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摘要:含邻域Dubins旅行商问题(DTSPN)是一个具有挑战性的混合变量优化问题,它源于Dubins车的运动规划,
例如轨迹受曲率约束的高速飞行器. 本文在对DTSPN的相关研究进行综述的基础上,提出两种混合编码差分进化
算法来有效求解DTSPN,这两种算法分别采用完整编码方案和部分编码方案.完整编码差分进化算法在整个解空
间中搜索最优的Dubins路径,有利于充分探索搜索空间. 通过对Dubins车在相邻两点间移动时的终端朝向进行松
弛,本文提出一种部分编码差分进化算法,在解的质量和计算时间方面实现了较好的权衡. 比较性计算实验包含两
种差分进化算法以及现有文献中的两种先进DTSPN算法,实验结果表明基于终端朝向松弛和部分编码的差分进化
算法能够以较小的计算代价得到DTSPN的高质量解,明显优于其他算法.
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Hybrid encoding based differential evolution algorithms for Dubins
traveling salesman problem with neighborhood
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Abstract: The Dubins traveling salesman problem with neighborhood (DTSPN) is a challenging mixed-variable opti-
mization problem, stemming from the motion planning of a Dubins vehicle, e.g. an aircraft moving at a high speed, whose
trajectory is restricted by curvature constraints. In this paper, a survey result of DTSPN is firstly provided; then, in order
to solve DTSPN efficiently, we propose two hybrid encoding-based differential evolution (DE) algorithms, which adopt
complete encoding scheme and partial encoding scheme, respectively. The DE algorithm with complete encoding searches
for optimal Dubins tours in the entire solution space, in favor of a sufficient exploration of the search space. By relaxing
the terminal heading of a Dubins vehicle when it moves from one point to another, a novel DE with partial encoding is
proposed to achieve a better tradeoff between solution quality and computational time. Comparative experiments, involv-
ing the two DE algorithms and two state-of-the-art DTSPN algorithms identified in literature, show that the DE based on
terminal heading relaxation and partial encoding can find high-quality solutions to DTSPN with lower computation cost,
and has remarkable advantages over the other algorithms.

Key words: Dubins’ vehicle; path planning; curvature constraint; Dubins traveling salesman problem with neighbor-

hood; differential evolution

1 Introduction
Kinematic constraints of mobile agents such as un-

manned aerial vehicles (UAVs) and autonomous under-
water vehicles (AUVs) impose severe restrictions on the
feasibility of their planned paths[1–3]. Therefore, in the
motion planning of mobile agents, it is very important
to take the kinematic constraints into account so that
the planned paths can be implemented or followed. As

a common approximate model for high-speed mobile
agents (e.g., fixed-wing aerocrafts), a Dubins vehicle
captures a nonholonomic planar vehicle, moving at a
constant speed, whose trajectories are twice differen-
tiable curves of bounded curvature. In the literature, the
kinematic constraint of a Dubins vehicle is termed as
maximal curvature constraint, minimal turning radius
constraint, or yaw rate constraint for UAV[2, 4–5]. The
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dynamics of a Dubins vehicle can be described as fol-
lows: 




ẋ = v cos θ,
ẏ = v sin θ,

θ̇ =
v

r
u, u ∈ [−1, 1],

v̇ = 0,

(1)

where (x, y) and θ are the planar coordinate and the
heading of the vehicle respectively, constituting the
configuration of a Dubins vehicle (also termed Dubins
state); v and r are the speed and the minimal turning
radius of the vehicle respectively; and u is the available
control.

It is well known that there are six possible shortest
path patterns, termed Dubins paths, for any transition
from one Dubins state to another: {LSL, RSR, LSR,
RSL, LRL, RLR} where L means turning left with the
minimal turning radius (u = 1), R means turning right
with the minimal turning radius (u = −1), both L and
R lead to circular arcs, and S means moving along a
straight line (u = 0)[6]. Although it is argued that the
bang-bang control with respect to the optimal path may
be impractical due to instantaneous step changes of the
control input, the issue can be alleviated by choosing
a larger minimal turning radius to make vehicles fol-
low the planned trajectories with only small excursions
at transition points[7]. Recently, Sanfelice et al. ex-
tended the results and derived the necessary conditions
for minimum-time curvature-constrained tours[8].

The Dubins traveling salesman problem with neigh-
borhood[9–10] is a generalized variant of the traveling
salesman problem for a Dubins vehicle (DTSP) which
has been proved NP-hard[11–12]. In DTSPN, the vehi-
cle is expected to pass multiple regions in a shortest
time. Assume that the vehicle has n regions to visit,
which are denoted by R1,R2,· · · ,Rn, respectively. A
general mathematical formulation of DTSPN is given
as follows:




min D(π,z,h) =
n−1∑
i=0

d(zπi
, zπi+1 , hπi

, hπi+1 , r)+

d(zπn
, z0, hπn

, h′0, r),
π = [π1 π2 · · · πn], πi ∈ {1, 2, · · · , n},
z=[z1 z2 · · · zn], zi∈Ri, i=1, 2,· · ·, n,

h = [h1 h2 · · · hn; h′0],
hi ∈ [0, 2π), i = 1, 2, · · · , n.

(2)

where D(π,z,h) is the total length of a Dubins tour
that needs to be minimized; π is a permutation of all
regions, and π0 = 0 corresponds to the starting point;
zi is a waypoint chosen from Ri(i = 1, 2, · · · , n); hi

is the heading of the vehicle at the waypoint zi(i =
1, 2, · · · , n); in some cases (e.g., in UAV’s reconnais-
sance task), the heading of the vehicle may be fixed or
specified within a small range for the purpose of ob-
serving targeted objects in an appropriate direction[13];
[zi, hi] is the configuration of the vehicle; z0 and h0 are
the initial position and the initial heading of the vehi-
cle, respectively; h′0 is the heading of the vehicle when
returning to the starting position; if it is not required to
return to the origin, the final term of the objective func-
tion will be removed; besides, h′0 may be fixed in some
scenarios even if the vehicle has to return to the ori-
gin[14]. In both cases, h′0 will not be included in the vec-
tor of decision variables h; d(zπi

, zπi+1 , hπi
, hπi+1 , r)

is the Dubins distance between the two configurations
[zπi

, hπi
] and [zπi+1 , hπi+1 ] , i.e., the length of the short-

est Dubins path, which can be derived directly from the
conclusions in the literature [6]; r is the minimal turn-
ing radius of the vehicle.

The difference between DTSP and DTSPN lies in
that the vehicle is required to pass specified waypoints
in DTSP rather than regions in DTSPN. The goal of
DTSP is to find the shortest Dubins tour passing all
waypoints by optimizing the visiting order π and the
heading h of the vehicle at each waypoint, without
considering the choice of the waypoints (i.e., the op-
timization w.r.t. z). Generally, DTSPN combines the
features of DTSP and traveling salesman problem with
neighborhood (TSPN)[15–16]. From the perspective of
problem solving, DTSPN poses more challenge for the
motion planning of mobile agents. As compared with
DTSP, very few studies regarding DTSPN are reported
in the literature. In the following, we will review previ-
ous research about both DTSPN and DTSP since they
share much similarity in model features and resolution
methods.

The main difficulty of solving DTSP or DTSPN
stems from the dependence of the point-to-point dis-
tance on the headings of the vehicle, which need to
be optimized together with the visiting order of all
waypoints[17–18]. In contrast, for most common trav-
eling salesman problems (TSPs), e.g., the Euclidean
TSP[19–20], the distance between any two waypoints can
be determined prior to optimization, and the focus of
finding the shortest path is on determining the best visit-
ing order of waypoints. Generally, the resolution meth-
ods for DTSP can be grouped into three categories:
decoupling methods (decomposition strategy), transfor-
mation methods, and direct search methods.

The decoupling methods separate the optimization
of the visiting order of waypoints from vehicle head-
ings. For example, the alternating algorithm, proposed
by Savla et al., first identifies the visiting order by
solving a Euclidean TSP which measures the distance
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between any two waypoints by Euclidean metric, ne-
glecting the curvature constraint[1, 11, 21]. At the second
step of the alternating algorithm, the vehicle headings
will be determined by a simple rule which retains all
odd-numbered edges and replaces all even-numbered
edges with minimum-length Dubins paths preserving
the identified visiting order. Similar decoupling meth-
ods which determine the visiting order based on a Eu-
clidean TSP were also adopted in the works[4, 14, 22].
However, these works vary with the idea of determin-
ing the vehicle headings and generating the final Du-
bins tour. For example, Rathinam et al. employed
Christofides approximation algorithm to determine the
visiting order, and the vehicle headings are derived
from a constructive procedure which relaxes the termi-
nal heading for any point-to-point movement[4]. Ober-
lin et al. applied a split dual algorithm to identify the
visiting order first, and then employed dynamic pro-
gramming to obtain the vehicle headings, finally pro-
ducing a Dubins tour[22]. Macharet et al. proposed a
three-stage decoupling method to solve DTSPN, which
determines sequentially the position of waypoints, ve-
hicle headings, and finally the order of visiting different
regions[23]. Yazici constructs a Dubins tour by deter-
mining the visiting order to form a coarse tour which is
then smoothed by use of Dubins path patterns[24].

One obvious drawback of the decoupling methods
is that solving ETSP cannot guarantee the optimality
of the visiting order, and the obtained order separated
from vehicle headings may be far from desirable. The
performance and effectiveness of the decoupling meth-
ods have a strong dependence on the similarity be-
tween DTSP and its ETSP counterpart, which requires
a weak coupling between the visiting order and vehi-
cle headings. Recently, Goaoc et al. tried to use con-
vex optimization methods to derive the optimal Du-
bins tour with a given visiting order; however, it is re-
quired that the distance between consecutive waypoints
is large enough w.r.t. the minimum turning radius of
vehicles[17].

The transformation methods aim to find a solu-
tion to DTSP by solving a non-Euclidean TSP which
is transformed from the DTSP. The distance between
any two waypoints is measured by the length of the
shortest Dubins path instead of the Euclidean metric.
In order to derive the distance between any two way-
points, the vehicle heading at each waypoint has to be
determined beforehand. Le Ny and Feron proposed two
simple transformation methods to solve DTSP[18]. The
first method fixes all vehicle headings at zero while the
second method employs randomized headings. In both
cases, all Dubins distances can be computed with pre-
determined headings, and the resulting TSP, an asym-
metric TSP (ATSP) built on a directed graph, is solved

by Helsgaun’s implementation of the Lin-Kernighan
heuristic[25]. It was demonstrated that the randomized
version of Le Ny and Feron’s method performs gener-
ally better than the alternating algorithm proposed by
Savla et al.[21], especially in scenarios where the way-
points are densely distributed[2, 18, 26]. Le Ny also gen-
eralizes the two simple methods by discretizing the ve-
hicle headings and formulating a one-in-a-cluster TSP,
also known as generalized TSP (GTSP)[27], which is
further transformed into an ATSP[2]. The same idea was
also adopted by Oberlin et al.[19, 28]. A common virtue
of the transformation methods and decoupling methods
is that efficient TSP solvers such as the Concorde TSP
solver and the Lin-Kernighan heuristic (see [29]) can be
used to provide a high-quality solution to the resulting
TSP.

The direct search methods solve DTSP by optimiz-
ing the visiting order (permutation variables) and vehi-
cle headings (continuous variables) simultaneously in
the search space of mixed variables. Various optimiza-
tion algorithms can be applied to achieve the direct
search[30]. Obviously, this category of DTSP resolution
methods does not sacrifice DTSP’s model accuracy by
approximation or transformation since the coupling be-
tween the visiting order and vehicle headings is taken
into account. The challenge with direct search methods
is how to carry out an efficient optimization in a larger
search space of the mixed variables.

As for DTSPN, Obermeyer et al. proposed a ge-
netic algorithm based direct search method for the path
planning of a UAV performing reconnaissance of static
ground targets which is formulated into a DTSPN[9].
In contrast, transformation methods were more fre-
quently adopted to solve DTSPN. Obermeyer et al. pro-
posed two sampling-based roadmap methods to solve
a polygon-visiting Dubins traveling salesman problem
which is de facto a DTSPN[31–32]. Both methods sam-
ple a finite set of candidate entry poses composed of
the waypoints and the vehicle headings at the bound-
ary of each region. The first method, named resolu-
tion complete method, transforms the DTSPN into a
GTSP, and further uses Noon-Bean transformation to
convert it into an ATSP. In contrast, the second method
directly constructs an ATSP which treats each region as
a graph vertex and uses the average distance of all can-
didate directed edges between two regions as an inter-
region distance. The second method can be categorized
as a decoupling method. Zhang et al. also adopted a
sampling-based transformation method to construct a
roadmap and then solve a resulting ATSP by heuristic
search[33]. Isaacs et al. proposed a multi-step transfor-
mation method for DTSPN[10], which is similar to the
first method proposed by Obermeyer et al.[31]. Han-
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son et al. proposed a transformation method to solve
a reduced DTSPN in which a UAV is required to visit
multiple targets in an order specified a priori, and the
field-of-view of sensors equipped on UAVs is consid-
ered to achieve target observations[13]. The DTSPN is
transformed into a GTSP by discretizing sensors’ foot-
print.

In this paper, we proposed two versions of random-
key differential evolution algorithms to solve DTSPN.
It is the first effort to use the differential evolution algo-
rithm to solve DTSPN, though the algorithm has been
proven very powerful in global optimization and evolu-
tionary computation[34]. The first differential evolution
algorithm is a direct search method without sacrificing
DTSPN’s model accuracy by approximation or trans-
formation. The second one is proposed to reduce the
computational cost by relaxing the vehicle headings and
reducing the dimension of search space. Comparative
experiments show that the second algorithm has excel-
lent performance in terms of both solution quality and
computational cost.

The paper is structured as follows. Section 2 gives
a detailed DTSPN formulation which can describe the
path-planning problem originating from UAV’s multi-
point operations (e.g., information collection or deliv-
ery). Section 3 presents two hybrid-encoding-based dif-
ferential evolution algorithms to solve the DTSPN. One
is a direct search method and the other is a heading-
relaxation based method. Section 4 presents experi-
mental results and performance comparisons. Section
5 concludes the paper.

2 Problem formulation
The DTSPN formulation shown in (2) is just a tem-

plate. As for solving DTSPN, the neighborhood for
waypoints has to be determined beforehand. For exam-
ple, Obermeyer et al. define the neighborhood as a poly-
gon for UAV’s visual reconnaissance in urban terrain[9].
Hanson et al. define the neighborhood as a sector to fit
the footprint of sensors equipped on UAVs[13]. In this
paper, the neighborhood of each waypoint is defined as
a disk centered at the waypoint. The disk-shaped neigh-
borhood is especially suitable for capturing the effec-
tive communication range of static wireless platforms
such as ground units carrying wireless communication
devices in open areas. In particular, a specific scenario
for the DTSPN can be described as follows. A Du-
bins vehicle is required to visit n disk-shaped regions
in order to collect data from or/and deliver data to each
static wireless platform located at the center of its cor-
responding region (neighborhood). Besides, the vehicle
is also required to pass m specified points of interest in
a given order after it visits all regions and before it re-
turns to the origin. The specified points can be regarded

as surveillance sites whose visiting precedence is desig-
nated a priori. The formulation for the specific DTSPN
is presented as follows.





min D(π,z,h) =
n−1∑
i=0

d(zπi
, zπi+1 , hπi

, hπi+1 , r)+

d(zπn
, z′1, hπn

, h′1, r)+
m−1∑
i=1

d(z′i, z
′
i+1, h

′
i, h

′
i+1, r)+

d(z′m, z0, h
′
m, h′0, r),

π = [π1 π2 · · · πn], πi ∈ {1, 2, · · · , n},
z = [z1 z2 · · · zn], zi = (xi, yi) ∈ Ri,

Ri = {z|d(z, oi) 6 R}, i = 1, 2, · · · , n,

h = [h1 h2 · · · hn; h′1 h′2 · · · h′m; h′0],
hi ∈ [0, 2π), i = 1, 2, · · · , n.

(3)

where z′1, z
′
2, · · · , z′m are m points of interest which

will be visited in sequence by the vehicle, oi(i ∈
{1, 2, · · · , n}) is the center of the ith region (i.e., the
position of the ith wireless platform), d(z, oi) is the
Euclidean distance between z and oi, R is the radius
of each region, and the remaining denotations are the
same as those in (2). Note that the decision vari-
ables include three parts: the permutation of n re-
gions (π), the visiting positions (z), and the vehicle
headings at all visiting positions and points of interest
(h). Obviously, the DTSPN is a mixed-variable opti-
mization problem since π is a combinatorial variable
while z and h are continuous-valued variables. On
one hand, the combinatorial component disables apply-
ing traditional gradient-based optimization methods to
solve the DTSPN. On the other hand, the optimization
of continuous-valued components distinguishes the DT-
SPN from common TSPs, which makes it impossible to
use prevailing TSP problem-solvers to resolve DTSPN
directly. Therefore, for the simultaneous optimization
of the different types of variables, new techniques and
algorithms to deal with the mixed variables have to be
designed.

3 Differential evolution for DTSPN
As a population-based optimizer, differential evo-

lution has very good reputation in numerical optimiza-
tion, having been widely applied in scientific and en-
gineering research[35]. DE has shown excellent per-
formance in many numerical optimization competitions
including unconstrained single-objective optimization,
constrained optimization, and multi-objective optimiza-
tion[34]. Generally, DE includes three operations: dif-
ferential mutation, crossover and selection, following
the framework of genetic algorithms. The differential
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mutation that is based on the difference of individu-
als (solutions) is the main novelty of DE which is in-
spired by the Nelder-Mead Simplex method[35]. One
of the most successful DE variants is DE/rand/1/bin.
The following section provides a detailed description of
DE/rand/1/bin.
3.1 DE/rand/1/bin

In each generation of the evolution, each individual
in the population sequentially goes through differential
mutation, binominal crossover, and one-to-one tourna-
ment selection. As shown in (4), the differential muta-
tion takes a randomly selected individual (xr1) as a base
vector and uses two different individuals ( xr2 and xr3,
r1 6= r2 6= r3) from the current population to form
a difference vector. A mutant individual (vi) is formed
by the combination of the base vector and the difference
vector.

vi = xr1︸︷︷︸ +F · (xr2 − xr3)︸ ︷︷ ︸, (4)

base difference

where F is the so-called scaling factor, a general set-
ting for this factor is F ∈ (0, 2), and Storn and Price
suggest F ∈ [0.5, 1][35].

Then, the mutant individual vi =[vi,1 vi,2 · · · vi,D]
(D is the dimension of search space) will be combined
with the original individual xi = [xi,1 xi,2 · · · xi,D] to
form a trial vector ui = [ui,1 ui,2 · · · ui,D] as follows:

ui,d =
{

vi,d, if randd
i 6 CR or d = rni,

xi,d, otherwise.
(5)

where CR is the predefined crossover probability which
is usually set to a fixed value in the interval (0,1) or
changes dynamically within (0,1), randd

i is a random
number generated within (0,1), and rni is a number ran-
domly selected from the index set {1, 2, · · · , D} and
used to ensure that the trial vector ui is different from
the original individual xi.

Finally, the trial vector will compete against the
original vector to survive into the next generation [see
(6)]. The one-to-one tournament selection guarantees
that the fitness (objective value) of each individual does
not deteriorate.

xi =
{

ui, if f(ui) 6 f(xi),
xi, otherwise,

(6)

here f(·) is the objective function to be minimized.

3.2 DE with complete encoding (DE–CE)
As a first step to adapt DE to solve DTSPN, one has

to employ a suitable encoding scheme. The encoding
should cover the selection of waypoints, the ordering of
waypoints as well as the determination of vehicle head-
ings at all waypoints. For DE to achieve direct search

in the problem space of DTSPN, we employ a complete
solution encoding x = [z r h] where z and h are
defined in (3) and r = [r1 r2 · · · rn] (ri ∈ [0, 1] for
∀i ∈ {1, 2, · · · , n}) is a vector of random keys which
is used to determine the visiting order of waypoints.
The random key representation of a permutation orig-
inates from Bean’s work on genetic algorithms to solve
sequencing problems[36]. In order to translate (decode)
a random key vector into a real permutation, the ele-
ments of the vector will be sorted and the indexes of the
sorted elements in the vector will be used to generate
a permutation. For example, the elements of the vector
r = [0.3 0.1 0.2 0.7 0.5] will be sorted in a de-
scending order as 0.7, 0.5, 0.3, 0.2, 0.1 whose indexes
in the original vector are 4, 5, 1, 3 and 2, respectively.
Therefore, the resulting permutation is 4−5−1−3−2.

Since z and h are continuous-valued variables, they
can be integrated into the solution encoding directly,
without any decoding procedure. However, since each
component of z can only be located within its corre-
sponding region, i.e.,Ri(i ∈ {1, 2, · · · , n}) in (3), and
the components of h take values from [0, 2π), extra op-
erations are expected to guarantee that any new solu-
tions generated in the evolutionary process of DE will
not go beyond feasible regions. As the encoding scheme
involves both direct encoding and random key encod-
ing, we also term the encoding as a hybrid encoding.

Assume that DE maintains NP individuals in the
population. Denote the ith individual by xi = [zi ri

hi] with

zi = [zi,1 zi,2 · · · zi,n],
zi,j = (xi,j, yi,j), j = 1, 2, · · · , n,

ri = [ri,1 ri,2 · · · ri,n]

and

hi = [hi,1hi,2 · · · hi,n; h′i,1 h′i,2 · · · h′i,m; h′i,0].

Then, the procedure of the proposed DE for DTSPN is
presented as follows.

Step 1 Initialization. Randomly generate NP
individuals satisfying zi,j ∈ Rj , ri,j ∈ [0, 1], hi,j , h′i,k
∈ [0, 2π) for ∀i, j, k. Decode ri into its correspond-
ing permutation πi(i = 1, 2, · · · , NP ). For the ith
solution(i = 1, 2, · · · , NP ) which is determined by
zi, πi and hi, evaluate its objective value, i.e. the total
length of a Dubins tour.

Step 2 Main loop. For i = 1 to NP , apply
the differential mutation [see (4)] to the ith individual
xi = [zi ri hi] to generate a mutant individual vi =
[zv

i rv
i hv

i ] where

zv
i = [zv

i,1 zv
i,2 · · · zv

i,n],
rv

i = [rv
i,1 rv

i,2 · · · rv
i,n]



946 Control Theory & Applications Vol. 31

and

hv
i = [hv

i,1 hv
i,2 · · · hv

i,n; hv′
i,1 hv′

i,2 · · · hv′
i,m; hv′

i,0].

Then, the following three operations are implemented
to ensure that vi is a feasible individual.

zv
i,j = oj +

R

L
(zv

i,j − oj), if L > R, (7)

rv
i,j = max{0,min{1, rv

i,j}}, (8)

hv
i,j = hv

i,j mod 2π, (9)

hv′
i,k = hv′

i,k mod 2π, (10)

where j =1, 2,· · ·, n, k =0, 1,· · ·,m, L=d(zv
i,j, oj),

and R is the radius of each region as defined in (3).
Apply the crossover [see (5)] to the mutant vector

vi corrected by (7)−(10) to generate a trial vector ui.
Decode ui into a real solution and evaluate its objective
value. If ui is no worse than xi, update xi by ui[see
(6)].

Step 3 If termination criteria are satisfied, output
the discovered shortest path and related results. Other-
wise, go to Step 2.

Remark 1 The DE based on complete encoding
needs to optimize 4n + m + 1 variables. Besides, the evalua-
tion of objective function is achieved by computing the Dubins
distances between any two neighboring waypoints according to
the conclusions in Dubins’ work. As demonstrated later, even
given a smaller n, the time cost of the DE could be very high.
In the following section, we propose another scheme to employ
DE to solve DTSPN with obviously reduced time cost.

3.3 DE with heading relaxation and partial en-
coding (DE–HRPE)

As mentioned in the introduction, the difficulty of
solving DTSPN mainly stems from the dependence of
point-to-point distance on vehicle headings. In order
to reduce the time complexity of DE to solve DTSPN,
we relax the terminal vehicle heading for any point-to-
point movement, and derive the shortest point-to-point
path for a Dubins vehicle, with a given initial heading
and free terminal heading, moving from one point to a
specified destination.

For any point-to-point movement of a Dubins vehi-
cle, denote by Z0 the starting vehicle position and by
Z1 the terminal vehicle position. Build a coordinate
system XOY with Z0 being its origin (O = Z0) and
the initial vehicle heading being the direction of Y-axis.
Denote by Z = (ZX, ZY) the coordinate of the termi-
nal position Z1 in the coordinate system XOY . Denote
by OL the center coordinate of the vehicle’s minimal
left-turning circle w.r.t. O(see Fig.1). Denote by OR

the center coordinate of its minimal right-turning circle
w.r.t. O. The optimal point-to-point Dubins path pattern
to reach Z1 is pointed out in the following theorems.

Theorem 1 If ZX > 0 and d(Z, OR) > r, then
the optimal Dubins path is a circular arc plus a straight
line segment. The vehicle first turns right along a min-
imal right-turning circle, and then moves along a tan-
gent line to reach Z1. In particular, the optimal Du-
bins path is reduced to a circular arc when ZX > 0 and
d(Z,OR) = r.

Theorem 2 If ZX < 0 and d(Z,OL) > r, then
the optimal Dubins path is a circular arc plus a straight
line segment. The vehicle first turns left along a min-
imal left-turning circle, and then moves along a tan-
gent line to reach Z1. In particular, the optimal Du-
bins path is reduced to a circular arc when ZX < 0 and
d(Z,OL) = r.

Theorem 3 If ZX = 0 and ZY > 0, then the op-
timal Dubins path is a straight line segment stretching
from Z0 to Z1.

Theorem 4 If ZX = 0 and ZY < 0, then the
optimal Dubins path is a circular arc plus a straight line
segment. The vehicle first turns left or right along its
minimal turning circle, and then moves along a tangent
line to reach Z1.

Theorem 5 If d(Z, OR) < r, then the optimal
Dubins path is a combination of two circular arcs. The
vehicle first turns left along a minimal left turning cir-
cle, and then turns right along a minimal right turning
circle to reach Z1.

Theorem 6 If d(Z, OL) < r, then the optimal
Dubins path is a combination of two circular arcs. The
vehicle first turns right along a minimal right turning
circle, and then turns left along a minimal left turning
circle to reach Z1.

Remark 2 For computing the optimal point-to-point
Dubins paths, the above theorems can be reduced to four cases
as described in Theorems 1, 2, 5 and 6. The optimal paths de-
scribed in Theorems 3 and 4 can be regarded as special cases
of Theorem 1 or 2. The proofs for Theorems 1, 2, 5 and 6 can
be found in the reference [37].

Figure 1 provides an illustration for different opti-
mal Dubins paths. Theorems 1-6 provide a way of ob-
taining optimal point-to-point Dubins paths in the sense
of terminal heading relaxation. Obviously, the termi-
nal vehicle heading can be determined together with the
corresponding optimal Dubins path (see Fig.1). The
terminal heading of the current path will be taken as
the initial heading of the next path. Once the positions
and visiting order of waypoints and the vehicle head-
ing at the origin are given, optimal point-to-point Du-
bins paths can be generated from Theorems 1−6. A
piecewise optimal Dubins tour can be constructed by
successively determining each optimal Dubins path be-
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tween any two neighboring waypoints, in the sequence
from the origin to the final waypoint. In this way, DE
does not optimize vehicle headings but focuses on op-
timizing the positions of waypoints and their visiting
order. Besides, each optimal Dubins path can be identi-
fied easily by checking the relative position of the termi-
nal point with reference to the starting left-turning and
right-turning circles, without the need to compute all
candidate paths. Therefore, the terminal heading relax-

ation scheme not only reduces the search space but also
simplifies the computation of point-to-point distance.

In Fig.1, The point marked with a cross is the
vehicle’s starting position. The point marked with a
small circle is the terminal point. The arrows indicate
the vehicle’s initial heading, the dashed rings represent
the turning circles, and solid curves show the optimal
paths.The turning radius is 10 m. In (d), two optimal
paths exist as stated in Theorem 4.

(a) ZX > 0 and d(Z, OR) > r (b) ZX < 0 and d(Z, OL) > r (c) ZX = 0 and ZY > 0

(d) ZX = 0 and ZY < 0 (e) d(Z, OR) < r (f) d(Z, OL) < r

Fig. 1 Optimal point-to-point Dubins paths with terminal heading relaxation

Since terminal headings will not be optimized, the en-
coding scheme in the second DE algorithm can be de-
scribed as x = [z r] where z and r are the same as in
the complete encoding scheme explained in Section 3.2.
DE in this case only needs to search in a 3n-dimensional
space. The procedure of the DE with partial encoding is the
same as that of the DE with complete encoding except that
vehicle headings are not optimized in the partial encoding
based DE and the computation of a Dubins tour’s length
is obviously simplified. To save space, the procedure of
the second DE algorithm is not presented. It is worth not-
ing that terminal heading relaxation implicitly reduces the
range of vehicle headings, resulting in a possibility of be-
ing unable to discover the real global optimal Dubins tour.
However, it can be guaranteed that the Dubins tour finally
obtained by the second DE is at least a piecewise optimal
one.

4 Computational experiments
The following experiments provide a performance

comparison of four DTSPN algorithms, including the two

DE algorithms proposed in this paper (DE–CE and DE–
HRPE), a variant of the genetic algorithm proposed in the
reference [9] and a sampling-based transformation method
similar to the one proposed in the reference [31]. The ge-
netic algorithm (GA) for comparison adopts the complete
encoding shown in Section 3.2, the same operators as those
employed in the reference [9], and the same initialization
method as the two DE algorithms. The sampling-based
transformation method uniformly samples multiple points
along the boundary of each region, and the corresponding
vehicle heading at each sampling point is randomly gener-
ated. The operations in the sampling process are shown as
follows:

ϕi,0 = 2π · randi,1, ϕi,j = ϕi,0 +
2πj

ns
, (11)

θi,j = −π

2
+ π · randi,j,2, (12)

hi,j = ϕi,j + θi,j + π, (13)

zi,j = oi + R · [cos ϕi,j sinϕi,j ], (14)

i = 1, 2, · · · , n, j = 1, 2, · · · , ns,
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where ϕi,0 is the reference phase angle corresponding to
the region Ri w.r.t. its center oi , ϕi,j is the phase an-
gle of the jth sampling point on the boundary of Ri, ns

is the number of sampling points on the boundary of each
region, zi,j is the jth sampling point on the boundary of
Ri, θi,j is the relative vehicle heading at the jth sampling
point on the boundary of Ri, hi,j is the vehicle heading
at the jth sampling point on the boundary of Ri, randi,1

and randi,j,2 are random numbers generated within (0,1),
and the definition of R and oi can be found in (3). All
sampling points on the boundary of the same region con-
stitute a cluster, and the Dubins distance between any two
points belonging to different clusters can be computed ac-
cording to the conclusions in Dubins’ work. Thus, a GTSP
can be formulated and further transformed into an ATSP
by Noon-Bean transformation[31]. The resulting ATSP is
solved by the state-of-the-art TSP solver LKH[25]. On the
whole, the sampling-based transformation method shares
the same idea with the resolution-complete algorithm pro-
posed by Obermeyer et al.[31].

The comparative experiments are organized into two
parts. The first part uses eight typical DTSPN instances
with distinct features to test different algorithms (see
Fig.2). The second part aims at carrying out a general

comparison based on more randomly generated DTSPN
instances. Each instance in the first part involves ten re-
gions and three points of interest for a Dubins vehicle to
visit. The effect of varying the vehicle’s turning radius on
path planning is also considered in the first part. In the
second part, the region centers and the points of interest
in all instances are randomly generated within the square
[−100, 100] × [−100, 100] (distance unit: m), the num-
ber of regions (n) is randomly chosen from the integer set
{10, 11, · · · , 20}, and the number of points of interest (m)
is randomly chosen from the integer set {3, 4, · · · , 10}.
Besides, the vehicle’s minimum turning radius (r) and the
radius of regions (R) are randomly generated from given
intervals: r ∈ [1, 10] and R ∈ [5, 10]. A total of fifteen
DTSPN instances are randomly generated to constitute a
test suite. Using these random instances, we also add a
comparison between DE–HRPE and another DE variant
recently proposed by Islam et al. (namely, MDE-pBX)[38].
MDE-pBX is one of the well-known state-of-the-art DE
variants, showing outstanding performance against many
other advanced optimizers. The purpose of this compari-
son is to identify the possibility of further improving the
performance of the DTSPN algorithm by employing ad-
vanced optimizers.

(a) Instance A1: overlapped, clustered (r = 1) (b) Instance A2: overlapped, stringed (r = 1)

(c) Instance A3: non-overlapped, clustered (r = 1) (d) Instance A4: evenly distributed (r = 1)
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(e) Instance A5: overlapped, clustered (r = 5) (f) Instance A6: overlapped, stringed (r = 10)

(g) Instance A7: non-overlapped, clustered (r = 5) (h) Instance A8: evenly distributed (r = 5)

Fig. 2 Comparison of Dubins tours planned by two DE algorithms (NFE = 50, 000)1

In the two experiments, the three parameters for DE–
HRPE and DE–CE were set as F = 0.5, CR = 0.9
and NP = 10n according to the suggestion of Price et
al.[35]. The GA for comparison maintains the same popu-
lation size as DE in each case, and the other parameters for
the algorithm follow the settings in the work of Obermeyer
et al.[9]. The parameter setting for MDE-pBX follows the
same rule proposed by its inventors (see [38]) except for
NP = 10n.

DE–HRPE and MDE-pBX will be terminated when
50,000 function evaluations (i.e., calculations of 50,000
Dubins tours) have been implemented. In the first experi-
ment, DE–CE and GA were allowed to carry out 500,000
function evaluations since they search in a larger space
than DE–HRPE. The purpose of the long-term run of the
two algorithms is to exhibit their limit behavior and ob-
verse their performance difference. However, as the long-
term run is very time-consuming, the maximal number
of function evaluations for DE–CE and GA is also re-
stricted to 50,000 in the second experiment, which also
benefits a fair comparison with DE–HRPE. As for the

sampling-based transformation method, 30 entry points
(ns = 30) will be sampled along the boundary of each
region, resulting in a 30n dimensional ATSP for each
instance. All algorithms were implemented on a PC
with Intel(R) Core (TM) 2 Duo CPU E8400 3.0 GHz,
2 GB RAM. Except for the TSP solver LKH (available
from http://www.akira.ruc.dk/∼keld/research/LKH/), all
programs including the derivation of the GTSP and ATSP
formulations in the sampling-based transformation were
compiled and executed in MATLAB R2009a. Regarding
any DTSPN instance, each algorithm ran 30 times, and re-
lated results were statistically analyzed.

4.1 Experiment 1– typical DTSPN instances
The eight typical DTSPN instances in this experi-

ment are illustrated in Fig.2. The four instances shown
in Fig.2(a)−(d) involve a vehicle with a smaller minimal
turning radius. In this case, the tours planned by DE–CE
and DE–HRPE with the number of function evaluations
NFE = 50, 000 are very similar. As the turning radius of
the vehicle is increased, DE–CE and DE–HRPE show clear

1Dashed circles represent regions to be visited. O1, O2 and O3 are three points of interest for the vehicle to visit in sequence. O3 is
also the starting position of the vehicle, and the initial heading angle is π (the vehicle points to the left at O3). The arrows on planned
tours indicate the moving direction of the vehicle. Dashed line with arrows: DE–CE; Solid line with arrows: DE–HRPE.
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differences in the quality of planned tours [see Fig.2(e)
vs. Fig.2(a); Fig.2(f) vs. Fig.2(b); Fig.2(g) vs. Fig.2(c);
Fig.2(h) vs. Fig.2(d)]. As shown in Fig.2(e)−(f), both
DE algorithms find the same visiting order of regions in
instance A5 and instance A6; however, DE–CE has diffi-
culty in fine-tuning the vehicle headings to reduce the tour
length. As for instance A7 and instance A8, DE–CE and
DE–HRPE even produced different visiting order of re-

gions [see Fig.2(g)–(h)]. On the whole, with the same set-
ting NFE = 50, 000, DE–HRPE performs better than DE–
CE in terms of the quality of planned tours as well as the
time cost (see also the statistical results in Table 1). There-
fore, the turning radius (r) has a greater effect on DE–CE.
In contrast, DE–HRPE is insensitive to the change of the
turning radius, showing a stable and excellent performance
in planning desirable Dubins tours for the vehicle.

Table 1 Statistical results about different algorithms in solving typical DTSPN instances2

Algorithms

Instance No. DE–HRPE(NFE = 50, 000) DE–CE(NFE = 50, 000) DE–CE(NFE = 500, 000)
(avg,std,min,max) (avg,std,min,max) (avg,std,min,max)

L (202.1, 0.0, 202.1, 202.2) (203.1, 1.6, 201.6, 208.0) (201.6, 0.0, 201.6, 201.7)A1
T (34.4, 0.3, 34.3, 36.0) (265.2, 1.7, 262.7, 270.4) (2850.3, 18.3, 2823.3, 2901.5)
L (205.1, 0.0, 205.1, 205.1) (206.7, 1.1, 204.8, 208.6) (204.6, 0.0, 204.6, 204.6)A2
T (34.4, 0.1, 34.3, 34.5) (264.1, 0.6, 263.0, 266.1) (2806.3, 2.3, 2802.4, 2813.6)
L (297.2, 0.4, 296.6, 297.5) (296.1, 0.6, 295.4, 297.4) (295.1, 0.3, 294.4, 295.4)A3
T (34.4, 0.1, 34.2, 34.5) (265.0, 1.3, 263.7, 269.4) (2859.9, 30.7, 2835.3, 2923.9)
L (278.2, 9.3, 267.6, 296.2) (273.4, 6.3, 265.4, 292.5) (273.3, 8.1, 264.2, 289.4)A4
T (34.4, 0.1, 34.3, 34.6) (263.3, 0.6, 262.7, 265.0) (2799.7, 12.8, 2792.2, 2862.0)
L (209.5, 11.5, 207.3, 270.2) (227.0, 10.8, 207.3, 244.9) (204.7, 0.0, 204.7, 204.7)A5
T (34.7, 0.1, 34.5, 35.0) (302.6, 3.7, 296.0, 309.3) (3512.0, 20.7, 3465.5, 3551.9)
L (222.6, 24.8, 217.5, 354.1) (421.0, 31.9, 329.1, 455.6) (212.0, 0.0, 212.0, 212.0)A6
T (35.5, 0.2, 34.9, 35.8) (312.6, 1.9, 307.8, 316.4) (3723.1, 34.6, 3639.4, 3787.4)
L (311.4, 5.2, 303.3, 319.8) (338.2, 13.9, 310.7, 363.1) (307.4, 4.4, 301.8, 311.0)A7
T (31.8, 0.3, 31.5, 32.8) (311.3, 4.6, 303.8, 321.1) (3348.0, 29.9, 3297.1, 3390.9)
L (303.9, 12.4, 284.3, 319.9) (312.5, 19.7, 283.6, 357.5) (281.2, 8.5, 273.0, 303.1)A8
T (32.5, 1.6, 31.2, 34.8) (299.5, 4.2, 288.7, 305.8) (3222.2, 29.0, 3155.7, 3280.0)

Algorithms

Instance No.
GA(NFE = 500, 000) Transformation method

(avg,std,min,max) (avg,std,min,max)

L (291.6, 16.8, 256.0, 315.5) (226.2, 4.8, 216.0, 234.7)A1
T (2843.4, 4.2, 2836.7, 2853.5) (32.7, 0.1, 32.6, 32.8)
L (304.5, 12.6, 267.3, 328.7) (231.7, 4.9, 221.2, 242.1)A2
T (2838.6, 1.7, 2836.1, 2843.3) (32.8, 0.1, 32.7, 33.1)
L (320.2, 13.9, 278.7, 345.1) (311.0, 5.2, 301.1, 326.4)A3
T (2840.0, 1.1, 2838.1, 2842.0) (33.0, 0.3, 32.8, 34.0)
L (350.2, 13.3, 315.8, 379.5) (284.0, 5.2, 271.9, 295.8)A4
T (2838.1, 6.3, 2834.1, 2856.9) (32.9, 0.1, 32.7, 33.0)
L (412.4, 16.0, 373.4, 440.1) (388.0, 24.4, 343.5, 436.9)A5
T (3004.3, 4.0, 2996.8, 3015.5) (34.1, 0.2, 33.9, 35.1)
L (619.0, 26.4, 560.0, 661.6) (795.6, 49.8, 673.9, 907.2)A6
T (3152.0, 4.8, 3143.8, 3160.7) (36.0, 0.0, 36.0, 36.1)
L (463.3, 13.5, 432.6, 483.0) (414.7, 33.8, 360.8, 490.9)A7
T (3008.3, 8.0, 2996.3, 3035.3) (34.3, 0.1, 34.1, 34.8)
L (468.8, 12.7, 438.0, 489.3) (370.6, 19.9, 333.7, 410.3)A8
T (2948.2, 3.8, 2940.6, 2955.2) (33.4, 0.2, 33.1, 34.1)

As shown in Table 1, the long-term run of DE–CE
leads to the best Dubins tours in all test cases, provid-
ing a reference for measuring the quality of planned Du-
bins tours. However, the long-term run of DE–CE is very
time-consuming (e.g. on average 2850.3 s in instance
A1) and even unacceptable, especially in real-time path
planning. Although DE–HRPE with NFE = 50, 000

produces slightly longer Dubins tours than DE–CE with
NFE = 500, 000, it greatly reduces the time cost as com-
pared to DE–CE. From Table 1, it can be observed that
DE–HRPE in comparison with DE–CE adopting the same
NFE, saves approximately 7/8 of the computation time,
and meanwhile, the Dubins tours obtained by DE–HRPE
in length is very close to or even much better than those by

2L: Length of planned Dubins tour; T : time cost (unit: s); avg, std, min, max: average, standard deviation, minimum, and maximum
of the results in 30 runs.
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DE–CE.
Detailed statistical results about the two DE algo-

rithms, GA and the sampling-based transformation method
are presented in Table 1. The Dubins tours planned by
GA with NFE = 500, 000 are obviously inferior to those
by DE–CE (NFE = 500, 000) and DE–HRPE (NFE =
50, 000). In contrast to DE–CE and GA, the sampling-
based transformation method has significant advantage in
term of computation time, but it is inferior to DE–HRPE as
the Dubins tours that it obtains in each case are too long.
It was also observed that the time cost of the transforma-
tion method mainly stems from the computation of Dubins
distances which are used as GTSP parameters and further
transformed into ATSP parameters for LKH. By compar-
ison, DE–HRPE on one hand saves a lot of time like the
transformation method, and on the other hand can pro-
duce high-quality Dubins tours whose lengths are close
to those obtained by DE–CE with a long-term run. The
convergence process of DE–HRPE, DE–CE and GA with
NFE = 50, 000 in instance A5 and instance A8, as exam-
ples, is illustrated in Fig.3. As compared with DE–CE and
GA, DE–HRPE has a good start because the initial tour
that DE–HRPE produces is a piecewise optimal one which
is obviously shorter than the randomly generated ones in
a larger search space for DE–CE and GA. Besides, DE–
HRPE converges to high-quality solutions very fast, per-
forming visibly better than DE–CE and GA.

(a) Instance A5

(b) Instance A8

Fig. 3 Convergence plots of GA, DE–CE and
DE–HRPE (NFE = 50, 000)3

4.2 Experiment 2– a general test
This experiment is aimed at providing a general com-

parison of five DTSPN algorithms including MDE-pBX,
since all instances are randomly generated instead of being
elaborately designed as in the first experiment. The sta-
tistical results are presented in Table 2. In each case, the
best result w.r.t. each index is highlighted in bold. On the
whole, among the four algorithms involved in the first ex-
periment, DE–HRPE is still the best as it leads to the best
Dubins tours in most cases with a lower time cost. The Du-
bins tours planned by DE–HRPE are, on average, 14.54%,
32.01%, 16.11%, shorter than those by DE–CE, GA and
the sampling-based transformation method, respectively.
In term of computation time, DE–HRPE in contrast to
DE–CE, GA and the transformation method yields, on av-
erage, about 83.83%, 83.80%, and 3.27% reductions, re-
spectively. We also employed the statistics tool, Wilcoxon
rank sum test, to analyze the experimental results. The hy-
pothesis tests with a significance level 0.05 indicate that
in term of solution quality, DE–HRPE significantly out-
performs DE–CE in all instances except instances B3 and
B15. Even in instances B3 and B15, the tours planned by
DE–HRPE are just slightly longer than those by DE–CE,
while DE–HRPE reduces the time cost greatly. The hy-
pothesis tests also show that DE–HRPE outperforms GA
in all cases regarding both solution quality and time cost,
and with comparative time cost, the tours planned by DE–
HRPE in all cases are significantly better than those by the
transformation method.

As compared with DE–HRPE, MDE-pBX shows its
advantages in finding high-quality Dubins tours. MDE-
pBX outperforms DE–HRPE in term of the length of Du-
bins tours in almost all cases except for instances B2, B6
and B7 whose scales are a bit larger than the other ones.
However, in all cases, MDE-pBX spent much longer time
in obtaining better tours, which is due to its relatively com-
plex operations (see [38] for technical details). On aver-
age, MDE-pBX reduces the tour length by 0.3% as com-
pared with DE–HRPE while the time cost of MDE-pBX
is about 30% larger than that of DE–HRPE. What’s more,
MDE-pBX is defeated by DE–HRPE in cases of B2, B6
and B7. It should be noted that the only difference be-
tween DE–HRPE and MDE-pBX lies in their operators
and mechanisms for parameter tuning. Both of them adopt
the same technique of heading relaxation and partial en-
coding. Therefore, the superiority of both DE–HRPE and
MDE-pBX validates the advantages of direct search based
on heading relaxation and partial encoding. Since a bal-
ance between solution quality and time cost is usually req-
uisite from a pragmatic view, the algorithm DE–HRPE is
still competent for solving DTSPN even as compared with
MDE-pBX.

3NFE: the accumulated number of function evaluations
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4.3 Discussion
Global search with complete encoding like DE–CE is

beneficial to a full exploration in the whole problem space
of DTSPN. However, it is usually very time-consuming
to achieve a global search for the sake of guaranteeing
the optimality of the Dubins tour finally obtained. The
partial encoding scheme based on terminal heading relax-
ation in DE–HRPE greatly reduces the search space with-
out obvious deterioration of solution quality. On the whole,
DE–HRPE achieves a desirable trade-off between solution
quality and time cost. It should be noted that the termi-
nal heading relaxation sacrifices the optimality of solutions
to some extent since the restriction on terminal headings
according to theorems 1-6 may miss real optimal Dubins
tours. So, it is not surprising that the Dubins tours pro-
duced by DE–HRPE (NFE = 50, 000) in each case are
slightly longer than those by DE–CE (NFE = 500, 000).
However, any Dubins tour derived from the theoretical re-
sults in DE–HRPE is at least a piecewise optimal one,
which is a main contribution to the excellent performance
of DE–HRPE. In contrast, the sampling-based transforma-
tion method depends heavily on the number of sampling
points. Generally, with more sampling points, the solution
quality of this method may be further improved; however,
its time cost will also be increased quickly.

5 Conclusion
In order to solve the challenging Dubins traveling

salesman problem with neighborhood efficiently, we pro-
posed two differential evolution algorithms which are
based on a hybrid encoding scheme (a combination of di-
rect encoding and random-key based indirect encoding).
The first DE algorithm is expected to search for the optimal
or near-optimal Dubins tour in the complete search space
which involves the optimization of both continuous vari-
ables (positions of waypoints and vehicle headings) and
discrete variables (visiting order of regions). This DE al-
gorithm with sufficient iterations can produce high-quality
solutions; however, relatively speaking, its time cost is un-
desirable. In order to achieve a better trade-off between
solution quality and time cost, we proposed the second
DE algorithm which adopts a terminal heading relaxation
scheme to generate piecewise optimal Dubins tours with-
out tuning vehicle headings. The second DE algorithm
can find high-quality Dubins tours with obviously reduced
computation time. Experimental results demonstrate that
the DE algorithm based on terminal heading relaxation and
partial encoding, namely DE–HRPE, has prominent ad-
vantages over the DE algorithm with complete encoding,
a genetic algorithm, and a sampling-based transformation
method. As an excellent DTSPN solver, DE–HRPE can
gain ground in many applications, e.g. the path-planning
of unmanned aerial vehicles.
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