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Distributed model predictive control
with optimal network topology for large scale systems

WEI Yong-song, LI Shao-yuan†
(Key Laboratory of System Control and Information Processing, Ministry of Education of China,

Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China)

Abstract: Generally, the performance of a large-scale system in global optimization is better than that in local op-
timization. To obtain a better performance, we need more information interchanges. However, in a distributed model
prediction algorithm, this will increase the workload for an information network, making global optimization inapplicable
in a large-scale system with complexity. To deal with this problem, we introduce the communication cost in the perfor-
mance index and develop a novel method for switching the communication-network topology according to variations in
system states. This method has been applied to the simulation experiment of a dynamical model of a water supply network
system, demonstrating the feasibility of the proposed algorithm.
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1 Introduction
Centralized and decentralized control define the two

extremes in distributing the decision making in a large
scale system. Generally, the centralized control of sys-
tems may lead to a very complex computational prob-
lems or be less robust to disturbance[1]. The decentral-
ized control can have a degrade performance using only
local information in subsystems with coupling relation-
ship. Distributed model predictive control (DMPC) in
which the controllers can communicate information is
an important control strategy at the current moment
with the increasing of the degree of the complexity of
control plants in the technological societal or environ-
mental processes[2–4]. The application of the communi-
cation network allows the potential higher performance
by exchanging information between controllers of all
subsystems . That means the communication network

is the key element in the distributed systems so that we
have to improve the efficiency of the communication
network.

Distributed MPC can be classified by some as-
pects such as information exchange protocol (i.e., non-
iterative[5] and iterative algorithm[6]), the form of the
performance index function (i.e., cooperative[7] and
non-cooperative[8]), and so on[9]. In [5], the optimiza-
tion performance index of each local MPC considers not
only the performance of the related subsystems but also
that of its neighbours. In [7], the each local MPC con-
troller optimizes the same objective function in paral-
lel without a coordinator, allowing the distributed op-
timization to be terminated at any iterate. In [8], an
impacted-region optimization is used in the DMPC de-
sign by redefining the impact region of a subsystem ac-
cording to the coordination strategy. In [10], the local

Received 26 March 2015; accepted 4 June 2015.
†Corresponding author. E-mail: syli@sjtu.edu.cn; Tel.: +86 21-34204011 .
Supported by National Nature Science Foundation of China (61233004, 61221003) and National Basic Research Program of China (973 Program–
2013CB035500).



1270 Control Theory & Applications Vol. 32

PC controller needs the reference trajectories of the
state variables of its neighbors by the neighbor-to-
neighbor communication.

As all we know, existing DMPC algorithms mostly
use a static network topology or a fixed composition
of neighborhoods during the control process (eg. [11−
12]). Motivated by these issues, this paper proposes a
non-iterative and non-cooperative distributed MPC al-
gorithm considering topology optimization.

In the existing literatures, there are some optimal
control methods considering the design of communi-
cation network. [13] proposes an approach to simul-
taneous optimization of network topology and control
law with respect to a cost function which combines a
quadratic performance criterion with costs associated
to the presence of topology structure. [14] extends the
results to the case that some communication links are
prone to failure by reconfiguring subsystem’s local con-
trollers. [15] and [16] use the game theory to analyze
impact of each link and proposes the optimal commu-
nication topology, by the optimal control method. [17]
proposes a novel two-layer control architecture that al-
lows to jointly improve the system performance with
the design of communication topology. [18] proposes a
hierarchical control scheme for large-scale systems by
two layers, in which the top layer is designed to find the
optimal network topology.

In this paper, we propose a novel topology switch-
ing condition in the communication topology optimiza-
tion for the DMPC algorithm and discuss the stability
of the proposed algorithm. During the dynamic pro-
cess, the each MPC controller has a time-varying com-
munication topology for the current performance with
the current state.

The rest of the paper is organized as follows. In
Section 2, a description of distributed subsystems and
communication network topology is provided. In Sec-
tion 3, a novel Distributed MPC algorithm with com-
munication cost is introduced. In Section 4, the stability
analysis of the DMPC is derived. In Section 5, a simu-
lation is given to show the feasibility of the algorithm.

2 Problem description
2.1 The description of distributed subsystems

The whole system is partitioned into several inter-
connected subsystems controlled by several controllers
which are connected by network shown in the Fig.1.
There are two levels in the whole system. The one is
the control plant, the other is information network. The
distributed controllers coordinates with each other by
the information network. The topology of the commu-
nication network is described by the undirected graph
G = (N , L) be an undirected graph with n nodes and
m undirected edges. N = {1, 2, · · · , n} denotes the

sets of all vertices and L = {l1, l2, · · · , lm} denotes
the sets of all edges. For a system without constraints
the discrete state space equation is written like this:

x(k + 1) = Ax(k) + Bu(k), (1)

where x(k + 1) := [xT
1 · · · xT

n ]T and u(k + 1) :=
[uT

1 · · · uT
n ]T. xi and ui (i = 1, · · · , n) are the lo-

cal states and the inputs respectively. The whole system
composes n subsystems. Generally each subsystem can
be written as follow:

xi(k + 1) = Aiixi(k) + Biiui(k) +∑
j 6=i

(Aijxj + Bijuj(k)), (2)

where xi ∈ Rnxi is the local state of the subsystem
i, ui ∈ Rnui is the input of the subsystem i(i = 1,
· · · , n). Aij represents the coupled states and Bij rep-
resents the coupled inputs between subsystems. If Aij

or Bij is zero, the subsystem i and the subsystem j does
not have coupled states or coupled input sequences.

The topology mode Λ ⊆ L means that the set of
links are enabled. There are some communication com-
ponents in a topology mode Λ which can be defined
as C ∈ Λ and also called coalitions. The dynamic
equation for the subsystems in the same communication
components is given by

xC(k + 1) =
ACxC(k) + BCuC(k) +∑
j∈N−C

(ACjxj + BCjuj(k)), (3)

where xC = (xi)i∈C is the set of the states of the sub-
systems in the communication component C. UC =
(ui)i∈C is the inputs in the communication component
C made up by local input ui. AC and BC are the corre-
sponding matrices in the communication component C
made up of local matrices.

Fig. 1 Distributed predictive control with dynamic topology

2.2 The description of communication cost
For an edge l connecting node i and node j, we de-

fine a column vector al ∈ Rn, where ali = 1, alj = 1,
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and other elements are zeros. We can get an adjacency
matrix A which is used to illustrate the connection of a
graph.

A =




a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

...
...

...
an,1 an,2 · · · an,n


 , (4)

where ai,j ∈ {1, 0} are given by

ai,j =
{

ali , l ∈ L,
0, otherwise.

For each communication link between the subsys-
tem i and the subsystem j, which can be enabled or
disabled, we define a performance index for the com-
munication cost.

Jc,ij = wij ∗ ai,j, (5)

where wij is a communication cost weight, which is
chosen by the hardware costs, energy consumption for
communicating information, distance between subsys-
tems, or the number of hops in a multi-hop wireless net-
work. For the global system, the total communication
cost is written by

Jc =
n∑

i=1

n∑
j=1

wij ∗ ai,j. (6)

Obviously, we can see the global optimization per-
formance is best but this way causes the highest com-
munication cost. In the distributed controllers, not all
interactions between subsystems are necessary. We use
a performance index considering the communication
cost to choose the optimal communication topology for
the best performance for the current states.

3 The coordinated distributed model predic-
tive control

3.1 Finite horizons of performance index
For a linear system without constraints, we define a

performance index with terminal cost function as

Ji(k) =
M−1∑
t=0

[‖ xi(k + t|k) ‖2
Qi

+ ‖ ui(k + t|k) ‖2
Ri

] +

‖ xi(k + M |k) ‖2
Pi

, (7)

where M is the predictive horizon, Pi is the terminal
penalty function for each subsystem. The matrix Pi

must meet the conditions as

Pi > 0, (8)

(Ai + BiHi)TPi(Ai + BiHi) +
Qi + HT

i RiHi − Pi < 0, (9)

where Hi is the LQ feedback control law after M steps
from the initial state x(k+M |k). Applying the Schur’s
complement to the inequation, we can get the LMI like

this:


P−1
i Gi P−1

i Q1/2
i (P−1

i )THT
i R1/2

i

∗ P−1
i 0 0

∗ ∗ I 0
∗ ∗ ∗ I


 > 0,

where Gi = P−1
i AT

i + (P−1
i )THT

i BT
i .

As mentioned before, the performance for subsys-
tems in the same communication component is written
as

JC(k) =
M−1∑
t=0

[‖ xC(k + t|k) ‖2
QC

+

‖ uC(k + t|k) ‖2
RC

]+ ‖ xC(k + M |k) ‖2
PC

, (10)

where QC and RC are the weighting matrix for the
states and inputs of the subsystem i respectively, PC

is the terminal penalty for each subsystem, which can
be derived by the similar Eq.(9).

For the global system, the receding-horizon opti-
mization is

min
u,Λ

∑
C∈Λ

JC(k) + Jc(k). (11)

The problem is a dynamic programming optimiza-
tion with mixed integer variables, which is hard to
solve. From the two parts of the equation, the first par-
ticularly stage cost does not contain explicitly the inte-
ger variables. Any topology mode Λ corresponds to a
partition of the global system , which can produce dif-
ferent coalitions.
3.2 Topology switching condition

The discrete part of the Eq.(11) is up to the choice
of the network topology. We define a new performance
index:

JT (k) = xT
NPΛxN + |Λ(k)|, (12)

where |Λ(k)| is Jc(k) of the topology mode Λ.
Assumption 1 For every subsystem, there exits a

decoupled static feedback ui = Hixi such that Adi =
Aii + BiiHi is Shur stable, and the close-loop system
x(k + 1) = Acx(k) is asymptotically stable, where
Ac = A + BH and H = diag{H1,H2, · · · ,Hn}.

This assumption is usually found in the design
method of stabilizing DMPC, e.g, in the paper [8, 10,
19]. this assumption inherently presumes that the cou-
pling between the subsystems is sufficiently weak, and
that each subsystem can be stabilized by a decentralized
control Hixi. The feedback control law Hi is derived
by the LMI in the book [20] in the continuous mode.
Obviously, we can get the discrete time mode based on
the continuous mode.

Based on these, we can get a theorem to calculate
the PΛ of the different communication topologies de-
fined by Λ.
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Theorem 1 Let Λ ⊆ L be a set of active links
in a distributed control system. The dynamics of the
whole system are given by AΛ = (Aij)i,j∈N and
BN = (Bij)i,j∈N . And its stage cost weight is defined
by QN = diag{Qi}i∈N and RN = diag{Ri}i∈N .
The local model predictive control law is KΛ. If there
exist matrices PΛ = PT

Λ = (Pij)i,j∈N such that the
following constraints are satisfied




P−1
Λ GΛ P−1

Λ Q1/2
N (P−1

Λ )TKT
ΛR1/2

N
∗ P−1

Λ 0 0
∗ ∗ I 0
∗ ∗ ∗ I


 > 0,

where GΛ = P−1
Λ AT

N + (P−1
Λ )TKT

ΛBT
N ,

Pij = 0, ∀i, j ∈ N /Λ such that i ∈ C, j /∈ C,

(13)

the matrix PΛ satisfies

xT
NPΛxN =

∑
C∈N /Λ

xT
CP Λ

C xC >
∑
j∈N

∞∑
n=0

lj(n),

(14)

and all the communication constraints imposed by the
network mode Λ and stabilize the whole system asymp-
totically. Besides, the diagonal elements of PΛ can be
taken as the diag{P1, · · · , PC}, C ∈ N /Λ.

Proof Given the local MPC law u = KΛxN and
the Eq.(1), we can get that

xN (k + 1) =
ANxN (k) + BNKΛxN (k) =
(AN + BNKΛ)xN (k). (15)

So, the global stage cost can be written like this:

JN (k) :=
xN (k)TQNxN (k) + xN (k)TKT

ΛRNKΛxN (k) =
xN (k)T(QN + KT

ΛRNKΛ)xN (k). (16)

Applying the Shur’s theory to the LMI matrix and ac-
cording to the Eq.(9), we can get a similar inequation

(AN + BNKN )TPN (AN + BNKN ) +
QN + KT

NRNKN − PN < 0. (17)

Substitute the Eq.(15) and the Eq.(16) into the Eq.(17),
we can derive that

xN (k + 1)TPΛxN (k + 1)−
xN (k)TPΛxN (k) + JN (k) 6 0. (18)

By the same way, we can get

xN (k + M − 1)TPΛxN (k + M − 1)−
xN (k + M − 2)TPΛxN (k + M − 2)+JN (k)60,

(19)

sum these inequations form k to k +M −1, we can get

xN (k + M − 1)TPΛxN (k + M − 1) +

t=k+M−1∑
t=k

JN (k) 6 xN (k)TPΛxN (k). (20)

That is

xN (k)TPΛxN (k) >
t=k+M−1∑

t=k

JN (t). (21)

Under the same network topology, we can get the same
MPC law, i.e., the same PΛ. Then, according to the
Eq.(21) we can get

xN (k + 1)TPΛxN (k + 1) >
t=k+M∑
t=k+1

JN (t). (22)

From the Eq.(18), we can also get

xN (k + 1)TPΛxN (k + 1) 6 xN (k)TPΛxN (k).
(23)

The upper bound of the MPC performance index de-
creases under the same topology. Thus, we can get the
global stability for the system with MPC controllers un-
der the same communication topology.

Remark 1 The Theorem 1 supplies a method to get the
upper bound parameter PΛ under the communication topology
Λ with the control law KΛ. Different communication topology
has different PΛ and different MPC control law KΛ. The LMI
matrix can not be calculated every sample time. The PΛ can
be saved and reused when the corresponding communication
topology is used again with the same KΛ. If MPC control law
KΛ changes, the PΛ needs to be recalculated even under the
same topology.The MPC control law given in the Theorem 1
must be stable, otherwise, the LMIs may have no solution.

In the paper [13–15] and [16], they all use the
Eq.(12) or similar equation as the topology switching
condition, i.e., sum the communication links cost to
the stage cost directly and find the minimum cost sum-
mation and the corresponding communication topology.
Actually, the communication cost and the stage cost of-
ten represent different physical means and are not in the
same order of magnitude. In some possible condition,
the initial state is very small which leads to the stage
cost smaller than the communication links cost. By the
way, the on-off the communication frequently switching
consumes much more energy than keeping it on. Thus,
in order to get a more reasonable switching condition
we propose a condition instead of the Eq.(12) like this:

xT
NPΛ(k0)xN − xT

NPΛ(k1)xN
|xT
NPΛ(k1)xN |

>

||Λ(k0)| − |Λ(k1)||
|Λ(k1)| . (24)

That means we consider the relative change ratio of
stage cost and the communication cost. If the relative
change ratio of the stage cost is bigger than the relative
change ratio of the communication links cost, the sys-
tem change the communication network topology for
the better performance.
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Above all, we give out a novel DMPC algorithm
(the related chart shown in the Fig. 2):

Algorithm 1
Step 1 Get the adjacency matrix A for the current

network topology Λ, and find out the communication
components C. Then, compute the MPC control law
for each communication components. According to the
Theorem 1, solve the LMI matrix for the PΛ.

Step 2 Store the PΛ, and calculate the stage cost
and communication links cost for the topology Λ. Re-
peat this process for all possible topologies (i.e., 2m).

Step 3 If the time t is a multiple of time inter-
val TΛ, each subsystem shares its states so that we can
choose the optimal topology for the current state, ac-
cording to the condition (24). Otherwise, the system
still use the current communication topology.

Step 4 Each subsystem updates state in its com-
munication component. Go to Step 3.

Fig. 2 Algorithm flow chart

Remark 2 The proposed algorithm shows a solution
for a system without constraints. So, we can get the explicitly
solution for the optimization in the MPC method. The num-
ber of the possible communication topology structures is 2m.
The numbers will increase as an exponential rate which can
improve the complexity of finding the optimal topology struc-
ture. So the links in the topology must be the necessary in the
system.

According to the Theorem 1, if the change of
the communication topology can make relative bigger
change of the performance, the condition works. In
the Theorem 1, the xN (k)TPΛxN (k) decreases with
the time k which means there must be some k that
xN (k)TPΛxN (k) ≈ 0. The condition of the switching
topology is not only the condition (24). The condition
should be revised with that if xN (k)TPΛxN (k) ≈ 0,
the communication network topology chooses the least
communication costs Λmin.

In order to complete the algorithm, we intro-
duce the threshold δ which is a trivial constant. If
|xN (k)TPΛxN (k)| 6 δ is satisfied, the system is in the
stable situation and the network communication topol-
ogy changes to the Λmin. The judgement of the thresh-
old should be ahead of the the switching condition (24)
so that it can reduce the unnecessary switch judgement.

3.3 Stability analysis
During proposed algorithm, we can see there could

be some switchings in the dynamic process. It is
known that the switching between different stable con-
trol plants can result in an unstable dynamic system. It
is necessary to study the stability of the proposed algo-
rithm.

We assume that the initial state is at the time k0.
We can get the performance upper bound xT

NPΛ(k0)xN .
According to the Theorem 1, the system can be asymp-
totically stable with the given local MPC control as long
as the communication topology keeps the same struc-
ture because of the xT

NPΛ(k0)xN decreasing with the
time.

If the switching condition (24) is satisfied, the
topology needs to change for the better performance,
assuming the switching time point k1. From the con-
dition (24), we know xT

NPΛ(k0)xN > xT
NPΛ(k1)xN .

After the topology switching, xT
NPΛ(k1)xN decreases

with time. It can be concluded that the performance in-
dex decreases with time under either the same commu-
nication topology structure or different communication
topology structures. So, the system is asymptotically
stable under the Theorem 1 and the switching condition
(24).

Remark 3 From the proposed DMPC algorithm, we
can see that there is an invisible supervision coordinator in the
system which can know global system states every time inter-
val TΛ. The terminal penalty in performance index of local
systems can reduce the complexity of calculation of the LMIs
for the matrix PΛ.

4 Validation for water supply systems
In this section we use a water supply network as

an example[21] to show feasibility of the algorithm pro-
posed in the paper. According to the book [21], the
water supply network can be regarded as consisting of
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hydraulic elements interconnected at nodal points. The
nodes with reservoir contain the dynamic elements. We
focus on the dynamic nodes so that we assume that it is
possible to manipulate the flow of the pipes that connect
the tanks without loss of generality.

We choose a water supply network with 16 dy-
namic nodes. The example contains sixteen subsys-
tems shown in Fig. 3, represented by circles. Among
the sixteen subsystems, we choose four subsystems
{1, 2, 5, 6} which can use the proposed methods con-
sidering the topology optimization, and we choose
four subsystems{3, 4, 7, 8} use the decentralized MPC
method. The remainder of subsystems{9, · · · , 16} are
under the centralized MPC control method.

Fig. 3 Water supply network with 16 tanks

In Fig. 4, there are four subsystems {1, 2, 5, 6} us-
ing the proposed method, the connection relationship
between subsystems is also defined: there are four links
in this example, represented by arrows with roman num-
bers. There are 24 = 16 communication modes in the
dynamic process because of four links in the system,
represented by the arabic numbers {0− 15}.

A link is enabled in the topology whose num-
bers appear next to the link in Fig. 4. For example,
{1, 5, 6, 7} means the link I is enabled in the mode
{1, 5, 6, 7}. Besides, the mode 11− 14 means three of

four links are enabled such that there is only one com-
munication component in the system, and the mode 15
means all links are enabled. The mode 11 − 15 has a
same communication component. From Fig. 4, we also
get n = 4 and m = 4. The state space equations of the
subsystems in the system are defined as follow:

xi(k + 1) = xi(k) +
Ts

Aij

∑
j∈Ni

uij, (25)

where xi is the level of the water stored in tank i and Ai

is its surface, Ts is the time step length, uij is the flow
through the pipe connecting tank i and j, and Ni is the
set of tanks connected to tank i.

Fig. 4 Four subsystems from the water supply network
with enable links

We choose TΛ = 0.6, Ts = 0.15 and that means
every four simulation step the communication network
topology is revised. The Weighting coefficient of the
communication topology links is 1, i.e., wij = 1.

Assumption 2 For every subsystem, the predic-
tive horizon M is chosen such that stability can be guar-
anteed without terminal constraint for a set of initial
conditions.

This assumption is used to guarantee the stability
for MPC controllers without the terminal functions in
performance index. It is the special issue of Theorem 1.
According to Assumption 2, we can choose the param-
eters of the local MPC. So, the predictive horizon and
the control horizon are both 5, i.e., M = 5. Qc and Rc

are the unit matrices of the proper size.
The first communication topology is optimal at the

k = 0 initial level of all tanks is 0.5. The total sim-
ulation time step is 300. At the time 150, the water
reference of each tank has got a disturbance from 0.5
to 0.25 + 0.5 ∗ random, which is the standard Gauss
white noise.

From Fig. 5 and Fig. 6, the tank {1, 2, 5, 6} using
proposed method is better than tank 3, 4, 7, 8 using
decentralized on issue the tracking reference obvi-
ously. In order to show the degree of tracking per-
formance, we define the relative errors for each tank√

∑
k

(
y(k)− r(k)

r(k)
)2. The results are shown in Table

1, compared with two extreme conditions.
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Fig. 5 States of the system

Fig. 6 Input vectors

Table 1 The relative errors

Proposed Decentralized Centralized

1.3399 1.5532 1.0618

Figure 7 shows the evolution of the communica-
tion topology, where the mode 12 shown in the figure

means mode 11 including links {2, 3, 4}.

Fig. 7 Switching mode

At the beginning, the optimal topology mode is
11, after a time interval TΛ, the optimal topology
mode is 1, which means tank 1 and tank 2 cooperate
together, and tank 5 and tank 6 work independently.
At last, the optimal topology mode is 0, which means
all tanks work independently, while the level tracking
is stable. Considering the communication costs, the
global MPC control has taken much redundant com-
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munication cost. The decentralized MPC controllers
method taken least communication cost, but get the
worst performance. The proposed DMPC algorithm
has got a well trade-off between performance and the
communication cost.

The simulation result shows the feasibility of the
proposed method.
5 Conclusions

In this paper, we propose a novel distributed
model predictive control considering the time-varying
communication network topology of the system. We
give out the design method of the DMPC and a stabil-
ity analysis. The proposed algorithm has got a well
balance trade-off between the performance and com-
munication cost. There is a lot of space to improve
the proposed algorithm. For instance, such as the cou-
pling between subsystem is weak, and there is no con-
straint.

References:
[1] CAMPONOGARA E, JIA D, KROUGH B H, et al. Distributed

model predictive control [J]. IEEE Control Systems, 2002, 22(1): 44
– 52.

[2] BAKULE L. Decentralized control: An overview [J]. Annual Reviews
in Control, 2008, 32(1): 87 – 98.

[3] BAKULE L, PAPı́K M. Decentralized control and communica-
tion [J]. Annual Reviews in Control, 2012, 36(1): 1 – 10.

[4] CHRISTOFIDES P D, SCATTOLINI R, MUÑOZ D, et al. Dis-
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