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Sequential unequal-length phase identification and modelling method
for fault detection of varying-duration batch processes

LI Wen-qing, ZHAO Chun-hui†, SUN You-xian
(State Key Laboratory of Industrial Control Technology, Department of Control Science and Engineering,

Zhejiang University, Hangzhou Zhejiang 310027, China)

Abstract: The work of monitoring multiphase batch processes with unequal phase durations is of great importance
but difficult. Due to misaligned phases, process characteristics are mixed along time direction which causes problems in
phase analysis and modeling as well as online application. In order to solve the uneven-length problem, this paper proposes
a sequential unequal-length phase identification and modeling-based fault detection method. The main contribution of
the proposed method includes: 1) multiple unequal-length phases are sequentially identified by evaluating the changes
of process variable correlations step-wise regarding their influences on model accuracy and monitoring performance; 2)
irregular phase characteristics are captured by irregular data-arranging-based modeling strategy; 3) the proposed method
provides an easy but effective way to judge the phase affiliation and check the operation statuses of new samples in real
time. Its online monitoring performance is illustrated by an injection molding process with varying durations.

Key words: batch processes; varying batch durations; unequal-length phase identification; multivariate statistical mod-
eling; fault detection

1 Introduction
Batch processes play a significant role in modern

industrial manufacturing, the work of monitoring these
batch processes is very important to ensure safe pro-
duction and consistent high-quality products. How-
ever, since first-principles based model is hard to built,
data based multivariate statistical analysis methods[1–5]

have attracted rising attentions. Among them, multi-
way principle analysis (MPCA) and multi-way par-
tial least regression (MPLS), which were proposed by
Nomikos and Macgregor[4–5], extend the applications
of traditional multivariate statistical analysis methods

from continuous processes to batch processes. Since
then, more and more researches[6–8] have been con-
ducted around statistical modelling and monitoring for
batch processes.

However, most researches are based on the ide-
alized assumption that batches have equal durations,
which cannot be well satisfied in real industrial manu-
facturing processes due to the different operation con-
ditions and alternative product targets. In particular,
for multiphase batch processes, the lengths of phases
may be different over batches and the resulting irregular
phase data cannot directly be used for statistical analysis
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and modelling. Therefore, many studies have been con-
ducted to handle uneven-length batch processes[9–17].
The above methods can be divided into two types: di-
rect signal synchronization methods[9–15] and irregular
phase partition based modelling methods[16–17].

Direct signal synchronization means batch trajecto-
ries are synchronized by performing some signal pro-
cessing strategies. The simplest methods[9] include cut-
ting the trajectories of all batches to the shortest one and
expanding the trajectories, which are only suitable when
the main process characteristics are captured in their
common parts. A reasonable alternative method[10] is
to synchronize process trajectories according to an in-
dicator variable. However, it may distort the origi-
nal process variable correlations. Besides, for multi-
phase batch processes, the changes of phase character-
istics may not be correctly indicated by an indicator
variable. Other methods[13–15] for handling the uneven
length problem include Dynamic Time warping, Cor-
relation Optimization Warping and so on. In general,
these methods treat the whole batch as a single subject
and ignore the multiphase nature. For multiphase batch
process, even after the batch lengths are synchronized,
the phases are in fact misaligned over batches. Thus
process characteristics cannot be well reflected since
data belonging to different phases are mixed and ana-
lyzed together.

To overcome the limitations of direct signal syn-
chronization methods, Lu et al.[16] proposed the sub-
phase division methods for handling uneven-length
problem of multiphase batch processes. Two models
were built, in which, one was for phase division and an-
other for monitoring model developments. While Lu’s
method has been demonstrated effective and applied
successfully, it may have some drawbacks during the
phase partition procedure. First, the clustering algo-
rithm was used for irregular phase partition and it did
not consider the time sequence of process operation,
which may result in improper phase model as well as
may lead to a disordered phase partition results. Be-
sides, the clustering based phase partition method takes
the whole time-slice as the basic analysis unit, which
thus may not correctly reveal the phase shift of some
specific batches in this time-slice. Zhao et al.[17] de-
veloped phase division and modeling method for batch
processes with serious uneven-length problem in which,
different unequal groups were separated since they have
quite different characteristics. However, for each un-
equal group, phases are still identified using clustering
algorithm and drawbacks of clustering based method as
mentioned above may also exist.

To address the unequal-length problem, this arti-
cle proposes a sequential unequal-length phase iden-
tification and modelling method for fault detection of

uneven-length multiphase batch processes. The major
contribution is specified as follows: 1) Irregular phases
are automatically identified by detecting the changes
of variable correlations as evaluated by one statisti-
cal monitoring index. 2) Based on the phase partition
results, phase models can be developed by data re-
arrangement strategy and then local process character-
istics are well described. 3) During online application,
the phase affiliation of samples will be real-time judged
so that the proper phase model can be adopted to distin-
guish between real fault and phase shift.

What’s more, it is noted that SSPP algorithm is only
suitable for the equal-length batches while the proposed
method is able to solve a more general problem, that is,
unequal-length batch problem. In other words, SSPP al-
gorithm can be regarded as one special case of the pro-
posed method.

2 Methodology
2.1 Data preparation

In general, before modelling, data should firstly be
normalized. There are two common approaches for
data normalization in batch process industry: variable-
unfolding based method and batch-unfolding based
method[18]. Due to the misaligned data caused by un-
even phases, normal batch-wise variations cannot be
well reflected by batch-unfolding based method. While
variable-unfolding based method can handle uneven
batch data, more variations will be covered simulta-
neously, and thus the resulting confidence region can
be very wide, which makes the model insensitive to
small variations. Accordingly, the advantages of the
two methods can be combined and utilized in the pro-
posed algorithm. Variable-unfolding based method is
only chosen for phase partition, and batch-unfolding
based approach will be adopted later for monitoring sys-
tem development.

In each batch run (batch index i = 1, 2, · · · , I),
assume that J process variables are measured online at
k = 1, 2, · · · ,K time intervals throughout the oper-
ation cycle where the duration is not fixed in length,
forming each batch set, denoted as Xi(Ki × J). Then,
batch set Xi(Ki × J) are aligned from top to bottom
and keep the dimension of variable unchanged, giving

an
I∑
i

Ki × J matrix X(
I∑
i

Ki × J). Subsequently,

X(
I∑
i

Ki × J) is normalized by subtracting the means

and dividing by the standard deviations. Then normal-
ized time-slices Xk(Ik × J) can be separated from

X(
I∑
i

Ki × J). At the end of the batch process, time-

slices contain different numbers of batches due to the
uneven problem.
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2.2 Phase division by sequentially analyzing va-
riable correlations

The basic idea of the proposed method is to evalu-
ate samples of each batch sequentially along time direc-
tion starting from the initial phase model and check the
changes of variable corrections. The initial phase model
is developed based on the first time-slice where batches
have similar characteristics and then will be updated by
including more and more samples with similar process
characteristics. If samples with different characteris-
tics are included, then the accuracy of the representative
model will be decreased, which indicates the ending of
the current phase for the related batches. Correspond-
ingly, by sequentially evaluating the changes of variable
correlations from the beginning of the process, phase
landmarks of each batch can be automatically identi-
fied. The specific procedure is presented as follows.

Step 1 Input the normalized time-slice data
Xk(Ik × J).

Step 2 Initial phase model development. Develop
an initial monitoring model Pv,1(J×R) by performing
PCA algorithm on the first time-slice data matrix, here
termed as Xv,1(I1 × J).

Xv,1 = TP T
v,1 + E =

R∑
r

trp
T
r + E,

T = Xv,1Pv,1,
(1)

where v means that time-slice data is variable-unfolded,

if there is only one time-slice, Xv,k(
k∑
1

Ik × J) equals

to Xk(Ik × J). Pv,1 will work as the initial phase
model to evaluate the variable corrections of the follow-
ing samples of each batch. Then calculate the monitor-
ing statistic values of squared prediction errors (SPE)
and determine the confidence limit Ctrlv,1. A looser
confidence limit should be set up for two reasons: First,
time-wise variations are larger and more complex; Sec-
ond, monitoring model based on first time-slice or sev-
eral time-slices cannot cover the whole phase informa-
tion. Thus α is selected to enlarge the confidence limit,
which determines how much difference of variable cor-
relations is allowed for the neighboring samples within
the same phase. How to choose the value of α depends
on the specific process characteristics. In general, larger
α value means more difference of variable correlations
is allowed and the accuracy of phase model will be de-
creased since different variations should be simultane-
ously captured by one representative model; smaller α
value means that more irregular phases will be obtained
and more accurate monitoring models will be developed
to describe each sample.

Step 3 Variable correlation evaluation. The cur-
rent model Pv,1(J × R) is adopted to monitor each
batch of the next time-slice and SPE statistic is calcu-
lated for evaluating variable correlations.





ti = Pv,1xi,

ei = xi − P T
v,1ti,

SPEi = eT
i ei,

(2)

where subscript i represents the ith batch of the next
time-slice. If there are batches showing consecutive
three alarming signals by adopting the current monitor-
ing model, then these batches are/abnormal0, which
means their variable correlations are changing signif-
icantly and may enter the next phase. Then record
the first alarming time ki of these batches and batch
data before ki are denoted as one sub-phase. Other-
wise, it means the whole time-slice is operating in the
/normal0condition. Here,/normal0means the pro-
cess is in the current phase.

Step 4 Phase model updating. Add the/normal0
batches of the next time-slice into the modeling data
of current monitoring model and variable-unfold them,

Xv,2(
2∑
1

Ik×J). Perform PCA on the variable-unfolded

data Xv,2(
2∑
1

Ik × J) to update monitoring model

Pv,2(J × R) and confidence limit Ctrlv,2. The up-
dated model is then utilized to monitor batches of the
next time-slice.

Step 5 Phase landmark determination. Repeat
Steps 3 and 4 until the first phase has been identified
for every batch.

Step 6 Recursive implementation. Remove the
first sub-phase, the remaining data are aligned and em-
ployed as the new input in Step 2. Then repeat Steps
2−5 to determine the following phases.

By sequentially checking the changes of variable
correlations for each batch, irregular phases are identi-
fied in order. It is noted that the general uneven problem
is focused on in this work, where the process character-
istics over irregular batches within the same phase can
still be modelled by a representative phase model.

Furthermore, the specific of difference between the
proposed partition method and that in Ref. [8] is de-
scribed as below. SSPP algorithm in Ref. [8] takes the
whole time slice as the basic analysis unit since batch
length is equal. In this way, the phase landmarks of
all batches are identified at the same time. In con-
trast, the proposed method analyses each sample within
time slice separately since phases are misaligned over
batches, which is more reasonable for the uneven-length
case considered here.
2.3 Data re-arrangement for sub-phase model

development
Since uneven-length batch process has been divided

into several phases and the uneven batch information
of each phase such as the shortest length ks as well as
the longest length kl have also been determined, phase-
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based monitoring model can then be developed. Be-
fore developing sub-phase models, data normalization
should firstly be carried out. Batch-unfolding based
method are adopted because process characteristics
stay similar among time-slices within the same phase.
What’s more, for the irregular time-slice data (from
ks+1 to kl) at the end of each phase, because insufficient
batches are contained in each of them and reliable pro-
cess information cannot be derived, they are unfolded
variable-wise to construct a generalized time-slice. For
samples during time region [ks, kl], they are all repre-

sented by the generalized time-slice Xw
k (

kl∑
ks

Ik × J).

Correspondingly, normalized data are prepared for the
following sub-phase modeling.

After data normalization, the sub-phase data

Xc(
Kc∑
1

Ik × J) are arranged by variable-wise unfold-

ing the time-slices Xk(Ik × J)(k = 1, 2, · · · ,Kc)
within the same phase c. An unified phase model is
subsequently developed.

Xc = TcP
T
c + Ec =

R∑
r

tc,rp
T
c,r + Ec,

Tc = XcPc,
(3)

where Pc(J ×Rc) reveal the major variation directions
captured within the current phase and Rc is the number
of the retained PCs. Tc are phase-representative scores.

Based on the unified phase model, related statistics
can be calculated:

T 2
k = (tk − tk)T

−1∑
c

(tk − tk),

SPEk = eT
k ek,

(4)

where tk(Rc × 1) is the PC vector separated from

Tc(
Kc∑
1

Ik ×Rc) and tk is the mean vector of Tk(Ik ×
Rc), which are time-slice scores separated from

Tc(
Kc∑
1

Ik ×Rc). Σc is the covariance matrix of

Tc(
Kc∑
1

Ik×Rc). ek(J ×1) is the residual vector which

is obtained from Ec(
Kc∑
1

Ik × J). T 2 statistic describes

variations in the systematic part captured by monitoring
models and SPE statistic reveals variable correlations.

For each phase, confidence limits can be defined at
each time for the two monitoring statistics. Assuming
the process data follows a multivariate normal distri-
bution, so confidence limits can be determined by F–
distribution and a weighed chi-squared distribution for
T 2 and SPE respectively[19]. However, considering the
confidence limit of T 2 established by F–distribution is
not very sensitive, another way can be utilized to de-
fine confidence limit: arrange the values of monitoring
statistic in a descending order at each time and choose

the value at 95% (or 99%) of the ordered data as the
confidence limit.
2.4 Online phase judging and fault detection

For multiphase batch processes with unequal-length
phases, process time index fails to judge the phase affil-
iation of new samples. Besides, the operation statuses
of new samples will be more complex which can be di-
vided into three cases: normal operation, abnormal op-
eration and phase shift. So how to judge the phase affil-
iation of new samples and check their operation statuses
in particular distinguish phase shift and real fault is of
great significant during online monitoring. The specific
procedure is as follows:

a) For the data within the region [1, ks], the phase
affiliation of is certain and process time is sufficient to
judge their phase affiliations. Then according to the pro-
cess time index, proper phase model will be adopted
and two statistics are calculated to check their operation
statuses. If both statistics stay well in the confidence re-
gion, it means the new sample operates normally; oth-
erwise, there may be process fault.

b) For the data during the region [ks + 1, kl], sam-
ple may still lie in the current phase or shift to the next
phase. Then the current phase model and the next phase
model will be adopted in turn to monitor this sample.
The specific phase which can well accommodate the
current sample with no alarms will be chosen as the af-
filiation. If both phase models issue monitoring alarms,
it is regarded as a process fault. Therefore, the phase
shifts will be readily distinguished from abnormal be-
haviors.
3 Illustration and discussion

In this section, a typical multiphase batch process,
injection molding, is used to illustrate the performance
of the proposed algorithm. A typical injection mold-
ing process can be divided into three major operation
phases: Firstly, injection of the plastic melt into the
mold, followed by is packing holding of the plastic in
the mold under pressure, and finally, cooling of the
plastic in the mold. It can be easily set as a typical
uneven-length multiphase batch process for experi-
ments to verify the proposed phase identification and
modelling method for online monitoring, where the in-
jection phase duration is not fixed but rather depends on
the injection velocity. Here, the injection velocity is ar-
tificially set to change from 22 to 26 mm/s, involving
three typical velocity values: 22, 24, 26 mm/s. Corre-
spondingly, the duration of injection phase ranges from
99−84 samples. It is clear that moderate uneven-length
problem has been simulated. Here for simplicity, ex-
cept the injection phase, other phases are controlled to
have exactly the same duration. The material used in
this work is high-density polyethylene (HDPE). Nine
process variables are selected for modelling, totally 35
normal batches are collected under normal operation
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conditions, where 23 batches are used for modelling.
Besides, two types of faults are considered: Injection
phase fault and packing-holding pressure fault.

As shown in Fig.1, the uneven injection phases
have been automatically determined by the proposed
algorithm without post processing. For comparison,
real physical phases indicated by an indicating vari-
able (here is screw stroke) have also been plotted.
Fig.1(a) shows the phase partition results for mod-
elling data while Fig.1(b) reveals the results of
testing batches. It is obvious that using the proposed
algorithm, the uneven injection phase results are ba-
sically in line with the real physical phases. What’s
more, a measurement index ∆t = |phasereal

− phasepartition|, has been defined to evaluate the ac-
curacy of phase division results. The mean and mean
absolute deviation (MAD) values of ∆t are calculated
for 23 modelling batches and 12 testing normal batches
respectively. Table 1 shows the comparison of phase
division accuracy between the proposed method and
clustering-based method used in Ref. [17]. It is noted
that the proposed method has better phase partition
performance in comparison with the clustering-based
method.

(a) training batch

(b) normal testing batch

Fig. 1 Phase partition results of uneven injection phase
by the proposed method

Table 1 Evaluation results of phase division accuracy
(∆t) between the proposed method and
clustering based method

Proposed method Clustering-based method

Training 0.13± 0.23 1.04± 1.11

Testing 0.08± 0.15 1.17± 1.08

Based on the phase division results, different mon-
itoring models are developed for each irregular phase.
Monitoring results of injection phase and packing-
holding phase are only presented here to illustrate the
online monitoring performance of the proposed method.
For samples before 85, injection phase model should
be adopted and two monitoring index T 2 and SPE will
be calculated to check their operation status. If both
of them are below the confidence limits, then process
can be regarded as normal; for data during [85, 99], in-
jection phase model is firstly adopted to check whether
there is any alarming signal for T 2 or SPE, if alarms oc-
curs, packing-holding phase model is then utilized for
monitoring; on condition that alarming signals still ex-
ist, then fault happens; otherwise, process just switches
from injection phase to packing-holding phase. With
regarding to data after 99, they are certainly beyond the
injection phase and corresponding monitoring model
can be adopted according to time index for online mon-
itoring.

Table 2 shows the monitoring performance results
of injection phase and packing-holding phase respec-
tively. FAR (false alarming rate) of T 2 and SPE are
calculated for normal testing batches. One FAR is cal-
culated for 12 batches where the total number of false
alarming signals is divided by the total number of sam-
ples from 12 batches. Obviously, FAR of SPE fluctuate
around 5% and are less than 8%, which agree with the
95% confidence limit. While for T 2, FAR are much
smaller for the reason that phases are identified accord-
ing to variable correlations evaluated by SPE, so T 2 is
not so sensitive as SPE for online monitoring. What’s
more, it is noted that FAR do not show significantly dif-
ferences between injection phase and packing-holding
phase, indicating phase partition results are reliable to
certain extent.

Table 2 Online monitoring performance (FAR%)
for normal case for two phases

Injection phase Packing holding phase

SPE 2.13± 2.84 4.14± 2.86

T 2 1.29± 1.93 1.07± 1.07

Figure 2 demonstrates SPE monitoring chart for
phase switch. Real phase switch occurs at the 91st sam-
ple interval, from injection phase to packing-holding
phase. It is clear that SPE index continuously exceeds
the confidence limit at 91st sample by adopting injec-



No. 9

LI Wenqing et al.: Sequential unequal-length phase identification and modelling method

for fault detection of varying-duration batch processes 1231

tion model, and then alarming signals have been elim-
inated by using packing-holding phase model. For T 2,
there is similar result which is not shown here. Be-

sides, for fault test batches, reliable fault detection per-
formance can also be obtained. The monitoring charts
are not presented as the length limit.

Fig. 2 SPE monitoring results for normal process switch using the proposed method (bold/ fine dash line: control limit of
Injection/Packing holding phase; crossed/dot line: SPE statistic for Injection/Packing holding phase)

Table 3 shows the comparison results of on-
line monitoring performance between the proposed
method and Lu’s clustering based method. In general,
the proposed algorithm shows preferable monitoring
performance than clustering-based method, which is
evaluated by paired t-test (α = 0.05). For FAR, the
average results of injection phase and packing holding
phase are presented here. It is noted that with the 95%
confidence level, FAR of the proposed method are al-
most around 5% with respective to SPE statistic com-
pared with 3% of T 2, which also denotes that SPE is
more sensitive and is the critical monitoring statistic
in the proposed algorithm. While for fault batches,
∆T = FAT− FOT(FAT: first alarming time; FOT:
first occurring time) is calculated for evaluating fault
detection performance. It is noted that both methods
have small values of ∆T , revealing good fault detec-
tion ability.

Table 3 Online monitoring performance comparison
between the proposed method and
clustering based method

Proposed method Clustering-based method

FAR / %
SPE 2.70± 2.81 7.86± 4.68

T 2 1.18± 1.01 5.68± 3.12

∆T
SPE 4.00± 1.96 5.28± 3.18

T 2 0.57± 1.02 3.80± 3.76

4 Conclusions
In the present work, a sequential unequal-length

phase identification and modelling based fault detec-
tion method is proposed for multiphase batch pro-

cesses with varying durations. By evaluating the
changes of variable correlations for each batch or-
derly along time direction, different underlying pro-
cess characteristics are distinguished and irregular
phases can be automatically identified without post
processing. For sub-phase developments, irregular
phase data are re-arranged and generalized time-slices
are constructed. For online monitoring, phase affilia-
tion can be real-time judged and phase shift can be
well distinguished from process fault. The applica-
tion to the injection molding process shows the effec-
tiveness of the propose method.
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[12] WOLD S, KETTANEH N, FRIDÉN H, et al. Modelling and diagnos-
tics of batch processes and analogous kinetic experiments [J]. Chemo-
metrics and Intelligent Laboratory Systems, 1998, 44(1): 331 – 340.

[13] ITAKURA F. Minimum prediction residual principle applied to
speech recognition [J]. IEEE Transactions on Acoustics, Speech and
Signal Processing, 1975, 23(1): 67 – 72.

[14] GIORGIO T, FRANS VAN DEN B, CLAUS A. Correlation opti-
mized warping and dynamic time warping as preprocessing methods
for chromatographic data [J]. Journal of Chemometrics, 2004, 18(5):
231 – 241.

[15] RAMAKER H, VAN SPRANG E, WESTERHUIS J A, et al. Dy-
namic time warping of spectroscopic batch data [J]. Analytica Chim-
ica Acta, 2003, 498(1/2): 133õ153.

[16] LU N Y, GAO F R, YANG Y, et al. PCA-based modeling and on-line
monitoring strategy for uneven-length batch processes [J]. Industrial
and Engineering Chemistry Research, 2004, 43(13): 3343 – 3352.

[17] ZHAO C H, MO S, GAO F R, et al. Statistical analysis and online
monitoring for handling multiphase batch processes with varying du-
rations [J]. Journal of Process Control, 2011, 21(6): 817 – 829.

[18] WESTERHUIS J A, KOURTI T, MACGREGOR J F. Comparing al-
ternative approaches for multivariate statistical analysis of batch pro-
cess data [J]. Journal of Chemometrics, 1999, 13(3/4): 397 – 413.

[19] LOWRY C, MONTGOMERY D. A review of multivariate control
charts [J]. IIE Transactions, 1995, 27(6): 800 – 810.

�ö{0:
ooo©©©��� (1987–),I,Æ¬ïÄ),8cïÄ���õ�ÚO©Û

9õ�ã1gL§iÿ, E-mail: lwqangle123@zju.edu.cn;

ëëëSSSzzz (1979–),å,�Ç, 2009cÆ¬.�uÀ��Æ, 2009�

2011c,k�3�l�E�ÆÚ{I\²�nn.�Æl¯Æ¬�ï

Ä,3{IÏmÓ��Sansum0k¾ïÄ¤�ÏnïÄ
,8cïÄ�

��Äuõ�ÚO©Û�êâ?n�ï�;L§iÿ!�æ�ä!�þ

ýÿ���;É0iÿ!ýÿ���, E-mail: chhzhao@zju.edu.cn;

���`̀̀ppp (1940–),I,�¬, 1964c.�uúô�ÆzóX¿uT

c\\úô�ÆzóX, 1984c�1987c¤�ö�Æö±9�¯B�

Ç3�IStuttgart�Æ?1�¯, 1988cµÀ��Ç, 1995c�µ�¥

Ió§��¬,¦´450�ÏrÚ¬Æ©Ù��ö½�Ó�ö,8c´

úô�Æ��Xó�L§��ïÄ¤ÚI[ó�gÄzó§ïÄ¥%

Ì?,¥IgÄz�¬n¯�, IFAC�óE��¬BÌR,¥I¤ì�

���¬Bn¯�,8c¦�ïÄ���E,ó�L§ï�!��Ú`

z!ó�nÜgÄz!�U¤ì�, E-mail: yxsun@iipc.zju.edu.cn.

————————————————————————————————————————————-

ÖÖÖ ÕÕÕ

�ÆÑ��u2015c7�Ñ�d���¬�>��;Í5¥IÆ�uÐÔÑ#���Æ6�Ö,T

Ö´�â¥I�Æ�&EEâ�ÆÜ~�¬(½��8/���ÆÆ�uÐÔÑ0��1Æâ�w

²L¿©ï?�n
¤. TÖ®8
°S	Cz¶u<�¶�Ç;[��¦,{�ücõ��½v.

�Ö�©8Ü©: 1�Ü©´���ÆuÐÔÑoN�w,Øã
���Æ�½ !#���A��

5�#A:Ú#��;©Û
���ÆuÐ�{¤Úl¥���é«;l���Æ�N��ÝéÊ�

­�+�JÑ
#��eäk]Ô5�#¯K;éy8<a�¬Ú·I���Æ�?�ÚuÐ?1


I¦©Û!Æ�uÐ�g�,JÑ
?�ÚuÐ�A�­�I¦��Ú�
¢�5�ïÆ.�Ö�Ê

Ü©´���Æ'5�Ê�­�+�:��nØ!Ê�ÊU�$ÄN��!L§��!�ä��!��

Æ�!��ÚÙ¦�©|�w,�w�[©Û
ù
+��uÐ!I¦!¡��]ÔÚ#�Å��¯

K.

�Öäk±e­�A:: l���ÆÆ�ÔÑuÐ��ÝÑu,¿©©Û
�8&E´L���

A�;8Bo(
­�I¦ÚÆ��Ü6uÐ�5�'��Æ¯K;©Û
#��E?Ðé���Æ

uÐJø�Å�Ú^�,±9��Æ�uÐ�´¶Ú#��U�Æ�)�:�.

TÖ�øXÚ����Æ!gÄz�'+�!åÆ!A^êÆ!ó§�Æ9���'�&E�Æ�

ó§A^+���Æ��ï<
!ïÄ)Úó§��Ö,����E�ó§+nÜ�ïÄÚ�½Æ�

uÐ5yJøë�.

(oÊ)


