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Event-triggered consensus of multi-agent systems with data
transmission delays and random packet dropouts
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Abstract: This paper investigates the event-triggered consensus of multi-agent systems (MASs) with time delay and
random packet dropout in data transmission. The event-triggered scheme is employed for broadcasting fewer necessary
data to the neighbor agents through communication networks only when its threshold is violated. Based on prior topology
information of the MASs, an approximate frequency comparison method is firstly proposed to choose the suitable one from
two typical event-triggers. For guaranteeing the asymptotical consensus of MASs as well as enhancing system robustness
against the communication drawbacks, a distributed Markov switching controller is designed. The sufficient delay depen-
dent stability conditions are obtained and the corresponding controller design methods are subsequently presented. With the
proposed strategy, it is shown that the amount of communication packages and the controller updates can be significantly
reduced without introducing any significant negative effect on the consensus. Finally, the effectiveness of the proposed
theoretical approach is validated through several numerical examples.
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1 Introduction
Multi-agent systems (MASs) are coupled team of

agents that exchange data through communication fa-
cility so as to solve problems which are beyond the in-
dividual capability. One of the fundamental characteris-
tics for MASs is known as the consensus and consensus
of MASs has found a variety of applications such as
formation control[1], urban traffic[2], smart grid[3], robot
system[4], missile guidance[5] and so on.

The objective of consensus for MASs is to probe
feasible control protocol that enable the MASs to reach

an agreement on certain interest[6]. To achieve the ob-
jective, the agents need to exchange their shared infor-
mation via communication networks. Although the net-
work brings convenience and effectiveness, however, a
significant negative effect is that the communication in-
duced drawbacks may degrade the control performance
or even deteriorate the system stability. These include
time-varying delays[7], data packet dropouts[8], quanti-
zation deviation[9], exogenous disturbances[10], switch-
ing topology[11], etc. To reduce the negative effect of
the communication defections so as to improve the con-
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sensus performance, such communication constraints
should be properly considered in the design of consen-
sus. For simplicity, only data transmission time-delay
and packet dropout are considered in this paper.

In reality, not only the communication network
is limited but also the energy resource and computa-
tion capability of the agent are inevitably constrained.
Therefore, a better consensus strategy should consider
saving the limited communication capacity and energy
supply. To fulfil the above objectives, a possible solu-
tion is known as the event-triggered control. With the
event-triggered scheme, the control tasks are only trig-
gered by the occurrence of an event instead at a fixed
sampling period. Due to reduced data transmissions and
control task executions, the event-triggered control en-
ables cost saving and communication reduction.

Recently, some event-triggered consensus schemes
for MASs are reported. For example, an event-triggered
consensus control for MASs with combinational mea-
surements is investigated in [12]. A disturbance per-
turbed event-triggered mean square consensus is ana-
lyzed in [13]. In [14], an event-triggered control scheme
for MASs with stochastic nonlinearities is discussed. In
the aforementioned literatures[12–14], the event-triggers
can be summarized as eT(kT )(IN ⊗ Φ)e(kT ) =
δx(kT )(IN ⊗ Φ)x(kT ), where x(kT ) and e(kT ) de-
note the state and the error, respectively; δ and Φ are pa-
rameters of event-trigger; IN denotes an identity matrix.
Apparently, the topology information is not involved in
the above-mentioned literatures.

Different from the above-mentioned results, some
articles focus on topology relevant event-triggered con-
sensus, wherein the proposed event-trigger can be sim-
plified as eT(kT )(IN ⊗ Φ)e(kT ) = δx(kT )(L ⊗
Φ)x(kT ), where L is the Laplacian matrix. For exam-
ple, an asymptotical event-triggered consensus issue for
single integrator MASs is introduced in [15]. Two ob-
server based event-triggered consensus are compared in
[16]. Considering transmission time-delay, an asymp-
totical event-based consensus is proposed in [17], and
a co-design event-triggered consensus is investigated in
[18].

The above-mentioned event-triggers are all capa-
ble of reducing the communication burden and achiev-
ing the consensus of MASs. However, such event-
triggers are employed without further justifications and
explanations. A number of questions are yet to be an-
swered, for example, which one will be suitable for
given MASs? Is there any intrinsic relationship or dif-
ference between these schemes? Note that the event-
trigger performance will be inevitably influenced by the
controller and the MASs, therefore, it is difficult or even
impossible to quantitatively assess the dynamic behav-
ior of the event-triggers regardless of the controller and

the MASs. Therefore, if one can establish a compara-
ble relationship among them and a triggering behavior
evaluation method, it may allow a reference point for
designing the event-triggered consensus schemes.

Motivated by the above discussions, this paper fur-
ther investigates the event-triggered asymptotical con-
sensus control for MASs with data transmission time-
delay and packet dropout. The contributions of this
work are listed as follows: i) A feasible approximate
selection criteria is given for choosing a more appro-
priate event-trigger. ii) A unified distributed consensus
controller is proposed and the consensus is conveniently
simplified to an equivalent asymptotical stability prob-
lem of a time-delayed Markov switching system.

The remainder of the paper is organized as follows:
Section 2 introduces some fundamental notations and
preliminaries. Section 3 gives the problem formulation.
The main results are presented in Section 4. Simula-
tion examples are illustrated in Section 5. Conclusion
remarks are provided in Section 6.

2 Notations and preliminaries
The following notations are given which will be

used throughout the literature. Let R and N denote the
real numbers and the integer numbers, respectively. Rn

is the n-dimensional Euclidean space andRn1×n2 is the
set of n1 × n2 real matrices. The superscript/T0
denotes the matrix transposition, the sign/⊗0 repre-
sents the matrix Kronecker product, the script/*0de-
notes the corresponding transposed matrix item. I ∈
Rn×n denotes a n-dimensional unit matrix and IN =
diag{I, I, · · · , I︸ ︷︷ ︸

N

} denotes a (N ·n)×(N ·n) diagonal

matrix. Ip = (

N︷ ︸︸ ︷
0, 0, · · · , I︸ ︷︷ ︸

p

, 0, · · · , 0)T denotes a N–

dimensional column vector with p-th element as I ,
and Ipq = Ip − Iq. 1N = (1, 1, · · · , 1︸ ︷︷ ︸

N

)T and 0N =

(0, 0, · · · , 0︸ ︷︷ ︸
N

)T denote the N -dimensional column vec-

tor with all elements being either 1 or 0, respectively.
The information exchanged between N agents can

be conveniently captured by a non-weighted direction
graph G = (V ,E ,A ) of order N , where V =
{1, 2, · · · , N,N ∈ N} is the set of nodes, E ⊆ V ×V
is the set of edges and A = (aij) ∈ RN×N , i, j ∈ V
is the adjacency matrix. An directed edge (i, j) ∈ E
if agent i can obtain the information from agent j,
and aij = 1 if (i, j) ∈ E , otherwise, aij = 0.
The set of neighbors of node i is denoted by Ni =
{j ∈ V |(i, j) ∈ E }. The nonsymmetrical Lapla-
cian matrix L associated with A and G is defined as

L = (Lij) ∈ Rn×n where lij =
N∑

j=1

aij , ∀i = j, other-
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wise, lij = −aij .
The following assumption will be used in the paper.
Assumption A1 The matrix pair of (A,B) is sta-

bilizable.

3 Problem formulation
Consider a typical distributed MASs which is con-

sisted by N homogeneous agents, each agent dynamics
is described as[19–20]

ẋi(t) = Axi(t) + Bui(t),

where i = 1, 2, · · · , N , A ∈ Rn×n and B ∈ Rn×m

are constant matrices; xi(t) ∈ Rn and ui(t) ∈ Rm are
the state and the control input of agent i, respectively;
xi(0) ∈ Rn is the initial condition.

The objective is to design an event-trigger and
a controller such that the MASs achieve consensus
as[21–22]

lim
t→∞

(xi(t)− xj(t)) = 0

for any initial condition xi(0), where i, j = 1, 2,
· · · , N .

For achieving the objective while reducing commu-
nication burden, an event-triggered decentralized coop-
erative control scheme is designed with the framework
shown in Fig.1.

Fig. 1 Control strategy for agent i

In Fig.1, we assume that the sensor is time-driven
while the controller and the actuator are event-driven.
The sensor sends its sampled data at each sampling pe-
riod of T to the event-trigger. Afterwards, the sampled
data is authorized to be broadcasted to the zero order
holder (ZOH) and neighbor agents by the event-trigger
when its threshold is violated. The ZOH is employed
to storage the latest received information. Accordingly,
the controller calculates the control signal and sends it
to the actuator. Finally, the actuator performs control
action then completes the close-looped control.

Priori to the problem formulation, an event-
triggered frequency evaluation method is proposed first,
which will help to choose more appropriate one from
two typical event-triggers.
3.1 Two comparable event-triggers

Let gl
iT denotes the lth data broadcasting time of

agent i, the objective of event-trigger design is to de-

termine the next broadcasting time instant of gl+1
i T by

designing an appropriate event-triggered function. Gen-
erally, the event-triggered function is related to the lo-
cal measurement error and/or neighbors information.
A considerable issue is that each agent inevitably re-
ceives asynchronous neighbor information as xj(g l̄

jT ),
j ∈ Ni, where g l̄

jT denotes the l̄th broadcasting time
instant of agent j. Such time unaligned information
will introduce obstacles both in theoretical analysis and
practical implementation. To overcome such defection,
a ZOH is employed as shown in Fig.1. In this case,
one can find that such asynchronous information can be
synchronized, namely, xj(g l̄

jT ) → xj(gl
iT ).

Accordingly, define
{

Xi(gl
iT + hiT ) = xi(gl

iT + hiT )− xi(gl
iT ),

Yi(gl
iT ) =

∑
j∈Ni

aij(xi(gl
iT )− xj(gl

iT )),

where hi denotes the broadcasting interval, it satisfies
hi = arg min

hi>0
(hi > gl+1

i − gl
i), hi ∈ N. The above-

introduced event-triggers are described as

XT
i (gl

iT + hiT ) Φ1Xi(gl
iT + hiT ) >

δ1(xT
i (gl

iT )Φ1xi(gl
iT )), (1)

XT
i (gl

iT + hiT ) Φ2Xi(gl
iT + hiT ) >

δ2(Y T
i (gl

iT )Φ2Yi(gl
iT )), (2)

where δk and Φk are thresholds need to be determined,
k = 1, 2. The structure of (1) is shown as the solid line
in Fig.1, while the structure of (2) is illustrated as both
of the solid and dash line in Fig.1.

Remark 1 From (1) and (2), one can easily conclude
that there always exist a finite number of broadcasting time in-
tervals within any time period. It ensures that Zeno phenomena
is excluded[23–24].

Remark 2 In similar researches[15, 18], the thresholds
of event-triggers are designed as topology relevant parameters,
i.e., δ1 = diag{δ11, · · · , δ1N}. By this method, the parameter
conservativeness can be reduced. However, the later obtained
result will be a nonlinear matrix inequality (NLMI) which is
almost impossible to be decoupled. To design the controller,
these parameters have to given as a prior. In addition, as far as
the complex topology is concerned, it will induce the practical
obstacles because recognizing all of the specific agents and set-
ting their correct parameters will be a time-consuming task or
even unrealistic. Therefore, we suggest the topology irrelevant
event-trigger as in (1) and (2), although it sacrifices the conser-
vativeness, but the benefit is that the parameters can be feasibly
solved and the controller implementation becomes convenient.

Remark 3 In some literatures, the event-trigger is ap-
pended with the absolute threshold. For example, the decen-
tralized event-trigger is designed as δi 6 σzT

i Θizi + η in [25],
where η is the given absolute threshold. In [26], the event-
trigger function is designed as fi(·) = di‖ei(t)‖+ bi‖ẽi(t)‖−
δi, where the δi denote the given absolute threshold. In [27],
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the absolute event-trigger is designed as ei(t) 6 c0 + c1e
−αt,

where c0, c1 and α are the absolute thresholds. Because
these absolute thresholds are employed, the event-triggered fre-
quency will be lower than (1) and (2) when the state trajec-
tories converge closer to the equilibrium point. However, the
consequence is that the obtained consensuses will be inevitably
bounded. For example, the final consequence deviations are

lim
t→∞ ‖xi(t)− xj(t)‖ 6 Nη

βλminP
in [25], lim

t→∞ ‖ε(t)‖ 6 ∆ in

[26] and r =
‖L‖√Nc0

λ2(L)
in [27]. It indicates that the control

performance is sacrificed for reducing the event-triggered fre-
quency. Moreover, concerning with the different absolute con-
ditions, the event-triggered dynamic behavior will be changed
or even diverged. Therefore, to guarantee the non-bounded
consensus and without loss of generality, the absolute event-
triggers are not considered.

Neglecting the controller effect, if

δ1(xT
i (gl

iT )Φ1xi(gl
iT )) > δ2(Y T

i (gl
iT )Φ2Yi(gl

iT ))

holds, one can see that (1) has the lower triggered fre-
quency than (2).

Define x̃(t) = (xT
1 (t) · · · xT

N(t))T, calculate the
Euclide norm of the above inequality, one has

‖x̃T(t)(δ1IN⊗Φ1)x̃(t)‖ > ‖x̃T(t)(δ2L
TL⊗Φ2)x̃(t)‖.

Because

‖δ1IN ⊗ Φ1‖ =

tr
1
2 (δ2

1IN ⊗ ΦT
1 Φ1) =

√
Nδ1tr

1
2 (ΦT

1 Φ1),
‖δ2L

TL⊗ Φ2‖ =

tr
1
2 (δ2

2L
TL⊗ ΦT

2 Φ2) = δ2tr
1
2 (LTL)tr

1
2 (ΦT

2 Φ2),

and define

χ1 =
√

Nδ1tr
1
2 (ΦT

1 Φ1),

χ2 = δ2tr
1
2 (LTL)tr

1
2 (ΦT

2 Φ2),

if such that χ1 > χ2 holds, then (1) probably has
the lower event-triggered frequency than (2) for given
topology L.

As aforementioned, with different controllers, the
event-triggered frequency will be different. Without
loss of generality, we need to design a universal con-
trol strategy that can be used to cooperate with (1) or
(2) for achieving the consensus.
3.2 Data transmission time-delay

Firstly, to guarantee the desired consensus, a typical
distributed cooperative consensus law is chosen as

ui(t) = −K
N∑

j=1

aij

(
xi(gl

iT )− xj(gl
iT )

)
, (3)

where K denotes the controller gain and i, j ∈ V .
The agents exchange their information via com-

munication networks, the inevitable data transmission
time-delay will affect the control performance. More-
over, the controller performs the calculation if all of the

necessary data are collected. It indicates that the con-
troller has to wait in a delayed duration until the last
necessary data is arrived. Let τ l

ij denotes the transmis-
sion time-delay of l-th data that is originated from j and
received by i, it is assumed that

0 6 τ = max(τ l
ij), (4)

where i, j ∈ {1, 2, · · · , N} and l = 1, 2, · · · , then the
control updating interval sector is described as [gl

iT +
τ, gl+1

i T + τ) and it can be divided as

[gl
iT + τ, gl+1

i T + τ) =
gl+1

i −1

∪
k=gl

i

[kT + τ, (k+1)T + τ).

Define the disagreement vector as ei(kT ) =
xi(kT ) − xi(gl

iT ), the augment vectors as x̄i(t) =
x1(t) − xi(t), ē(kT ) = e1(kT ) − ei(kT ), E1 =
(1N−1,−IN−1), E2 = (0T

N−1,−IT
N−1)

T, x(t) =
(xT

1 (t), · · · , xT
N−1(t))

T, e(t)=(eT
1 (t),· · ·, eT

N−1(t))
T,

x̄(t)=(x̄T
2 (t), · · · , x̄T

N−1(t))
T and ē(t)=(ēT

2 (t), · · · ,
ēT

N−1(t))
T, (3) is changed as

ui(t) = −K
N∑

j=1

aij(xi(kT )− xj(kT )−

ei(kT ) + ej(kT )).

Therefore, we have the close-looped system as
˙̄x(t) = (IN−1 ⊗A) x̄(t)−(

L̄⊗BK
)
(x̄(kT )− ē(kT )) ,

where L̄ = E1LE2 ∈ R(N−1)×(N−1) and t ∈ [kT +
τ, (k + 1)T + τ). The initial condition of x̄(t) is sup-
plemented as x̄(θ) = Ψ̄(θ), where θ ∈ [−T −τ, t0],
Ψ̄(t0) = x̄(t0) = (x̄T

1 (t0), · · · , x̄T
N−1(t0))

T, Ψ̄(·) :
[t0 − T − τ, t0] → R(N−1)×n denotes an appropriate
absolutely continuous function defined in Banach space
and it satisfies

‖Ψ̄‖ = max
θ∈[t0−T−τ,t0]

‖Ψ̄(θ)‖+(
w t0

t0−T−τ
‖ ˙̄Ψ(s)‖2

ds)
1
2 .

3.3 Data packet dropouts
When data packet dropout event occurs, the agent

links can be regarded as temporal disconnection[28].
In some similar researches[29–30], such dynamic phe-
nomena is described as Markov processing. It is
worth to point out that although single data packet in-
cident is unpredictable, some helpful prior probabil-
ity knowledge can be acquired. Therefore, we model
the data packet dropouts as a state transform probabil-
ity partly unknown homogeneous Markov chain. Let
r(k) ∈ S denotes the Markov chain, where S = (1, 2,
· · · ) denotes the finite set including s possible switch-
ing topologies. Let Π = (πij), i, j ∈ S denotes the
probability matrix and it satisfies

P{r(t + ξ) = j|r(t) = i} ={
πijξ + o(ξ), i 6= j,
1 + πiiξ + o(ξ), i = j,

(5)
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where P{·} is conditional probability, ξ is the ith sub-
system activation time and o(ξ) is the corresponding

higher order infinitesimal to ξ, it satisfies lim
ξ→0

o(ξ)
ξ

=

0. The transition probabilities in Π are partly unknown,

for example Π =




π̄11 π12 · · · π1s

π21 π̄22 · · · π2s

...
...

...
...

π̄s1 π̄s2 · · · π̄ss


, where π̄ denotes

the unknown information.
Accordingly, L̄ is substituted with L̄σ|σ=r(t)∈S ,

hence the general close-looped system is transformed
to a Markov switching system as

˙̄x(t) = (IN−1 ⊗A)x̄(t)−
(L̄σ ⊗BKσ)(x̄(kT )− ē(kT )), (6)

where L̄σ = E1LσE2 and t ∈ [kT + τ, (k+1)T + τ).
Synthesizing all the above factors, the objective of

the rest paper is to investigate a feasible design method
for event-trigger (1) or (2) with the controller (3) to
guarantee the close-looped system (6) achieving asymp-
totically stability under time-delays (4) and data packet
dropouts (5).

Remark 4 Because the state vector x1(t) can be cho-
sen from any agents, it can be concluded if lim

t→∞ x̄(t) = 0

holds, the consensus of MASs is achieved. Therefore, the orig-
inal consensus issue is conveniently simplified to the equivalent
stability problem of (6).

4 Main result
Lemma 1 For any matrix R = RT > 0 ∈ Rn×n

and invertible matrix P ∈ Rn×n, the following inequal-
ity holds:

−(IN⊗P )(IN⊗R)−1(IN⊗P ) < IN⊗R−IN⊗2P.

Proof When R is a positive symmetric matrix, the
following inequality naturally holds: ((IN⊗R)−(IN⊗
P ))(IN ⊗ R)−1((IN ⊗ R) − (IN ⊗ P )) = (IN ⊗
P )(IN⊗R)−1(IN⊗P )+(IN⊗R)−2(IN⊗P ) > 0,
then the proof for Lemma 1 is complete.

Define sets U r = U r
k ∪ U r

uk, r ∈ S, U r
k =

{πrj|j ∈ S}, U r
uk = {π̄rj|j ∈ S} and πr

k =
∑

b∈Ua
k

πrb,

then we have the following conclusion.
Lemma 2 For r(t) in (5), the following inequal-

ity holds:
s∑

j=1

πrjPj 6
s∑

j=1

π̃rjPj , where π̃ri =πri, ∀πri

⊂ U r
k ; otherwise, π̃ri = 1− πr

k, ∀πri ⊂ U r
uk.

Proof According to Markov property
s∑

b=1

πrb =
∑

b∈Ua
k

πrb+
∑

b∈Ua
uk

π̄rb = 1, define P r
k =

∑
b∈Ua

k

πrbPb, then

we have
π̄rb

1− πr
k

6 1 and
∑

b∈Ur
uk

π̄rb

1− πr
k

= 1. The ele-

ments in set U r
k can be marked as (πr1, πr2, · · · , πri),

0 6 i 6 s, then the upper boundaries for un-
known element in set U r

uk can be substituted as
(1− πr

k, 1− πr
k, · · · , 1− πr

k︸ ︷︷ ︸
s−k

). Therefore, we have

P r
k + (1− πr

k)
∑

b∈Ua
uk

Pb =
s∑

j=1

π̃rjPj , where π̃ri =

πri, πri ⊂ U r
k , π̃ri = 1−πr

k, πri ⊂ U r
uk. The proof for

Lemma 2 is complete.
Theorem 1 Given a positive scalar 0 < δ1 < 1,

if there exist the appropriate dimension symmetric ma-
trices P̄r = P̄T

r > 0, r ∈ S, Q̄j = Q̄T
j > 0, R̄j = R̄T

j

> 0, j = 1, 2 and any appropriate dimension matrices
M̄k, k = 1, 2, · · · , 6, such that
0
BBBBBBBBBBBBBBBBBB@

Γ̄11 Γ̄12 0 0 Γ̄15 Γ̄16 Γ̄17 0 Γ̄19 · · · Γ̄1,10

∗ Γ̄22 Γ̄23 Γ̄24 0 Γ̄26 Γ̄27 Γ̄28 0 0 0

∗ ∗ Γ̄33 0 0 0 0 Γ̄38 0 0 0

∗ ∗ ∗ Γ̄44 0 0 0 Γ̄48 0 0 0

∗ ∗ ∗ ∗ Γ̄55 Γ̄56 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ Γ̄66 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ Γ̄77 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ̄88 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ̄99 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ · · · 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ̄10,10

1
CCCCCCCCCCCCCCCCCCA

<0

(7)

holds, then (6) achieve asymptotically consensus under
(1) and (3), where time-delays satisfy (4), data packet
dropouts satisfy (5) and Kr = K̄rP̄

−1
r . Where:

Γ̄11 = IN−1 ⊗ (AP̄r + P̄rA
T + Q̄1 + Ū1 + ŪT

1 ),
Γ̄12 = −L̄r ⊗BK̄r + IN−1 ⊗ (−Ū1 + ŪT

2 ),
Γ̄15 = L̄r ⊗ (BK̄r), Γ̄16 = IN−1 ⊗ (P̄rA

T),
Γ̄17 = IN−1 ⊗ (τ + T )Ū1,

Γ̄19 =
√

π̄r,1(IN−1 ⊗ P̄1),

Γ̄1,10 =
√

π̄r,s(IN−1 ⊗ P̄s),

Γ̄22 = IN−1 ⊗ (−Ū2 − ŪT
2 + Ū3 + ŪT

3 −
Ū5 − ŪT

5 ) + λδ1E
T
2 E2 ⊗ Φ1,

Γ̄23 = IN−1 ⊗ (Ū5 − ŪT
6 ),

Γ̄24 = IN−1 ⊗ (−Ū3 + ŪT
4 ),

Γ̄26 = −L̄T
r ⊗ (K̄TBT),

Γ̄27 = IN−1 ⊗ (τ + T )Ū2,

Γ̄28 = IN−1 ⊗ T (Ū3 + Ū5),
Γ̄33 = IN−1 ⊗ (Q̄2 + Ū6 + ŪT

6 ),
Γ̄38 = IN−1 ⊗ (T Ū6),
Γ̄44 = IN−1 ⊗ (−Q̄2 − Ū4 − ŪT

4 ),
Γ̄48 = IN−1 ⊗ (T Ū4),
Γ̄55 = −IN−1 ⊗ Φ + λδ1E

T
2 E2 ⊗ Φ1,

Γ̄56 = L̄T
r ⊗ (K̄T

r BT),
Γ̄66 = h2(IN−1 ⊗ ((τ + T )R̄1 + TR̄2))−

2h(IN−1 ⊗ P̄r),
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Γ̄77 = IN−1 ⊗ (−(τ + T )R̄1),
Γ̄88 = IN−1 ⊗ (−TR̄2), Γ̄99 = −IN−1 ⊗ P̄1,

Γ̄10,10 = −IN−1 ⊗ P̄s, L̄r = E1L̄rE2.

Proof When t ∈ [kT + τ, (k + 1)T + τ), de-
fine τd(t) = t − kT , we have τd(t) ∈ [τ, τ + T ),
τ̇d(t) = 1, t 6= kT . Therefore, (6) is transformed to

˙̄x(t) = (IN−1 ⊗A)x̄(t)− (L̄σ ⊗BKσ)(x̄(t−
τd(t))− ē(t− τd(t))).

Let σ = r, r ∈ S, when t ∈ [kT +τ, (k+1)T +τ),
we define a Lyapunov functional as

V (t, x̄(t), ˙̄x(t)) =
x̄T(t)(IN−1 ⊗ Pr)x̄(t) +w t

t−τd(t)
x̄T(s)(IN−1 ⊗Q1)x̄(s)ds +

w t−T

t−τ−T
x̄T(s)(IN−1 ⊗Q2)x̄(s)ds +

w 0

−τ−T

w t

t+θ
˙̄xT(s)(IN−1 ⊗R1) ˙̄x(s)dθds +

w −T

−τ−T

w t

t+θ
˙̄xT(s)(IN−1 ⊗R2) ˙̄x(s)dθds,

where Pr = PT
r > 0, Pr ∈ R(N−1)×(N−1), r ∈

S, Qj = QT
j > 0, Rj = RT

j > 0, Qj, Rj ∈
R(N−1)×(N−1), j = 1, 2.

Calculating the differential of V (t, x̄(t), ˙̄x(t))
along the trajectory of (6), we have

V̇ (t, x̄(t), ˙̄x(t)) =
2x̄T(t)(IN−1 ⊗ Pr) ˙̄x(t) +
x̄T(t)(IN−1 ⊗Q1)x̄(t) +
x̄T(t− T )(IN−1 ⊗Q2)x̄(t− T )−
x̄T(t− τ − T )(IN−1 ⊗Q2)x̄(t− τ − T ) +
(τ + T ) ˙̄xT(t)(IN−1 ⊗R1) ˙̄x(t) +
τ ˙̄xT(t)(IN−1 ⊗R2) ˙̄x(t)−w t

t−τ−T
˙̄xT(s)(IN−1 ⊗R1) ˙̄x(s)ds−

w t−T

t−τ−T
˙̄xT(s)(IN−1 ⊗R2) ˙̄x(s)ds.

For handling the latest two integral items, we add
the following zero items into the above equality:

2(x̄T(t)(IN−1 ⊗ U1) + x̄T(t− τd(t))(IN−1 ⊗ U2)) ·
(x̄(t)− x̄(t− τd(t))−

w t

t−τd(t)
˙̄x(s)ds),

2(x̄T(t− τd(t))(IN−1 ⊗ U3) +
x̄T(t− τ − T )(IN−1 ⊗ U4)) ·
(x̄(t− τd(t))− x̄(t− τ − T )−

w t−τd(t)

t−τ−T
˙̄x(s)ds),

2(x̄T(t− τd(t))(IN−1 ⊗ U5) +
x̄T(t− τ)(IN−1 ⊗ U6)) ·
(x̄(t− τ)− x̄(t− τd(t))−

w t−τ

t−τd(t)
˙̄x(s)ds),

where Uk ∈ R(N−1)×(N−1), k = 1, 2, · · · , 6.
Define an augmented state as η(t) = (x̄T(t),

x̄T(t−τd(t)), x̄T(t−τ), x̄T(t−τ−T ), ēT(t−τd(t)))T,
then we have

V̇ (t, x̄(t), ˙̄x(t)) =
ηT(t){IT

1 (IN−1 ⊗ (−U1 + UT
2 ) +

IT
1 (IN−1⊗(PrA+ATPr+Q1+U1+UT

1 ))I1 −
IT
1 (L̄r ⊗ PrBKr)I2 + IT

1 (L̄r ⊗ PrBKr)I5 −
IT
2 (L̄T

r ⊗KT
r BTPT

r )I1+IT
5 (L̄T

r ⊗KT
r BTPT

r )I1+
IT
2 (IN−1⊗(−U2−UT

2 +U3+UT
3 −U5−UT

5 ))I2+
IT
2 (IN−1⊗(U5 − UT

6 ))I3+(τ +T )XT
1 R−1

1 X1+
IT
2 (IN−1 ⊗ (−U3 + UT

4 ))I4 + TXT
2 R−1

2 X2 +
IT
3 (IN−1⊗(Q2+U6+UT

6 ))I3+TXT
3 R−1

2 X3+
IT
4 (IN−1 ⊗ (−Q2 − U4 − UT

4 ))I4}η(t) +
ΞT(IN−1 ⊗ ((τ + T )R1 + TR2))Ξ −
w t

t−τd(t)
Φ1R̄1Φ

T
1 ds−

w t−τd(t)

t−τ−T
Φ2R̄2Φ

T
2 ds−

w t−τ

t−τd(t)
Φ3R̄2Φ

T
3 ds,

where

R̄1 = IN−1 ⊗R−1
1 , R̄2 = IN−1 ⊗R−1

2 ,

X1 = (UT
1 , UT

2 , 0, 0)T, X2 = (0, UT
3 , 0, UT

4 )T,

X3 = (0, UT
5 , UT

6 , 0)T,

Φ1 = ηT(t)(IN−1 ⊗X1) + ˙̃xT(s)(IN−1 ⊗R1),
Φ2 = ηT(t)(IN−1 ⊗X2) + ˙̃xT(s)(IN−1 ⊗R2),
Φ3 = ηT(t)(IN−1 ⊗X3) + ˙̃xT(s)(IN−1 ⊗R3)

and

Ξ =(IN−1 ⊗A)I1η(t)−(L̄r ⊗BKr)(I2−I5)η(t).

It is easy to find that the last three integral items are
less than 0 naturally. According to Lemma 2, we have

IT
1 (IN−1 ⊗

s∑
j=1

πrjPj)I1 6 IT
1 (IN−1 ⊗ (P r

k + (1 −
πr

k)
∑

b∈Ur
uk

Pr))I1. With the well-known Schur comple-

ment, one has V̇ (t, x̄(t), ˙̄x(t)) 6 ηT(t)Γη(t), where

Γ =


Γ11 Γ12 0 0 Γ15 Γ16 Γ17 0 Γ19 · · · Γ21

∗ Γ22 Γ23 Γ24 0 Γ26 Γ27 Γ28 0 0 0

∗ ∗ Γ33 0 0 0 0 Γ38 0 0 0

∗ ∗ ∗ Γ44 0 0 0 Γ48 0 0 0

∗ ∗ ∗ ∗ 0 Γ56 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ Γ66 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ Γ77 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ88 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ99 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ · · · 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ10,10




,

(8)

Γ11 = IN−1 ⊗ (PrA + ATPr + Q1 + U1 + UT
1 ),
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Γ12 = −L̄r ⊗BKr + IN−1 ⊗ (−U1 + UT
2 ),

Γ15 = L̄r ⊗BKr, Γ16 = IN−1 ⊗ATPr,

Γ17 = IN−1 ⊗ (τ + T )U1,

Γ19 =
√

π̄r,1(IN−1 ⊗ P1),

Γ1,10 =
√

π̄r,s(IN−1 ⊗ Ps),
Γ22 =IN−1 ⊗ (−U2 − UT

2 + U3+UT
3 −U5−UT

5 ),
Γ23 = IN−1 ⊗ (U5 − UT

6 ),
Γ24 = IN−1 ⊗ (−U3 + UT

4 ),
Γ26 =−L̄T

r ⊗ (KT
r BT), Γ27 =IN−1 ⊗ (τ + T )U2,

Γ28 = IN−1 ⊗ T (U3 + U5),
Γ33 = IN−1 ⊗ (Q2 + U6 + UT

6 ),
Γ38 = IN−1 ⊗ (TU6),
Γ44 = IN−1 ⊗ (−Q2 − U4 − UT

4 ),
Γ48 = IN−1 ⊗ (TU4), Γ56 = L̄T

r ⊗ (KT
r BT),

Γ66 = IN−1 ⊗ ((τ + T )R1 + TR2)− IN−1 ⊗ 2Pr,

Γ77 = IN−1 ⊗ (−(τ + T )R1),
Γ88 = IN−1 ⊗ (−TR2),
Γ99 = −IN−1 ⊗ P1, Γ10,10 = −IN−1 ⊗ Ps.

According to Lemma 1, we have −IN−1 ⊗ ((τ +
T )R1+TR2))−1 < IN−1⊗P−1

r (IN−1⊗((τ+T )R1+
TR2))IN−1 ⊗ P−1

r − 2IN−1 ⊗ P−1
r .

Define

J1 =diag{IN−1⊗P−1
r , · · · , IN−1 ⊗ P−1

r︸ ︷︷ ︸
5

},

J2 = diag{IN−1 ⊗ P−1
r , · · · , IN−1 ⊗ P−1

r︸ ︷︷ ︸
2+s

},

J =diag{J1, (IN−1 ⊗ ((τ + T )R1+TR2))−1, J2},
and performing congruence transformations to (8) by J .
Define: P̄r = P−1

r , P̄i = P̄rPiP̄r, i = 1, 2, · · · , s,
Q̄j = P̄rQjP̄r, R̄j = P̄rRjP̄r, j = 1, 2, M̄k =
P̄rMkP̄r, k = 1, 2, · · · , 6, K̄r = KrP̄r, then the non-
linear matrix inequality Γ < 0 can be conveniently
transformed to an equivalent linear matrix inequality
(i.e., V̇ (t, x̄(t), ˙̄x(t)) 6 ηT(t)JTΓJη(t)).

When t ∈ [kT + τ, (k + 1)T + τ), the event-
triggered threshold is not violated, therefore, according
to (1) we have XT

i (gl
iT + hiT )Φ1Xi(gl

iT + hiT ) <
δ1x

T
i (gl

iT )Φ1xi(gl
iT ), where XT

i (gl
iT + hiT ) =

ei(kT ) and xi(gl
iT ) = xi(kT ). Then the above in-

equality is equivalent to

eT(kT )(IN ⊗ Φ1)e(kT ) <

xT(kT )(δ1IN ⊗ Φ1)x(kT ).

From the definition of x̄(t) and ē(t), one has

ēT(kT )(IN−1 ⊗ Φ1)ē(kT ) =
eT(kT )(ET

1 E1 ⊗ In)e(kT ) 6
λeT(kT )(IN ⊗ Φ1)e(kT ),

xT(kT )(δ1 ⊗ Φ1)x(kT ) =
x̄T(kT )(ET

2 δ1E2 ⊗ Φ1)x̄(kT ),

where λ = λmax(ET
1 E1), λmax(·) is the maximum

eigenvalue function. Then the above inequality is equiv-
alent to

ēT(kT )(IN−1 ⊗ Φ1)ē(kT ) <

λx̄T(kT )(ET
2 δ1E2 ⊗ Φ1)x̄(kT ).

Therefore
V̇ (·) =
V̇ (·)− ēT(kT )(IN−1 ⊗ Φ1)ē(kT ) +
ēT(kT )(IN−1 ⊗ Φ1)ē(kT ) <

ηT(t)JTΓJη(t)− ēT(kT )(IN−1 ⊗ Φ1)ē(kT ) +
λx̄T(kT )(ET

2 δ1E2 ⊗ Φ1)x̄(kT ).

According to the Lyapunov stability theory, such that

ηT(t)JTΓJη(t) +
(

I2

I5

)T (
Θ1 0
∗ Θ2

)(
I2

I5

)
< 0

holds (i.e., (7)), where Θ1 = λET
2 δ1E2 ⊗ Φ1 and

Θ2 = −IN−1⊗Φ1 +ET
2 λδ1E2⊗Φ1, then the asymp-

totically stability of (6) is guaranteed. Therefore, the
desired consensus can be achieved.

Theorem 2 Given a positive scalar 0 < δ2 < 1,
if there exist the appropriate dimension symmetric ma-
trices P̄r = P̄T

r > 0, r ∈ S; Q̄j = Q̄T
j > 0, R̄j =

R̄T
j > 0, j = 1, 2 and any appropriate dimension ma-

trices M̄k, k = 1, 2, · · · , 6, such that
0
BBBBBBBBBBBBBBBBBB@

Γ̄11 Γ̄12 0 0 Γ̄15 Γ̄16 Γ̄17 0 Γ̄19 · · · Γ̄1,10

∗ Γ̃22 Γ̄23 Γ̄24 0 Γ̄26 Γ̄27 Γ̄28 0 0 0

∗ ∗ Γ̄33 0 0 0 0 Γ̄38 0 0 0

∗ ∗ ∗ Γ̄44 0 0 0 Γ̄48 0 0 0

∗ ∗ ∗ ∗ Γ̃55 Γ̄56 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ Γ̄66 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ Γ̄77 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ̄88 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ̄99 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ · · · 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ̄10,10

1
CCCCCCCCCCCCCCCCCCA

<0

(9)

holds, then (6) achieve asymptotically consensus under
(2) and (3), where time-delay satisfy (4), data packet
dropouts satisfy (5) and Kr = K̄rP̄

−1
r . Where

Γ̃22 = IN−1 ⊗ (−Ū2 − ŪT
2 + Ū3 + ŪT

3 − Ū5 −
ŪT

5 ) + λδ2L̃⊗ Φ,

Γ̃55 = −IN−1 ⊗ Φ + λδ2L̃⊗ Φ,

the other parameters have been defined in Theorem 1.
Proof The proof for Theorem 2 is almost same

as the previous proof for Theorem 1, the only differ-
ence is that the event-trigger is changed to (2). Ac-
cording to (2), when t ∈ [kT + τ, (k + 1)T +
τ), we have XT

i (gl
iT + hiT )Φ2Xi(gl

iT + hiT ) <
δ2Y

T
i (gl

iT )Φ2Yi(gl
iT ), then the above inequality can
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be reformulated as

eT(kT )(IN ⊗ Φ2)e(kT ) <

xT(kT )(δ2L
TL⊗ Φ2)x(kT ).

The right part of the above inequality can be written as

xT(kT )(δ2L⊗ Φ2)x(kT ) =
x̄T(kT )(δ2L̃⊗ Φ2)x̄(kT ),

where L̃ = ET
2 LTLE2.

Then the above inequality is equivalent to

ēT(kT )(IN−1 ⊗ Φ2)ē(kT ) <

λx̄T(kT )(δ2L̃⊗ Φ2)x̄(kT ).

Therefore, we have

V̇ (·) =
V̇ (·)− ēT(kT )(IN−1 ⊗ Φ2)ē(kT ) +
ēT(kT )(IN−1 ⊗ Φ2)ē(kT ) <

ηT(t)JTΓJη(t)− ēT(kT )(IN−1 ⊗ Φ2)ē(kT ) +
λx̄T(kT )(δ2L̃⊗ Φ2)x̄(kT ).

According to the Lyapunov stability theory, such that

ηt(t)JTΓJη(t) +
(

I2

I5

)T (
Θ3 0
∗ Θ4

)(
I2

I5

)
< 0

holds (i.e., (9)), where Θ3 = λδ2L̃ ⊗ Φ2 and Θ4 =
−IN−1 ⊗Φ2+λδ2L̃⊗Φ2, then the asymptotically sta-
bility of (6) is guaranteed, thus complete Theorem 2.

Remark 5 From (1) and (2), one can conclude that
with larger values for δ1 and δ2, the event-triggered frequen-
cies will become lower. Theoretically, without corrupting the
consensus, there must exist tolerable upper boundaries of δ1

and δ2. Theorems 1 and 2 provide us a feasible method to ac-
quire such maximal values. Namely, given L̄σ , Π , τ and T ,
set δ1 = δ0 + ∆δ or δ2 = δ0 + ∆δ, where δ0 and ∆δ de-
note the initial value and the increasing step, respectively; the
critical maximum of δ1 and δ2 can be connivently obtained by
iteratively solving (7) and (9).

Remark 6 Note that the topology is supposed to be a
directed graph, it is feasible for Theorems 1 and 2 to be ex-
tended to undirected circumstances. Generally, the connected
graph is a fundamental assumption in most similar researches.
However, in this work, such a condition is not strictly required.
It implies that occasional disconnected subgraphs can be tol-
erated by the proposed method. Namely, given some discon-
nected sub-graphs, if there exist feasible solution of (7) or (9),
the desired consensus still can be achieved.

5 Numerical examples
In this section, Example 1 is firstly given to validate

the effectiveness of the proposed method. Afterwards,
Example 2 is used to compare with [18].
5.1 Example 1

The supposed 4 switching topologies are shown in
Fig. 2.

Fig. 2 Switching topologies

Figure 2(a) shows the initial connected graph, the
other three graphs are employed to simulate possible
data packet dropouts events. Fig. 2(c) illustrates that
the agent 2 is disconnected from the topology, in this
case, the disconnected graph is introduced in the net-
work. The probability transition matrix Π is assumed

as




0.5 ? ? ?
0.65 ? ? 0.1
0.65 ? ? ?
0.5 ? 0.1 ?


, where the notation /?0

denotes the unknown information. Accordingly, we
choose one instant (i.e., r(t)) as shown in Fig. 3.

Fig. 3 Markov chain r(t)

Given A =
(

0.5 0
0 0.8

)
, B =

(
0.2
0.3

)
, set τ =

0.02 s and T = 0.01 s, the state initial values are set
as x1(0) = (−0.5,−0.5)T, x2(0) = (−1.5,−1.5)T,
x3(0) = (0.5,−1.5)T, x4(0) = (1.5, 1.0)T. Accord-
ing to Theorems 1 and 2, we have the calculation results
as listed in Tables 1 and 2, respectively.

Table 1 Calculation result

Theorem 1 Theorem 2

δ1 = 0.41 δ2 = 0.12

Φ

„
3.4140 0

0 3.4122

« „
4.7748 0.0001

0.0001 4.7731

«

K1 (0.0010, 0.0017) (0.0015,0.0026)
K2 (0.0009,0.0015) (0.0014,0.0023)
K3 (0.0011,0.0018) (0.0014,0.0024)
K4 (0.0011, 0.0018) (0.0004,0.0008)
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Table 2 Criterion value
χ1 χ2

Topology 1 3.9580 3.2407
Topology 2 3.9580 2.8065
Topology 3 3.9580 1.9845
Topology 4 3.9580 2.8065

From Table 2, we know that the event-trigger (1)
probably has lower triggering frequency than event-
trigger (2). To verify the effectiveness, we first em-
ploy the event-trigger (1), the agent trajectories and the
event-triggered time instants are shown in Figs. 4 and 5,
respectively.

From Fig. 4, one can see that all of the trajectories
are asymptotically attenuated, the curves converge to
the equilibrium point in a relatively fast speed. In addi-
tion, the curves show a good agreement with the target
consensus even some disconnect graphs are activated.
The proposed method shows good robustness against
the communication uncertainties.

Fig. 4 Agent trajectories

In Fig. 5, the vertical values are set as 1 only if the
event-triggered threshold is violated, or 0 if not. One
can clearly see that only a very small amount of data
samples are broadcasted, accordingly, the communica-
tion burden as well as the controller updates are signifi-
cantly reduced.

Fig. 5 Event-triggered time of the agents

The effectiveness of Theorem 1 is thus verified, now
we proceed to verify Theorem 2. After employing the
event-trigger (2) and by Theorem 2, the trajectory er-
rors in comparison with the corresponding former one
are illustrated in Fig. 6. The event-triggered time in-
stants of each agent are shown as Fig. 5.

Figure 6 shows the trajectory error between two
types of event-triggered consensus with the same val-
idation example. Notice that the magnitude is quite
small (10−3), it indicates that the control performances
among them have little differences. Table 2 shows that
event-trigger (2) has lower triggering frequency than
event-trigger (1). From Fig. 7, one can see that the
event-triggered frequencies of (2) (i.e. 26%, 40%, 26%,
29%) are higher than the former one indeed (i.e. 23%,
23%, 20%, 23%), thus validating the effectiveness of
the proposed methods.

Fig. 6 Error trajectories
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Fig. 7 Event-triggered time of the agents

5.2 Example 2
In [15,18], a similar consensus issue has been dis-

cussed with fixed topology (i.e., Fig. 2(a)). The event-
triggers advocated in [15,18] are the same with (2).
Because the results in [18] are superior than [15],
therefore, we only compare with [18] wherein A =(

0 1
0 − 0.4

)
, B = (0.8, 0.5)T, τ = 0 s, T = 0.06 s,

x1(0) = (0, 1.0)T, x2(0) = (0.5, 1.5)T, x3(0) =
(−1.0, 0)T and x4(0) = (0.5,−0.5)T.

One can discover that by removing the rear part
of (7) or (9) from 9th row and 9th column to
the end, the rest part can handle the fixed topol-
ogy situation. According to Theorem 2, we have
δ2 = 0.046, K = (0.2326, 0.1407), Φ2 =(

452.3834 − 180.0247
−180.0247 72.5753

)
. The agent trajectories

and the triggered time instants are given in Figs. 8 and
9, respectively.

From Fig. 8, one can see that the trajectories fluc-
tuate in a short time period and the curves converge
to the equilibrium point quickly, the desired consensus
is achieved. Fig. 9 illustrates the broadcasting instants
of each agent, one can see that the event-triggered fre-
quencies are reduced. The broadcasting ratios of agents
are, respectively, 60%, 58%, 33% and 33%. It is higher
than the ratios of [18], i.e., 9.8%, 7.8%, 6.6% and 9.0%.
However, it can be estimated from Fig. 8 that the con-
sensus is achieved in less than 3.6 s, which is lower than
over 15.0 s in [18]. The proposed method thus shows a
quicker converge rate.

Fig. 8 Agent trajectories

Fig. 9 Event-triggered time of the agents

6 Conclusions
This paper investigates the event-triggered consen-

sus for MASs with communication constraints. An
approximate event-triggered evaluation method is pro-
posed which provides a reference for choosing the ap-
propriate one from two typical event-triggers. Accord-
ingly, a time-delay dependent Markov switching coop-
erative controller design method is developed. With the
proposed scheme, the communication burden and the
number of controller updates can be significantly re-
duced while the desired consensus of MASs can be pre-
served.



1218 Control Theory & Applications Vol. 32

References:
[1] OH K K, PARK M C, AHN H S. A survey of multi-agent formation

control [J]. Automatica, 2015, 53: 424 – 440.
[2] �å,o¶,Û§å,�.Äuõ�UN©+ÓÚ�¢½´��Ï�
� [J].��nØ�A^, 2014, 31(11): 1448 – 1456.
(WANG Li, LI Dai, HE Zhonghe, et al. Urban traffic network con-
trol based on cluster consensus of multi-agent systems [J]. Control
Theory & Applications, 2014, 31(11): 1448 – 1456.)

[3] ZHANG W, LIU W X, WANG X, et al. Distributed multiple
agent system based online optimal reactive power control for smart
grids [J]. IEEE Transactions on Smart Grid, 2014, 5(5): 2421 – 2431.

[4] BENZERROUK A, ADOUANE L, MARTINET P. Stable navigation
in formation for a multi-robot system based on a constrained virtual
structure [J]. Robotics Autonomous Systems, 2014, 62(12): 1806 –
1815.

[5] SUN X J, ZHOU R, HOU D L, et al. Consensus of leader-followers
system of multi-missile with time-delays and switching topolo-
gies [J]. Optik, 2014, 125(3): 1202 – 1208.

[6] '[r,V�j,Ü�,�.õ�UNXÚU�5ïÄ?Ð [J].��
nØ�A^, 2015, 32(4): 421 – 431.
(GUAN Yongqiang, JI Zhijian, ZHANG Lin, et al. Recent develo-
plents on controllability of multi-agent systems [J]. Control Theory
& Applications, 2015, 32(4): 421 – 431.)

[7] ZHOU B, LIN Z L. Consensus of high-order multi-agent systems
with large input and communication delays [J]. Automatica, 2014,
50(2): 452 – 464.

[8] ZHOU B, LIN Z L. Consensus of data-sampled multi-agent systems
with random communication delay and packet loss [J]. IEEE Trans-
actions on Automatic Control, 2010, 55(4): 939 – 943.

[9] LI T, XIE L H. Distributed coordination of multi-agent systems with
quantized-observer based encoding-decoding [J]. IEEE Transactions
on Automatic Control, 2012, 57(12): 3023 – 3037.

[10] NI Y H, LI X. Consensus seeking in multi-agent systems with mul-
tiplicative measurement noises [J]. System & Control Letters, 2013,
62(5): 430 – 437.

[11] LI W Q, XIE L H, ZHANG J F. Containment control of leader-
following multi-agent systems with Markovian switching network
topologies and measurement noises [J]. Automatica, 2015, 51: 263
– 267.

[12] FAN Y, FENG G, WANG Y, et al. Distributed event-triggered control
of multi-agent systems with combinational measurements [J]. Auto-
matica, 2013, 49(2): 671 – 675.

[13] HU A, CAO J D, HU M F, et al. Event-triggered consensus of multi-
agent systems with noises [J]. Journal of the Franklin Institute, 2015,
352(9): 3489 – 3503.

[14] LI H J, MING C, SHEN S G, et al. Event-triggered control for multi-
agent systems with randomly occurring nonlinear dynamics and time-
varying delay [J]. Journal of the Franklin Institute, 2014, 351(5):
2582 – 2599.

[15] DIMAROGONAS D V, FRAZZOLI E, JOHANSSON K H. Dis-
tributed event-triggered control for multi-agent systems [J]. IEEE
Transactions on Automatic Control, 2012, 57(5): 1291 – 1297.

[16] ZHANG H, FENG G, YAN H C, et al. Observer-based output feed-
back event-triggered control for consensus of multi-agent systems [J].
IEEE Transactions on Industrial Electronics, 2014, 61(9): 4885 –
4894.

[17] LI L L, HO D W C, XU S Y. A distributed event-triggered scheme for
discrete-time multi-agent consensus with communication delays [J].
IET Control Theory & Applications, 2014, 8(10): 830 – 837.

[18] GUO G, DING L, HAN Q L. A distributed event-triggered transmis-
sion strategy for sampled-data for sampled-data consensus of multi-
agent systems [J]. Automatica, 2014, 50(5): 1489 – 1496.

[19] ��°,X�J,yÆ�.ÄuÜ©­½5�{�lÑ�mõ�UN
XÚ���5 [J].��nØ�A^, 2014, 31(4): 438 – 443.
(CHEN Yangzhou, GE Yanrong, SONG Xuejun. Partial-stability-
based approach to consensus problem in discrete-time multi-agent
systems [J]. Control Theory & Applications, 2014, 31(4): 438 – 443.)

[20] ��u,Mïï,Ü�Y.É��Ï&�¢K��p�õ�UNXÚ
�ªÓ [J].��nØ�A^, 2015, 32(3): 295 – 303.
(WANG Zhenhua, XU Juanjuan, ZHANG Huanshui. Consensus of
higher-order multi-agent systems with unknown communication de-
lay [J]. Control Theory & Applications, 2015, 32(3): 295 – 303.)

[21] ��#,ÜIû,Ü�?,�.�aÉ�õ�UNXÚ��5�Æ�
Âñ5©Û [J].��nØ�A^, 2014, 31(11): 1524 – 1529.
(SUN Yijie, ZHANG Guoliang, ZHANG Shengxiu, et al. Conver-
gence analysis for consensus protocol of heterogeneous multi-agent
systems [J]. Control Theory & Applications, 2014, 31(11): 1524 –
1529.)

[22] y°ü,|á,�õ�.V���e�õ�UNXÚ+��5 [J].�
�nØ�A^, 2012, 29(6): 766 – 772.
(SONG Haiyu, YU Li, HU Hongxiang. Group consensus in multi-
agent systems via pinning control [J]. Control Theory & Applications,
2012, 29(6): 766 – 772.)

[23] NOWZARI C, CORTES J. Zeno-free, distributed event-triggered
communication and control for multi-agent average consensus [C]
//Proceedings of American Control Conference. Portland: ACC,
2014: 2148 – 2153.

[24] PENG C, HAN Q L. A novel event-triggered transmission scheme
and L2 control co-design for sampled-data control system [J]. IEEE
Transactions on Automatic Control, 2013, 58(10): 2620 – 2626.

[25] GARCIA E, CAO Y C, CASBEER D W. Decentralized event-
triggered consensus with general linear dynamics [J]. Automatica,
2014, 50(10): 2633 – 2640.

[26] ZHU W, JIANG Z P. Event-based leader-following consensus of
multi-agent systems with input time delay [J]. IEEE Transactions on
Automatic Control, 2015, 60(5): 1362 – 1367.

[27] SEYBOTH G S, DIMAROGONAS D V, JPHANSSON K H. Event-
based broadcasting for multi-agent average consensus [J]. Automat-
ica, 2013, 49(1): 245 – 252.

[28] ZHANG Y, TIAN Y P. Maximum allowable loss probability for
consensus of multi-agent systems over random weighted lossy net-
works [J]. IEEE Transactions on Automatic Control, 2012, 57(8):
2127 – 2132.

[29] WANG D, WANG J L, WANG L. H∞ controller design of networked
control systems with Markov packet dropouts [J]. IEEE Transactions
on Systems, Man, and Cybernetics: Systems, 2013, 43(3): 689 – 697.
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