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Abstract: It is difficult to obtain analytical solutions for most of the hybrid stochastic differential equations (SDEs), so
the research on the numerical solutions by the use of numerical methods is of great significance. This paper focuses on
the almost sure exponential stability of the numerical solutions produced by the -method. Under the one-sided Lipschitz
condition and the linear growth condition, the almost sure exponential stability of the trivial solution for hybrid SDEs is
first introduced. Then, by applying the Chebyshev inequality and the Borel-Cantelli lemma, we prove that the §-method
reproduces the corresponding stability of the trivial solution under the same conditions for § € [0, 1]. The 6-method is a
more general method than the existing Euler-Maruyama method as well as the backward Euler-Maruyama method. When 6
isequal to 1 or O, it degenerates to one of the above two methods, respectively. The results of this paper are also applicable to
these two methods. Finally, a numerical example and its simulations with different 6 are given to illustrate the effectiveness

and the stability of the proposed method.
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1 Introduction

Hybrid systems, described as the stochastic dif-
ferential equations with Markovian switching, are
derived from the stochastic differential equations
(SDEs). For the reasons of environmental distur-
bances, the structures of the systems may change
abruptly. Generally, one way to model such abrupt
changes is to use the continuous-time Markov chains
r(t). The SDEs with Markovian switching are the
specific forms of such systems. This type of equa-
tions has been considered as a convenient mathemati-
cal framework for the formulation of various design
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problems in different fields such as target tracking
(evasive target tracking problem), fault tolerant con-
trol and manufacturing processes!' =/,

One of the important classes of the hybrid sys-

tems is governed by the n-dimensional nonlinear hy-
brid SDEs

dz(t) = f(a(t),r(t)dt + g(z(t),7(t))dB(t) (1)
ont > 0, given (0) = xg # 0 in R” and r(0) =
io € S. As a standing hypothesis, we assume that
fy9: R® x S — R"™ are smooth enough for hybrid
SDE (1) to have a unique global solution z(¢) on
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[0, 00).

Since hybrid SDE (1) does not have explicit so-
lutions, it is important and necessary to know how to
obtain the approximate solutions which can be com-
puted numerically. In recent years, a number of meth-
ods to obtain the approximate solutions to SDEs have
been proposed, and the problem of stability analy-
sis of numerical methods for such equations has at-
tracted a lot of attention 14, Among these refer-
ences, some try to answer the question “can a nu-
merical method reproduce the almost sure exponen-
tial stability of the underlying hybrid SDEs?” For ex-
ample, Pang et al.['3 showed that Euler-Maruyama
(EM) method could reproduce the almost sure expo-
nential stability of the tested hybrid SDEs under some
sufficient condition. The key condition imposed in
[13] was the global Lipschitz condition. Then without
the global Lipschitz condition, Mao et al.['4! showed
that backward Euler-Maruyama (BEM) method could
capture the almost sure exponential stability of highly
non-linear hybrid SDEs, but the EM method might
not. It is well known that the #-method is more gen-
eral than these methods and may be specialized as the
EM and the BEM by choosing § = 1 and § = 0. We
wonder what is the answer to this question for the 6-
method. Actually, for SDEs and stochastic delay dif-
ferential equations, the stability analysis of §-method
have received a better research °-291, However, for
hybrid SDEs, relatively little research is available on
the exponential stability of #-method, which is then
chosen as the topic of this paper. Our effort is to show
that the #-method can also reproduce the almost sure
exponential stability of the exact solution of hybrid
SDEs under some conditions similar to those in[14].
To show the stability of the #-scheme, for the first
time, we will give the figure of the projective domain
of numerical solutions in the simulations. Let us first
state the conditions.

Assumption1 [ and g satisfy the linear growth
condition. That is, there is an A > 0 such that

|f(z, )|V |g(z,9)|<h|z], V(z,i) eR"™ x S. (2)

Assumption 2 There are constants y; (i € S)
such that
(@=9) " (f(2,9) = f(y, ) <pilw — yf*, Yo,y €R"
3)

o s (WP 2Tl
zER™, £0 || ||
4)

2 Notations and lemmas
Throughout this paper, we let (12, F, {F; }+>0, P)
be a complete probability space with a filtration

{Fi}i>0 satisfying the usual conditions, that is in-
creasing and right continuous, with F( containing
all P-null sets. B(t) is assumed to be a scalar
Brownian motion defined on ({2, F, {F; }+>0, P). Let
Eg_-o((); R™) be the family of all Fy-measurable
bounded R"-valued random variables. Let |-| de-
note both the Euclidean norm in R™ and the trace (or
Frobenius) norm in R™*™_ The inner product of x, y
in R™ is denoted by (z, y) or z 1.

Let r(t), t > 0, be a right continuous Markov
chain on the probability space taking values in a fi-
nite state space S = {1,2,---, N} with generator
I' = [vi;]nx N given by

P{r(t+d)=jlr(t)=1i} =
{’71-]'(54-0((5), if i # 7,
where § > 0. Here 7;; > 0 is the transition rate
of r(t) from state i to state j if i # j while ; =
— > 7. We note that almost every sample path
J#i

of r(t) is a right continuous step function with a fi-
nite number of sample jumps in any finite subinter-
val of Ry := [0,00). As a standing hypothesis, we
assume that the Markov chain is irreducible in this
paper. That is to say, this condition is equivalent to
that, for any ¢, j € S, we can find finite numbers
, 1) € S such that

Viyir Yirsia " Yigsj > 0.

Note that I" always has an eigenvalue 0. The al-
gebraic interpretation of irreducibility is rank(I") =
N — 1. Under this condition, the Markov chain
has a unique stationary probability distribution 7 =

i1, 12,

(w1, 9, ,mn) € RPN which can be determined
by solving
wl'=0,
N
st. >, mj=1andm; >0forall j € S.
j=1

To learn more about the Markov chain, please see
[3]. Now, we define the #-method for hybrid SDE (1),
which is a discrete approximations X ~ x(tx), with
tr = kA, where X = x(0), rOA = i and mainly

Xppr = Xp+ (1= 0)f(Xpp1, 70) A+

k =0,1,2,---, where A > 0 is the stepsize, 0 €
[0,1] is a fixed parameter, and ABy, := B((k +
1)A) — B(kA) is the Brownian increment. This
scheme admits a trade-off between the past state and
the current state of the system. With the choice § = 0
and 0 = 1, (5) reduces to the BEM method and the
EM method, respectively.
We note that Assumption 1 implies that
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f(0,7) =0and ¢g(0,¢) =0, foralli e S. (6)
It is easy to observe that the solution of Eq.(1) will re-
main zero if it starts from zero. The solution z(t) = 0
is called a trivial solution to equation (1). Assump-
tion 1 also ensures that any solution of Eq.(1) starting
from a non-zero state will remain non-zero with prob-
ability 1 (see p.120 in [21]).

Let us explain that the 6-method (5) is well de-
fined under the condition (3), which follows from the
following lemma.

Lemma 2.1 Assume that f satisfies the one-
sided Lipschitz condition (3). If (1—0) A I?Eegx{ pit <
1,6 € [0,1], then the #-method (5) is well defined,
(see[3, 8]).

Definition2.1!'7-22] The trivial solution of Eq.(1)
is said to be almost surely exponentially stable if

lim sup M <0, a.s. (7)

t—00
for any initial data z(0) € £bf0((2; R™) and z(t) =
.T(t, to, ':U())'

Definition 2.2!'7!  The approximate solution X,
of Eq.(5) is said to be almost surely exponentially sta-
et lim sup log | X
for any bounded variable X and X = X (0, Xp).

3 Stability of trivial solution and the 0-
method approximation

<0, a.s. (8)

In this section, we will show that the #-method
(5) can preserve the almost sure exponential stability
of the trivial solution of the hybrid SDEs. The follow-
ing theorem shows that the trivial solution of Eq.(1) is
almost surely exponentially stable.

Theorem 3.11'*)  Let Assumptions 1 and 2 hold.
If > mi(pi +0.50;) < 0, then the trivial solution of
qu?lg) is almost surely exponentially stable.

Theorem 3.2 Let Assumptions 1 and 2 hold. If
> mi(ui+0.50;) < 0, then for § € [0,1] and any € €

€S
(0,A), where A=|>_ m;(1;+0.50;)|, there is a A* €
1€S
(0,1) with 2(1 — G)A*(masx\m\) < 1 such that for
1€
any A < A*, the #-method (5) has the property that

1
lim sup — log | X¢|<> D mi(2u; + 04)+e<0, a.s.
k—o0 kA €S
&)

Proof We divide the proof into three steps.
Step 1 For any 0 € [0, 1], we rewrite (5) that
Xy + (0 = DAF(Xppa,7i7) =
Xp 4+ 0Af(Xp, 1) + 9(Xk, 7 ) ABy

and

Vol. 32
X X AV A

| X121 +2(0 - 1)< ki1 f( k+;,rk )

| X1
0 - 1)2|f(Xk+1arkA)‘2A2] —

| X1 |?
1

X4 2[1 + |Xk|2(2<xk,94f(Xk,T?)+
9(Xi, 12 ABy) + A (X, 1) +
9( Xk, 75 ABL[*)]. 10

By Assumption 1, which implies f(¢,0) = 0, Vt
> 0, we get from (3) that

X X AV A
|Xk+1!2[1+2(9_1)< bty f(Xki1,78))

=

| X1 |
X1 [ +2(0 — 1) Apa],
X [2[1+ 20 — 1) Apa] <
| X2 (1 + X ‘2<2<Xk,9Af<Xk,né‘) -
k
9(Xp, 72 ABy) + |0Af(Xg, 78) +
9( X, ) AB|?)], (11)

where A is the stepsize, <Xk+1,f(Xk+1,rkA)> <
MT§|X,€+1\2, ABy, = B((k+1)A)—B(kA). Letting

&r(ry,0) =

1
W(Q (X3, OAf(Xp,18) + 9(Xi, 75 ) ABy ) +
0Af(Xk, TkA) + g(Xk,rkA)ABkF)L (12)

then we have
| X[
1+2(0—1)A,urkA

| Xpot1]? < (1+&(re, 0)), (13)

where X;, # 0, otherwise & (75, 0) is set to —1.
Clearly, & (rd,0) > —1. Let G, = o({r(u)}u>o0,
{B(s)}ogs<t), namely the o-algebra produced by
{r(u)}u>0 and { B(s) }o<s<t, We take the conditional
expectation on | X417,
p
E(|Xk1l"lg, ,) <
| Xx|”
[1+2(0—1)An, )

)
2

].

kA

14)

For any p € (0, 1), from the following inequality
(14+u)P? <

p  p(p—2) o plp—2)(p—4) ;3
1—|—§u+ 92 91 u“+ 23 .31 u”, (15)

where © > —1, we can estimate that
E(|Xk41[7gn) <

| Xk |”
[142(0-1)Ap ]

7 Lia 20 BI1HE(E, 0)

p
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p(P—2), 2, A plp—2)(p—4) 9( X, rAA,. plp—2
22 g o U O T o2y + ] \XTQ‘ |+ 222,
k

& (i, 0, (16)

e . W Xp, g(X, )" A 2
where 14 denotes the indicator for A. Since X +Cpon A’}

k
2n—1 _ 2n—1\ __
A o) Ean 0 LN
E(ABk ’gkA) = E(ABk ) = [1 + 2(0 i 1)A ]p/2 {z#0} 2
(A)"- (20— D)1, )
(17) <X]€7 Xk:urk; )> 2 ‘g(XkarkA” A
X 2 Xp/?
we see that | k‘ | 2k|
pGAT,A—i- 0AR)” +CponA®} <

oy 2 B 0) 0, ) = i+ 5O+ G 2] 2

1 ’Xk’p p P2
1, oo B{——=[2( X5, 0A f( Xy, r2)) + 1+ZA0,a+—=h"A+

2 —

2 (X, Q(Xkﬂ"k JABy) + (0A)?| f(Xi, )| + POAA + CponA?}, (21)

|9(Xp, ) [ (ABy)? +
20.A <f(Xk,7“kA) 9(Xk,75)) ABy] lgos } =

{xk¢o}{| S[2 ( Xk, 0AF (X, ) +

(84) ‘f Xkark ‘ +‘9 Xkark |A ‘gkA}<
{Wéo}{‘ X 320 00,0 | Xi[* + (08)*h°| X, )* +

l9(Xk,ri)| AT} (18)
Similarly, we can show that
1{%#0}E(£I§(TkAv 0)lgin) =
2

Xy, g Xk,rk D2 A+ (A F (X, )| +
32| g( X, r)|" +
1402 3| F (X, 72, g (Xp, i)Y +

4 Xy, OA f( Xk, 78)) (042 f (X, \ +

A{ Xy, OA F(Xi, 1)) | 9(Xhs i) y A+
8 ( Xy, g(Xp, rE)) {F (Xiy 78), 9( X 18) ) 0A2 +
20° 2% | £ (X, 1) |9 (X )]} =
4 X, g(Xp,r)) A

| X!

L 20y B (7, 0) |6, ) < Cond?, (20)
where Cp 5, is a constant dependent on ¢ and /. Sub-

stituting (18) — (20) into (16), and then from (4) and
Assumption 1, we obtain

E(|Xkt1]" [gpa) <
| X [P
[1+2(0 —1)Ap,a]

| I—— — Cgp A2, (19)

p
o7z Lo {1+ 52040, 5 +

where C), g 1, is a constant dependent on p, 6 and h.
Cpon = Cpond’ + §(9Ah)2

apply g(X,75) to (4).
Step 2 For any ¢ € (0, \), we choose p suffi-

- 0,4 means that we

1
ciently small to confirm that ph? < 15. Then we
have
(1—2(1— 0) Aps,a )P/ >
1—p(1—0)Ap,a — C3A?, (22)
where C3 = C3(p,0) > 0 for sufficiently small A.

By further reducing A, we may ensure that the fol-
lowing inequalities hold

_ 1 1
Cpﬂ’hﬂ < ng, C3A < Z

Ip(1 — 0)Apa + %psA| < % (23)
Using (22) and (23), (21) becomes
E(|Xk41llg, ) <
| X4[P(1 + ngré\ +pBAA + ipsA) _
1—p(1—=0)Ap,a — C3A2 h

pe,

D 1
1+ §A(O'T]€A + 29/1%4 + 56)

B e )

Obviously, for any u € [—=, =], we have

2°2

1 .
I 2 ’L<
T —|—u+ui§)u
0o Q
1—|—u+u22(§) =14u+2u (25
=0

By further reducing A to insure that

1 1
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1 1 1 3
249,urkA + 55) X {p[(l—ﬁ)ur§+15]A+ > milog[l +p(§0’¢ + pi + Ze)A] <
1 1 €S
2101 1 12 42 1 1 3
Then using (25), (24) becomes ies 3
E(’Xk+l|p|gkA) < pA(—A—F 16), a.s. (31)
1
X [P(1 + BA(O'TA +20pa + €)X It therefore follows that
2 g ) ko2 Jim {pA = e)(1+k) +
—00
{14p[(1 = O)p,a + —€]A+ .
e 4 1 3
) P2 Zo log|1 +p(§UT§ +MT§+Z£)A]} =—00, a.s.
2p°[(1—6 —e| A%} < n=
po[(1 = O)p,p + 2] A7} 32)
1
+plz0,4a+0p.a+(1—0)u.a+ rom and by the Fatou lemma (see , We ob-
1 50 0 s 1—0 r F (32) and by the F 1 (see [23]) b
9 1 tain from (30) that
— _ L
4E + 45)A] X |Xk’ = khm epA(A—a)(1+k)E(’Xk+1’p) —0. (33)
1 3 e
1 ‘1‘10(5(77«,? Tl + 15)A]|Xk|p- (27 Step 3 Eq.(33) implies that there is an integer

Since this holds for all £ > 0, we also have
E(’Xk+1‘p’g(k71m) <

1 3
E(IXk g 1a) L+ P(50,8 + pep + 76)A] <

k 1 3
[ Xk—1l” [T [L+p(5000 + ppa + )AL
n=k—1 2 4

Repeating this procedure yields

E(|Xkt1["lg,) <
k 1 3
|X0|p H [1 +p(70-TA + Hpa + 75)A]' (28)
n=0 2 n n 4

Taking expectations on both sides, it reads

k
E|Xpp1 < [ Xo[’Eexp( ) log[l +
n=0

1 3

For any € € (0, A), we therefore have

epA(/\_E)(1+k)E(’Xk+]_‘p) <
|xo|PE exp{pAX —&)(1 + k) +

k 1 3
> log[l +p(50ma + ppa + 72)Al} (30)
n=0

We further reduce A to ensure that
p(%ai + i + ES)A >-—1,1€8.
With the inequality
log(l14+2z) <z, x> —1,

and by the ergodic property of the Markov chain, we
derive that

: 1 ¢ 1 3
klirrolo T nz::O log[1 +p(§a7"§ + ppa + ZE)A] =

ko such that
E(|X3[P) < e PFAAE) vk > k.
By the Chebyshev inequality, we get

_ _ 1
P{| Xy [P > k2e PRAN=9)} =

Then applying the Borel-Cantelli lemma (see[21, p.
71), we see that for almost all w € (2,
|X3|P < RPemPRARTS) (34)

holds for all but finitely many k& > k. That is to say,
there exists a k1 (w) > ko, for almost all w € (2, when
k > k1, (34) holds. And this implies

1 2logk
kA pkA
whenever k > k1. We therefore obtain that

log (| Xk[) < - (A—9),

1
lim sup ElogﬂXkD <—A+eg, as.

k—o0

as required.
Remark 3.1 In Mao et al. "¥ and Pang et al. 13, it
was shown that the BEM method (# = 0) and the EM method
(60 = 1) may reproduce the almost sure exponential stability of
the trivial solution of the hybrid SDE. This theorem extends the
previous results and shows that #-method can preserve the sim-
ilar almost sure exponential stability of the underlying equation
for 6 € [0, 1]. This implies that the results of this paper is more
general than that of Mao et al.['¥ (31,
Remark 3.2

ing the semimartingale convergence theorem, Li et al.®! have

and Pang et al.

For SDEs without Markov chains, us-

shown that the #-method may reproduce the almost sure expo-
nential stability of the trivial solution of the SDEs when 6 €
(%, 1]. But it is not the whole interval [0, 1] for 6. Here, by
the Chebyshev inequality, the Borel-Cantelli lemma and the
inequality techniques, we show that for 6 € [0, 1], #-method
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admits the corresponding stability of the trivial solution of the
hybrid SDEs.
4 Generalization

In this section, we will generalize the results to
the multi-dimensional Brownian motion case. Let the
equation be

d
dz(t)=f(z(t), r(t))di+ Zlgj(ﬂc(t), r(t))dB;(t)
j=
(35)

ont > 0, given 2(0) = xgp # 0in R™ and r(0) =
iop € S. (Bi(t),---,Bg(t)) is assumed to be a d-
dimensional Brownian motion defined on the com-
plete probability space ({2, F,{F:}i>0,P). As a
standing hypothesis, we assume f, g1, -, gq: R™” x
S — R"™ are smooth enough for the hybrid SDE (35)
to have a unique global solution z(¢) on [0, c0). Now,
we impose the following assumptions.

Assumption 4.1 f and g; satisfy the linear
growth condition. That is, there is an h > 0 such that

|f($,2)| \4 |gj($7i)’ < h|$’,
V(z,i) ER" x S, 1< j < d. (36)

Assumption 4.2  There are constants p; (i €.5)
such that

(x — )" (f(2,9) = f(y,4) < pile — yl,

(37)
Vz,y € R" and
0=
sup d (\gj(%i)P B 2\$ng($72’)!2)} .
z€R™, 240 j=1 2|2 ||
(38)

The #-method applied to hybrid SDE (35) produces
approximations X ~ xz(ty), with t; = kA, where
Xo = 2(0), 78" = io and

Xpp1=Xp+(1=0)f(Xpp1, 1) A +

d
0f(Xp,re) A+ Zl 9 (Xk,72)ABj., (39)
j=
k =0,1,2,---, where A > 0 is the stepsize, § €
[0,1] is a fixed parameter, and ABj;, = Bj((k +
1)A) — Bj(kA).

The following theorems show that the almost sure
exponential stability of the trivial solution of Eq.(35)
and the 6-method (39), respectively.

Theorem 4.11'*1  Let Assumptions 4.1 and 4.2

hold. If > m;(u; + 0.504) < 0, then the trivial so-
i€S

lution to Eq.(35) is almost surely exponentially stable

for all zg € R".

Theorem 4.2  Let Assumptions 4.1 and 4.2

hold. If > m;(u; + 0.50) < 0, then for § € [0,1]
€S
and any ¢ € (0,\), where A = |>_ m;(p; + 0.50;)
€S
thereisa A* € (0, 1) with 2(1—«9)A*(masxml-]) <1
1€

such that for any A < A*, the #-method (39) has the
property that

’

1
lim sup mlogpfk’ <

k—o00
Yo mi(2ui +03) +e <0, as. (40)
€S
Theorem 4.2 can be proved in a similar way as the
scalar Brownian motion version for Theorem 3.2, so
we omit the proof.

S Example and simulations

In this section, we give a numerical example and
its simulations with different 6 to illustrate the almost
sure exponential stability of the § scheme for the hy-
brid SDE (1).

Example 5.1 Consider the following two-
dimensional hybrid SDE:

dz(t)=A(r(t))z(t)dt+G(r(t))z(t)dB(t) (41)

ont > 0 with initial value z(0) = xo € R?, where
r(t) is a Markov chain with the state space S = {1, 2}
and the generator

-1 1
r- [ L 4} .
A and G are mappings from S — R2?*2, For conve-

nience, we will write A(i) = A; and G(i) =G;. Eq.(1)
corresponds to

f(z,i) = Ajz and g(x,i) = Gz, (x,i) € R? x S,

1 —2 -1 -2
Al:b —1}"42:{2 1}’

2 0 10
Gl_[o 2]’G2_[o 1}

It is easy to see that its unique stationary distribu-
1

R 5) Clearly,

|f (2, D)V |g(x,8)| < 3la], V(z,i) € R* x S,

(a=y) " (f(2,9) = f(y. 0))<|w—yl*, ¥(z,7) ER* x S.

It is also easy to compute that

4a3+4a3  2(223 + 223)°

(a3 + 23)°

r2+z23  2(x? + x%)Q

oy:= sup (—H5—5— 5) = —1,
z€R™ z£0 L1 + T3 (x% + :):%)

tion 7 = (71, m2) = (

o1:= sup 53
z€R" x7£0 J71""1'2

):_47

7
S mi(2ui40;) =T (2x 1—4) +m(2x 1—1)=——.
i€s 5
These show that the conditions of Theorem 3.1 are
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satisfied. By Theorem 3.1, the exact solutions of Eq.
(41) are almost surely exponentially stable. Apply-
ing the #-scheme (5) and choosing A = 0.025 and
0 = 0.2, 8 = 0.6 respectively, the simulations of Eq.
(41) are as follows.

From Figs.1 and 2, we see that the numerical so-
lution tends to zero. When A = 0.025, 6 =0, § =1
and 6 takes different values, the simulation of Eq.(41)
is showed in Fig.3. The numerical solutions also tend
to zero.

50 T T T T

40 —Xi(t) A

30 X

20

X(to)

10

0

-10

-20
0
£:(At=0.025, 0=0.20)

Fig. 1 Numerical solution of Eq.(41) with initial data
z1(0) = 30, z2(0) = —20(0 = 0.2)

70 T T T T
60 —Xi(t) ]|
50 —X()
40 -
30 B
20 B
10 B
0 -
1o |

_20 L 1 1 1
0 2 4 6 8 10

£ (At=0.025, 6=0.6)

X (t)

Fig. 2 Numerical solution of Eq.(41) with initial data
21(0) = 30, z2(0) = —20 (9 = 0.6)

50 ; ; ; ;
40 — X\ ()
30 —X>(tw)
20
10

0

-10

-20

X(te)

1 1 1

2 4 6 8 10
t:(6=0, 0.2, 0.4, 0.6, 0.8, 1)

|
N
=}

Fig. 3 Numerical solution of Eq.(41) with different 6
under the same initial data

To our best knowledge, Fig.4 is the first time that
appears to describe the stability of the #-scheme. It
shows the projective domain of numerical solution
X1(tr) and X(tx). Given the same A, xy and ABy,
we note that, horizontal axis represents the change of
0, vertical axis represents the projection of numerical
solution X (tx) or Xa(tx). When 6 takes a certain
value, for example, § = 0.2, a list of points on the
vertical axis show the projection of the same curve in
different time. From Fig.4, we can see when 6 takes
different values in [0, 1], the projection points on the
vertical axis are always in a certain range, while they
do not appear larger fluctuation. This shows that the
f-scheme is not so sensitive to the change of param-
eter 0. In other words, the 0-scheme is stable and
reliable. The above simulations show that #-scheme
(5) can reproduce the stability of the trivial solutions
of Eq.(41) for 6 € [0, 1].

s
o 15
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% 5

e 0

/ﬁ -5 1 1 1 1 1 1 1 1 1

< 00 01 02 03 04 05 06 07 08 09 1.0
N 0
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: T T T T T T T T T

o~ 10

.—: 0

T -10 , ‘ _

22 _20 1 1 1 1 1 1 7
= 00 01 02 03 04 05 06 07 08 09 1.0
= 0

Fig. 4 The projective domain of the numerical solution
X (t3,) for Eq.(41) with different 0

6 Conclusions

In this paper, we discuss the #-method can repro-
duce the almost sure exponential stability behavior of
the trivial solution of the hybrid SDEs under the same
conditions. The 8-method is a more general approach,
which contains the existing EM method and the BEM
method. And we show that for the whole interval
[0,1] of #, #-method can reproduce the correspond-
ing stability very well. This implies that the result of
this paper is more general than the existing results in
Mao et al.l'* and Pang et al.l'3],
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