the num-
ber of solutions to set of equations Eq.(6) and Eq.(5)
is equal to tr(L). Thus, they have a unique solution
(C,E) = (0, 0) since tr(L) = 1. In fact, the only one
appears on the diagonal of L is at δ4

4 ∼ (0, 0). Based
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on the solution, we can determine a corresponding fixed
point of the original network Σ based on the evaluation
of the tree functions at (C, E) = (0, 0) as

fT
A (0, 0) = 0̄ = 1, fT

D(0, 0) = 0,

fT
F (0, 0) = 0̄ = 1, fT

B (0, 0) = 0,

fT
G(0, 0) = 0 + 0 = 0, fT

H(0, 0) = 0.

The fixed point of Σ is (A,B, C, D, E, F, G, H) =
(1, 0, 0, 0, 0, 1, 0, 0).

It is clear Σ has a single fixed point. We further
check whether it is globally stable. To do this, we ap-
ply the corollary in Section 3. The k-th unfolding of Σ
gives the k-fold composition of the tree functions

fT
n+i(Xe)

as
gk

i (Xe) = fT
n+i(g

k−1
i (Xe))

with g1
i (Xe) = fT

n+i(Xe). Again, we employ semi-
tensor product to facility the check of solutions of

C = gk
C(C, E),

E = gk
E(C, E),

when k = 2, 3, · · · . It is easy to see that we only need
to check tr(Lk), k = 2, 3, · · · . We have L2 = δ4[2 2
3 4] with tr(L2) = 3 and L3 =L=δ4[3 3 2 4]. Since
L3 = L, we stop at k = 3. From tr(L2) = 3 we know
that the network has two attractors beside the fixed point
found before, and the system is not globally stable. The
two solutions to CE = L2CE are δ2

4 and δ3
4 which cor-

responding to (C, E) = (1, 0) and (C,E) = (0, 1).

6 Conclusions
In this paper, we study the fixed points of Boolean

networks with small number of elementary circuits. Re-
duced size vertex sets known as feedback vertex sets
composed by picking up one vertex from one elemen-
tary circuits are used to find all fixed points of original
networks. As an application, we introduce conditions to
check global stability of such networks. We also prove
the negative result that testing whether networks with
large number of elementary circuits (no less than half of
vertex set size) have fixed points is NP–complete. Fu-
ture work includes the study of control and observation
of Boolean networks with small number of elementary
circuits. It is also interesting to investigate the stabiliza-
tion problems asked in [6].
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Appendix The proof of Theorem 4
Let x1, x2, · · · , xn are n Boolean variables. Let c1, c2,

· · · , cm are a set of clauses defined by multiplication of three or
less letters or their negation from x1, x2, · · · , xn. The 3–SAT
problem is to determine, for the Boolean function f defined by
the sum of the clauses as

f(X) =
mP

j=1
cj(X), (A1)

whether there is an assignment of X = (x1, x2, · · · , xn) on
Bn such that

f(X) = 1.

Here we use cj(X) to emphasis the dependence of cj on X .
An example is the function f(x1, x2, x3, x4, x5) = c1 · c2 · c3
where c1 = x1 + x2, c2 = x2 + x̄3,c3 = x3 + x̄4 + x5, or

f(x1, x2, x3, x4, x5) =

(x1 + x2) · (x2 + x̄3) · (x3 + x̄4 + x5), (A2)

where ā stands for the negation of a. It is straightforward to see
the problem in NP since the check of whether a given vector X

is a fixed point is polynomial.
To proof the NP–hardness part of the theorem, we con-

struction a Boolean network Σf for the Boolean function f de-
fined in Eq.(A1) as follows. The Boolean network Σf has a ver-
tex set V = {1, 2, · · · , 2n+2m} of size n+m+m+n vertices
which is divided as four subsets V = V1∪V2∪V3∪V4. For ver-
tices in the set V1 = {1, 2, · · · , n}, we label their state variables
as x1, x2, dots, xn. For vertices in the set V2 = {n + 1, n +

2, · · · , n+m}, we label their state variables as c1, c2, · · · , cm.
For vertices in the set V3 = {n+m+1, n+m+2, · · · , n+m+

m}, we label their state variables as σ1, σ2, · · · , σm. For ver-
tices in the set V4 = {n+2m+1, n+2m+2, · · · , n+2m+n},
we label their state variables as ψ1, ψ2, · · · , ψn. It has arc set
defined as E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5 ∪ E6 ∪ E7 with

E1 = {(i, i)|i ∈ {1, 2, · · · , n}},
E2 = {(i, n + j)|i ∈ {1, 2, · · · , n},

xi or its negation appears in cj},
E3 = {(n + m + j, n+m+j+1)|j∈{1, 2, · · · , m− 1}}

∪{(n + 1, n + m + 1)},
E4 = {(n + m + j, n + 2m + j)|j ∈ {1, 2, · · · , m}},
E5 = {(n + m + 2m, n + 2m + 1)},
E6 = {(n+2m+i, n+2m+i+1)|i∈{1, 2, · · · , n− 1}},
E7 = {(n + 2m + i, i)|i ∈ {1, 2, · · · , n}}.
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The vertex function is defined as: for vertex i in V1 with state
variable xi,

fi = xi · ψi + x̄i · ψ̄i;

for vertex n + j in V2 with state variable cj ,

fn+j = cj ;

for vertex n + m + j in V3 with stat variable ωj ,

fn+m+1 = c1,

fn+m+j = ωj−1 · cj

if j = {2, · · · , m}; for vertex n+2m+i in V4 with stat variable
ψi,

fn+2m+1 = ωm,

fn+2m+i = ψi−1

if i = {2, · · · , n}. For vertices in V3, we can see easily their
vertex functions can also be expressed as

fn+m+j =
jQ

k=1
ck.

Fig. A Boolean network solving 3–SAT problem,
a 5 variable example

To illustrate, we provide the construction for the example
in Eq.(A2) in Fig.A.

Notice that the constructed Boolean network Σf has at
least n + m elementary circuits. So the number of elemen-
tary circuits compared with the scale of the network is at least
n + m

2n + 2m
= 0.5. Below we will show that with such a net-

work, we can solve the 3–SAT problem by testing whether the
network has a fixed point.

On one hand, if there is an assignment of X0 =

(x0
1, x0

2, · · · , x0
n) such that f(X0) = 1, then we know there

must be at least one j0 such that cj0(X
0) = 1, as a result

mP
k=1

ck(X0) = 1. In the Boolean network Σf , if we set the ini-

tial values of vertices in V1 as x0
1, x0

2, · · · , xn, the initial values
of vertices in V2 as c1(X

0), c2(X
0), · · · , cn(X0), the initial

values of vertices in V3 as ωj(0) =
jQ

k=1
ck(X0), j = 1, · · · , m

the initial values of vertices in V4 as ψi(0) = 1, i = 1, · · · , n

then for vertex i in V1, we have

xi(1) = xi(0) · ψi(0) + x̄i(0) · ψ̄i(0) =

xi(0) · 1 + x̄i(0) · 0 = xi(0) = x0
i ;

for vertex n + j, we have

cj(1) = ci(X(1)) = cj(X
0) = cj(0);

for vertex n + m + j, we have

ωj(1) =
jQ

k=1
ck(X(1)) =

jQ
k=1

ck(X0) = ωj(0);

for vertex n + 2m + i, we have

ψi(1) = ψ1(1) = ωm(1) = ωm(0) = 1.

If we denote

C0 = (c1(X
0), c2(X

0), · · · , cn(X0)),

Ω0 = (
jQ

k=1
ck(X0), j = 1, 2, · · · , m)

and Ψ0 = (1, 1, · · · , 1), this implies that X0, C0, Ω0, Ψ0 is a
fixed point of Σf .

Meanwhile, let (X0, C0, Ω0, Ψ0) be a fixed point of Σf

where X0 = (x0
1, x0

2, · · · , x0
n), C0 = (c01, c02, · · · , c0m), Ω0 =

(ω0
1 , ω0

2 , · · · , ω0
m), Ψ0 = (ψ0

1 , ψ0
2 , · · · , ψ0

n) are vectors spec-
ify the state values of the fixed point in vertex sets V1, V2, V3

and V4, respectively. Set the fixed point as the initial state of
the network. Since (X0, C0, Ω0, Ψ0) is a fixed point of the
network, we have for vertices xi in V1 that

x0
i = xi(1) = fi(X

0, C0, Ω0, Ψ0) = x0
i · ψ0

i + x̄0
i · ψ̄0

i .

This implies that ψ0
i = 1, i = 1, 2, · · · , n. From ψ0

1 = 1,

ψ0
1 = ψ1(1) = fn+2m+1(X

0, C0, Ω0, Ψ0) = ωm(1),

we know that
ωm(1) = 1.

Furthermore, since

ωm(1) = fn+2m(X0, C0, Ω0, Ψ0) =
mQ

k=1
ck(1).

We can establish that
mQ

k=1
ck(1) = 1.

According to the definition of the vertex function of cj , we
have

cj(1) = fn+j0(X
0, C0, Ω0, Ψ0) = cj(X

0).

This implies that mQ
j=1

cj(X
0) = 1

and
f(X0) = 1.

The proof is completed.

To illustrate, let us exam the example and the network in
Fig.A again. It is easy to see that X0 = (1, 1, 1, 1, 1) satisfies
f(X0). In the network, we have C0 = (1+1, 1+0, 1+0+1) =

(1, 1, 1), Ω0 = (1, 1, 1) and Ψ0 = (1, 1, 1, 1, 1).
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