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Stochastic control for multiperiod mean-variance asset-liability
management
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Abstract: The objective of asset and liability management (ALM) is to seek an optimal portfolio policy such that a
risk measure (variance of the surplus) is minimized while achieving a certain threshold level for the expected value of
the surplus. This paper studies two multiperiod mean-variance-based ALM models including the one with intertemporal
risk control and the other one with no bankruptcy restriction. Due to the nonseparability of the variance, it is hard to
solve this problem by stochastic control approach directly. Instead of adopting the widely used embedding method which
may encounter computational difficulty in solving these problems, we develop a novel stochastic control approach of a
mean-field type. Under a general market assumption, the analytical portfolio policies and mean-variance efficient frontiers
are derived for these two ALM problems. The new result developed in this paper provides investors with efficient ways
in characterizing their optimal portfolio and liability management strategies for these sophisticated mean-variance-based
ALM models.

Key words: multiperiod portfolio optimization; stochastic control systems; asset-liability management; mean-field
formulation; finance applications

1 Introduction
Portfolio selection attempts to find the best alloca-

tion of the initial investment among a basket of assets
in order to minimize a risk measure while achieving a
certain level of the expected return. Such a core con-
cept to strike a balance between the mean and risk is
fundamental and essential in modern investment theory.
The mean-risk framework in portfolio selection was ini-
tiated by the seminal work of the mean-variance (MV)
portfolio selection theory developed by Markowitz[1]

half century ago. Since then, significant efforts have
been witnessed in extending the static MV portfolio se-
lection theory to dynamic MV portfolio selection. How-
ever, due to the nonseparability of the variance term in
the sense of dynamic programming, such an extension
was blocked until 2000 when Li and Ng[2] and Zhou
and Li [3] finally made breakthrough in solving, respec-
tively, the discrete-time and continuous-time MV for-
mulations analytically. The critical technique used in
[2] and [3] is the so called embedding method, in which
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the original dynamic MV portfolio optimization prob-
lem is embedded into an auxiliary stochastic control
problem, which is essentially of a linear-quadratic type
of stochastic control. Following the similar embedding
idea in [2], multiperiod dynamic MV portfolio selection
models have been extended in various directions, see,
for example, [4−7]. Readers may refer [6−7] and refer-
ences therein for more complete surveys. Although the
embedding technique succeeds in solving the conven-
tional dynamic MV portfolio optimization problems,
it encounters some computational difficulties or even
fails when additional practical constraints are present
in the multiperiod MV portfolio selection model, e.g.,
the no-bankruptcy restrictions [5] or the constraints for
intertemporal risk control[4]. Recently, Cui et al. [8]

showed that all these problems can be solved efficiently
by using the so called mean-field stochastic control ap-
proach, and their research work motivates us to revisit
the asset-liability management problem by using the
mean-field formulation method as a solution method-
ology.

Besides investing in the security market, these in-
vestment institutions, such as insurance companies,
pension fund and banks, also have to pay great atten-
tion to their liabilities. The asset-liability management
(ALM) model considers the best decision on both the
investment and the liabilities, i.e., the portfolio posi-
tions under the effects of the liability. The subject of
ALM has been attracting a great deal of attentions from
both academic community and financial industry, see,
for example, [9−11]. As for the MV type of the ALM
problems, Sharpe and Tint[9] proposed a static (single-
period) MV formulation and showed the impact of lia-
bility on the investment performance. Using the embed-
ding technique introduced for MV portfolio selection
in [2], Leippold et al.[12] and Chui and Li[13] extended
the mean-variance ALM model to dynamic settings of
discrete-time and continuous-time, respectively. The
past years have also seen several further extensions of
dynamic mean-variance ALM in the literature, e.g., Yi
et al.[14] considered the uncertain investment horizon in
ALM, Zeng and Li[15] used the jump diffusion process
to model the asset evolutions, and Chen and Yang [16]

adopted the region switching model for the asset pro-
cess. Recently, Yi et al.[17] adopted the mean-field for-
mulation and solve the portfolio optimization problem
with uncertain exit time. Cui et al.[18] extended such a
result to ALM problem with an uncertain exit time in a
market with one riskless asset, multiple risky assets and
one liability.

In this work, we consider the mean-variance ALM
problems with the intertemporal risk control and no
bankruptcy restriction in an incomplete market with
only risky assets and one liability. Instead of treating
these problems separately, we consider a unified ALM

formulation, under which the ALM problems with the
intertemporal risk control and no bankruptcy restriction
become its special cases. To avoid the computational
difficulties arising from the embedding method[4−5], we
adopt the mean-field control approach introduced by
Cui et al.[8] for the mean-variance portfolio selection
problem. We would like to point out several contribu-
tions of our work in this paper. We derive the analyt-
ical portfolio policy for the mean-variance ALM prob-
lem with a general market setting with all assets being
risky. We show that the optimal portfolio policy is a
linear feedback policy with respect to both the current
wealth and liability. Our new result provides investors
efficient ways in characterizing their optimal portfolio
strategies for these sophisticated mean-variance-based
ALM models. From technical point of view, due to the
liability and our general market setting with only mul-
tiple risky assets, the state space in our model becomes
two dimensional. Furthermore, since we assume that all
assets are risky, the resulted mean-field type of dynam-
ics are more general than the one studied in [8--18] and
[17], where the state space is scalar and a risk-free as-
set exists. The most related work to our model is Cui
et al.[18], which studied the ALM problem with uncer-
tain exit time by using the mean-field control approach.
To tackle the uncertain exiting time, an auxiliary prob-
lem is introduced in [18]. This auxiliary problem shares
a similar formulation of problem (P1) in our paper.
However, compared to our model in which all assets
are risky, the resulted mean-field dynamics of wealth in
[18] is simpler since a risk-free asset is included. Thus,
the auxiliary problem studied in [18] can be regarded
as a special case of our result. In our paper, we also
study the ALM model with no-bankruptcy restriction in
problem (P2), which is not covered in [18].

This paper is organized as follows. After we present
two mean-variance ALM models in Section 2, we de-
velop the optimal portfolio policies for these problems
in Section 3. We demonstrate our solution procedure by
an illustrative example in Section 4. In this paper, we
use A′ to denote the transpose of matrix A.

2 Problem formulation
We consider a capital market consisting of n + 1

risky assets whose random returns evolve in total T pe-
riods labeled by t = 0, · · · , T − 1. Let r̂t ∈ Rn

be the random return vector of the first n risky assets
and r̄t be the random return of the (n + 1)-th asset
in period t. We denote the random liability rate in pe-
riod t as pt. An investor enters the market with initial
wealth x0 and initial liability l0 at period t = 0, and
he can allocate his wealth in the n + 1 assets at the
beginning of each period t, for all t = 0, · · · , T − 1.
We assume that the investor has the information of the
first and second order moments and the correlation of
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the return vector of these risk assets and the liability
rate, respectively. All the randomness are modeled by
a complete probability space {Ω,F , P}, where Ω is
the sample space, F is the complete filtration, and P
is the probability measure. The information set (filtra-
tion) at the beginning of period t, t = 1, · · · , T − 1,
is denoted as Ft which is the sigma algebra generated
by the realization of random variables {r̂k, r̄k, pk} for
k = 0, · · · , t− 1. Note that the filtration at time t = 0
reduces to F0 = {Ω,∅}. We denote the conditional
expectation under the filtration Ft as E[·|Ft]. To sim-
plify the notation, we use E[Y ] for E[Y |F0], which is
just the unconditional expectation. Furthermore, we
use Cov[Y ] = E[Y Y ′] − E[Y ]E[Y ′] to denote the co-
variance matrix of a random vector Y and Var[y] =
E[y2]− E2[y] for the variance of random variable y.

Assumption 1 Let Yt = [r̂t, r̄t, pt]′ be the gener-
alized return vector for t = 0, · · · , T − 1. We assume
that Yt, t = 0, · · · , T − 1, are statistically indepen-
dent for different time periods, and the expected value
E[Yt] and the covariance matrix Cov[Yt] are known,
t = 0, · · · , T − 1.

Note that Assumption 1 means that we can compute
the function of the moments related to {r̂t, r̄t, pt} up to
the order 2. Without loss of generality, we also assume
a nondegenerate condition that matrix Cov[Yt] is posi-
tive definite[2]. Note that, when we set the return of the
(n + 1)-th asset, r̄t, deterministic, we can regard the
(n + 1)-th asset as the risk-free asset, and our model
thus covers the case where a risk-free asset exists in the
market.

Let xt be the wealth level at period t and ut =
(u1

t , u
2
t , · · · , un

t )′ be the portfolio vector representing
the dollar amounts invested in the first n risky asset.
Then, at period t, the dollar amount allocated to the

(n+1)-th asset is xt−
n∑

i=1

ui
t, which further leads to the

following stochastic difference equation which governs
the wealth dynamics,

xt+1 = r̄t(xt − 1′ut) + r̂′tut = r̄txt + r′tut, (1)

t = 0, · · · , T − 1,

where 1 is the all-one vector and rt = r̂t − 1r̄t is the
excess return vector of the first n risky assets with re-
spect to the (n + 1)-th asset. Furthermore, we denote
the liability at period t by lt , t = 0, · · · , T − 1, which
is governed by the following stochastic difference equa-
tion,

lt+1 = ptlt, t = 0, · · · , T − 1, (2)

where pt is the random liability rate. As the same as
in the literature (see, for example, [9] and [12]), the in-
vestor’s portfolio policy does not affect the stochastic
process of the liability, although the liability rate pt and
the excess return vector rt are correlated. Finally, we

denote the wealth surplus, the difference between the
wealth and the liability at period t as st = xt − lt.

In this work, we consider two mean-variance-based
ALM models. The first problem under consideration is
the following mean-variance ALM model with the in-
tertemporal risk control,

(P1) : max (E[sT]− ωTVar[sT]) +∑
t∈I

αt(E[st]− γtVar[st]),

s.t.





xt+1 = r̄txt + r′tut,
lt+1 = ptlt,
st = xt − lt, t = 1, · · · , T,

(3)

where I = {τ1, · · · , τh} ⊂ {1, · · · , T − 1} is the set
of periods in which the investor needs to evaluate the
mean-variance pair of the surplus, αt > 0 is the weight-
ing coefficient measuring the importance of the mean-
variance pair of time period t, γt > 0 and ωT are the
trade-off coefficients between the return and variance of
st at period t and period T , respectively. Note that prob-
lem (P1) covers several well studied models in the liter-
ature. If we let I = ∅, then problem (P1) degenerates
to the conventional mean-variance ALM model studied
in [12] and [13]. If we let pt = 0 for t = 0, · · · , T − 1,
then problem (P1) becomes the conventional mean-
variance portfolio optimization problem with intertem-
poral restriction investigated in [4] and [19].

Besides problem (P1), we are also interested in the
mean-variance ALM model with no bankruptcy control,
i.e., we want to control the bankruptcy probability under
a threshold level for all time periods, P (st 6 ηt) 6 βt,
t = 1, · · · , T − 1, where ηt is the disaster level and βt

is the tolerance probability of the bankruptcy event, for
t = 1, · · · , T − 1. To integrate such constraints into
the ALM problem, we use the Tchebycheff inequality
as proposed in [5] to relax the problem into the follow-
ing more tractable formulation,

(P2) : max E[sT]− ωTVar[sT],
s.t. {xt,ut} satisfies (3),

Var[st] 6 βt(E[st]− ηt)2, (4)

t = 1, · · · , T − 1.

To solve both problems (P1) and (P2), we first de-
fine the following vectors:

e =
(

1
−1

)
, Bt =

(
r̄t 0
0 pt

)
, ht =

(
rt

0

)
, (5)

t = 0, · · · , T − 1.

Note that both Bt ∈ R2×2 and ht ∈ R2×n are ran-
dom matrices. We also define vector zt to include both
the wealth, xt, and the liability, lt, as its components as
follows:

zt =
(

xt

lt

)
, t = 0, · · · , T − 1.



No. 9 WU Wei-ping et al.: Stochastic control for multiperiod mean-variance asset-liability management 1203

Both problems (P1) and (P2) are closely related to the
following stochastic control problem:

(P3(Λ)) : max
{u0,··· ,uT−1}

E[e′zT]− ωT ×
E[(e′zT − E[e′zT])2]−
T−1∑
t=1

λt

(
E[(e′zt − E[e′zt])2]−

atE[(e′zt)2] + btE(e′zt)− ct), (6)

s.t. zt+1 = Btzt + htut, (7)

t = 0, · · · , T − 1,

where z0 = (x0, l0)′, Λ = (λ1, · · · , λT−1) is given
with λk > 0 for k = 1, · · · , T − 1, and at > 0, bt,
ct are given parameters, t = 1, · · · , T − 1. While the
state variables xt and lt are governed by the stochastic
difference equations in (1) and (2), respectively, they are
both observable at time t. Note that problem (P3(Λ))
is different from problem (GMV) studied in [8], since
the liability is involved, the state vector zt in problem
(P3(Λ)) is two dimensional and the matrix Bt is a
random matrix. A major difficulty which blocks a di-
rect application of the traditional stochastic control ap-
proaches is due to the nonseparability in the sense of
dynamic programming caused by the variance term. We
use the mean-field type approach in this paper to con-
quer such a problem. In the following section, we first
develop a solution method for problem (P3(Λ)) and
then apply such a solution scheme to problems (P1) and
(P2).

3 Main results
In this section, we first develop the analytical so-

lution for problem (P3(Λ)) by adopting a similar so-
lution idea of the mean-field formulation given in [8].
Under Assumption 1, ht is Ft+1 measurable, and xt

and ut are Ft measurable. Thus, we have E[h′tut] =
E[E[h′tut|Ft]

]
= E

[
E[h′t|Ft]ut] = E[h′t]E[ut]. Fur-

thermore, taking expectation on both sides of (7) yields
E[zt+1]=E[Bt]E[zt] + E[ht]E[ut], t = 0, · · · , T − 1.
Problem (P3(Λ)) can be now reformulated as follows:

(P̄3(Λ)) :
max E[e′zT]− ωTE[(e′zT − E[e′zT])2]−
T−1∑
t=1

λt(E[(e′zt − E[e′zt])2]−

atE[(e′zt)2] + btE[e′zt]− ct),

s.t.





E[zt+1] = E[Bt]E[zt] + E[ht]E[ut],
t = 0, · · · , T − 1,
zt+1 − E[zt+1] =
Btzt − E[Bt]E[zt] + htut − E[ht]E[ut] =
Bt(zt − E[zt]) + (Bt − E[Bt])E[zt]+
ht(ut − E[ut]) + (ht − E[ht])E[ut].

(8)

Before we give the main result, we introduce the

following sequences of matrices and vectors, which are
defined by backward recursions for k = T − 1, · · · , 0,

Mk =
λkee′ − E[B′

kMk+1hk]E−1[h′kMk+1hk]×
E[B′

kMk+1hk]′ + E[B′
kMk+1Bk], (9)

Qk = E[(hk − E[hk])′Mk+1(hk − E[hk])] +
E[hk]′Gk+1E[hk], (10)

Gk =
−λkakee′ −W ′

kQ
−1
k Wk + E[Bk]′Gk+1E[Bk] +

E[(Bk − E[Bk])′Mk+1(Bk − E[Bk])], (11)

Fk =
−λkbke

′ − Fk+1E[hk]Q−1
k Wk + Fk+1E[Bk], (12)

Ck =

λkck +
1
4
Fk+1E[hk]Q−1

k E[hk]′F ′
k+1 + Ck+1, (13)

W ′
k =

(E[Bk]′Gk+1E[hk]) + E[(Bk − E[Bk])′ ×
Mk+1(hk − E[hk])] (14)

with the boundary conditions being given as

MT = ωTee′, GT = 0, FT = e′, CT = 0.

It is not difficult to verify from above definitions that
matrices Mk, Gk and Qk are all positive semidefinite,
for t = 0, · · · , T . Furthermore, under Assumption 1,
all the above matrices can be computed off-line.

Proposition 1 The optimal portfolio policy of
problem (P3(Λ)) is given as

ut = E[ut]− E−1[h′tMt+1ht]E[B′
tMt+1ht]′ ×(

zt − E[zt]
)
, (15)

E[ut] =
1
2
Q−1

t E[ht]′F ′
t+1 −Q−1

t WtE[zt], (16)

where the optimal expected value of zt is

E[zt] =
t−1∏
s=0

[E[Bs]z0 − E[hs]Q−1
s λs] +

t−1∑
j=0

1
2
E[hj]Q−1

j E[hj]′F ′
j+1 ×

t−1∏
`=j+1

[E[B`]− E[h`]Q−1
` λ`]. (17)

Proof We define the value function of problem
(P3(Λ)) at time t as

Jt(zt,E[zt]) =

max
ut,··· ,uT−1

{
T−1∑
k=t

−λk

(
E

[
(e′zk − E[e′zk])2]−

akE[(e′zk)2] + bkE[e′zk]− ck) +
(E[e′zT]− ωTE[(e′zT − E[e′zT])2])},

where the state variables are zt and E[zt] which are
both Ft measurable. Due to the principle of optimality
and the Markov property of the problem formulation,
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the value function Jt(zt,E[zt]) satisfies the following
recursion:

Jt(zt,E[zt]) =
−λt(E[(e′zt − E[e′zt])2]− atE[(e′zt)2] +
btE[e′zt]− ct) + E[Jt+1(zt+1,E[zt+1]) | Ft]

(18)

with boundary condition JT(zT,E[zT])=E[e′zT] −
ωTE2

[
e′zT − E[e′zT]

]
. We claim that the value func-

tion takes the following form:

Jt(zt,E[zt]) =
−(zt − E[zt])′Mt(zt − E[zt])−
E[zt]′GtE[zt] + FtE[zt] + Ct. (19)

At stage t = T , the claim is obviously true. After we
assume that the claim (19) is true at stage t+1, we now
check the value function Jt(zt,E[zt]) at stage t. We
first compute the expectation E[Jt+1(zt+1,E[zt+1])]
by using (8) as follows:

E[Jt+1(zt+1,E[zt+1])| Ft] =
E[−(zt+1 − E[zt+1])′Mt+1(zt+1 − E[zt+1])−
E[zt+1]′Gt+1E[zt+1]+Ft+1E[zt+1] + Ct+1]|Ft]=
G1 + 2G2, (20)

where G1 and G2 are given as follows:

G1 =
(zt − E[zt])′E[B′

tMt+1Bt](zt − E[zt]) +
E[zt]′E[(Bt − E[Bt])′Mt+1(Bt − E[Bt])]E[zt] +
(ut − E[ut])′E[h′tMt+1ht](ut − E[ut]) +
E[ut]E[(ht − E[ht])′Mt+1(ht − E[ht])]E[ut] +
2(zt − E[zt])′E[B′

tMt+1ht](ut − E[ut]) +
2E[z′t]E[(Bt − E[Bt])′Mt+1(ht − E[ht])]E[ut]−
E[zt]′E[Bt]′Gt+1E[Bt]E[zt]−
E[ut]′E[ht]′Gt+1E[ht]E[ut]−
2E[zt]′E[Bt]′Gt+1E[ht]E[ut] +
Ft+1E[Bt]E[zt] + Ft+1E[ht]E[ut] + Ct+1, (21)

G2 =
(zt − E[zt])′E[B′

tMt+1(Bt − E[Bt])]E[zt] +
(zt − E[zt])′E[B′

tMt+1(ht − E[ht])]E[ut] +
E[z′t]E[(Bt − E[Bt])′Mt+1ht](ut − E[ut]) +
(ut − E[ut])′E[h′tMt+1(ht − E[ht])]E[ut]. (22)

The purpose of partitioning E[Jt+1(zt+1,E[zt+1])]
into G1 and G2 is that all the terms in G2 actually do
not affect the entire value function with respect to F0.
This fact has been pin-pointed in Lemma 3 of [8]. Ac-
tually, it is not too difficult to verify that all the terms
in (22) will be vanished when we take expectation with
respect to F0,

E[(zt − E[zt])′E[B′
tMt+1(Bt −

E[Bt])]E[zt] | F0] = 0, (23)

E[(zt − E[zt])′E[B′
tMt+1(ht −

E[ht])]E[ut] | F0] = 0, (24)

E[E[z′t]E[(Bt − E[Bt])′Mt+1ht](ut −
E[ut]) | F0] = 0, (25)

E[(ut − E[ut])′E[h′tMt+1(ht −
E[ht])]E[ut] | F0] = 0. (26)

Thus, to maximize E
[
Jt+1(zt+1,E[zt+1])|Ft

]
, we

only need to focus on G1. Rearranging the terms in (21)
by completing the square gives rise to

max
(E[ut],ut−E[ut])

G1 =

−((ut−E[ut])+E−1[h′tMt+1ht]E[B′
tMt+1ht]′×

(zt − E[zt]))′E[h′tMt+1ht]((ut − E[ut]) +
E−1[h′tMt+1ht]E[B′

tMt+1ht]′(zt − E[zt]))−
(E[ut]− 1

2
Q−1

t E[ht]′F ′
t+1 + Q−1

t WtE[zt])′ ×

Qt(E[ut]− 1
2
Q−1

t E[ht]′F ′
t+1 + Q−1

t WtE[zt]) +

(zt − E[zt])′(E[B′
tMt+1ht]E−1[h′tMt+1ht]×

E[B′
tMt+1ht]′ − E[B′

tMt+1Bt])×
(zt − E[zt])− E[zt]′(−W ′

t Q
−1
t Wt +

E[Bt]′Gt+1E[Bt] + E[(Bt − E[Bt])′ ×
Mt+1(Bt − E[Bt])])E[zt] + (−Ft+1E[ht]Q−1

t ×
Wt + Ft+1E[Bt])E[zt] +
1
4
Ft+1E[ht]Q−1

t E[ht]′F ′
t+1 + Ct+1.

Maximizing G1 yields the optimal policy specified in
(15) and (16). Substituting the optimal policy back
to the value function gives rise to the result in (19),
where Mk, Qk, Gk, Fk, Ck and Wk are defined in
(9)−(14), respectively. Thus, we complete the proof
of the claim in (19). Substituting the optimal u∗t back
to (8) yields the recursion for E[zt],

E[zt+1] =

(E[Bt]− E[ht]Q−1
t Wt)E[zt] +

1
2
E[ht]Q−1

t E[h′t]F
′
t+1, t = 0, · · · , T,

which further leads to the expression in (17).
Based on Proposition 1, we can compute the ex-

pected value and the variance of the surplus of the
terminal wealth. From (17), we have

E[sT] = e′E[zT] =

e′
t−1∏
s=0

[E[Bs]z0 − E[hs]Q−1
s λs] +

e′
t−1∑
j=0

1
2
E[hj ]Q−1

j E[hj ]′F ′
j+1 ×

t−1∏
`=j+1

[E[B`]− E[h`]Q−1
` λ`]. (27)
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The variance of the terminal surplus can be computed
by the following formula:

Var[sT] = E[e′zTz′Te]− E2[sT] =

e′E[zTz′T]e− (e′E[zT])2.

In order to compute the term E[zTz′T], we first sub-
stitute the optimal policy u∗t back to (7) to get the
dynamics of zk under the optimal policy,

zk+1 =

Bkzk + ht(
1
2
Q−1

k E[h′t]F
′
k+1 −Q−1

k WkE[zk]−
E−1[h′tMk+1hk]E[B′

kMk+1hk]′(zt − E[zt])).

We then compute zkz
′
k, take its expectation and ob-

tain the dynamics of E[ztz
′
t].

Once we know how to compute the pair
(E[sT], Var[sT]), we can plot the efficient frontier by
varying ωT.

Based on the optimal solution of problem
(P3(Λ)), we are able to construct the optimal solu-
tion of problem (P1).

Propositions 2 Setting at = 0, ct = 0 and

λk =
{

αkγk, if k ∈ I,

0, if k 6∈ I,

bk =
{−αk/λk, if k ∈ I,

0, if k 6∈ I,

in the problem formulation of (P3(Λ)), the optimal
policy given in (15) solves problem (P1).

To solve problem (P2), we introduce (T − 1) La-
grange multipliers, Λ = (λ1, · · · , λT−1) with λt > 0
for the constraint Var[st] 6 βt(E[st] − ηt)2, for t =
1, · · · , T − 1, and consider the following relaxation
of problem (P2),

(P̄2(Λ)) : max E[sT]− ωTVar[sT]−
T−1∑
k=1

λk(Var[sk]− βk(E[sk]− ηk)2),

s.t. {xt,ut} satisfies (3).

Note that problem (P̄2(Λ)) is the same as problem
(P3(Λ)), once we fix the parameters ak, bk and ck at
some particular values.

Propositions 3 Setting ak, bk and ck at

ak = βk, bk = 2βkηk, ck = βkη
2
k (28)

for k = 1, · · · , T − 1, and setting Λ∗ = (λ∗1, · · · ,

λ∗T−1)
′ as the minimizer of

(λ∗1, · · · , λ∗T−1)
′ =

arg min
λ1>0,··· ,λT−1>0

z′0G0z0 + F0z0 + C0 (29)

in problem formulation of (P3(Λ)). Then, the portfo-
lio policy in (15) for problem (P3(Λ∗)) solves prob-
lem (P2).

Proof It is not hard to see that problem (P2) is
a convex optimization problem. Thus, the strong du-
ality relationship holds. On the other hand, once we
fixed parameters ak, bk and ck as given in (28), prob-
lem (P3(Λ)) is equivalent to problem (P̄2(Λ)), which
is the Lagrangian relaxation of problem (P2). If we
use v(·) to denote the optimal objective value of prob-
lem (·), we then have

v(P2) = min
λ1>0,··· ,λT−1>0

v(P̄2(Λ)). (30)

From Proposition 1, we know that

v(P̄2(Λ)) = v(P3(Λ)) =

z′0G0z0 + F0z0 + C0,

where G0 and F0 are defined in (11) and (12), respec-
tively.

Remark 1 For real implementation, we can use the
following simple gradient-projection method to find the opti-
mal Λ∗ that solves (29). Let Λ∗ and J∗ be the current incum-
bent solution and the objective value of problem (29) under this
incumbent solution. Let us set the step size as δ > 0, the re-
duction rate as 0 < ρ < 1 and the stopping criteria as ε > 0,
which is a small positive number.

Step 1 For given Λ, compute F0, G0 and J(Λ) :=

z′0G0z0 + F0z0 + C0. If J(Λ) < J∗, let Λ∗ = Λ and J∗ =

J(Λ).
Step 2 If the stopping criterion, |J∗ − J(Λ)| 6 ε, is sat-

isfied, stop. Otherwise, go to Step 3.

Step 3 Compute the numerical gradient of J(Λ) as
∇J(Λ) and update Λ as Λ = Λ − δ∇J(Λ). Compute the
projection, Λ = max(0, Λ), update the step size δ = ρδ and
go to Step 1. Please refer to [20] for more details in designing
gradient project algorithms.

4 Examples
In this section, we use a simple example to illus-

trate the solution procedure for problems (P1) and
(P2). We use the same market parameters given in
the example of [14]. We denote the random returns of
the two risky assets (A and B) in the portfolio as r̄t

(for asset A) and r̂t (for asset B), respectively, and
the liability rate as pt. All these random variables
are assumed to be independent and identically dis-
tributed with respect to time. More specifically, the
expected value and the covariance matrix of random
vector Y = (r̂t, r̄t, pt) are given by

{
E[r̄t] = 1.259, E[r̂t] = 1.243, E[pt] = 1.224,

t = 0, · · · , T − 1,

(31)
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Cov[Yt] =




0.0148 0.0185 0.0146
0.0185 0.0855 0.0105
0.0146 0.0105 0.0288


 ,

t = 0, · · · , T − 1.

(32)

The investor’s initial wealth and liability are x0 = 10
and l0 = 5, respectively, and his investment hori-
zon is set as T = 6. Let the investor first consider
model (P1) with αk = 0.5 and γk =0.2 for k=1, · · · ,

5, and I = {1, · · · , 5}. By Proposition 2, the op-
timal portfolio level of asset B can be written as
ut = E[ut]−Kt(zt−E[zt]), for t = 0, · · · , 5, where

E[u0]=−0.264, E[u1]=−0.404, E[u2]=−0.576,

E[u3]=−0.798, E[u4]=−1.075, E[u5]=−1.430,

K0 = (1.436,−1.856), K1 = (1.436,−1.756),

K2 = (1.436,−1.662), K3 = (1.436,−1.573),

K4 = (1.436,−1.487), K5 = (1.436,−1.403),

E[z0] =
(

10
5

)
, E[z1] =

(
11.568
6.120

)
,

E[z2] =
(

13.373
7.491

)
, E[z3] =

(
15.451
9.169

)
,

E[z4] =
(

17.841
11.222

)
, E[z5] =

(
20.587
13.737

)
.

Figures 1 and 2 show the impact of the intertem-
poral risk restriction. Figure 1 plots Var[st], the vari-
ance of st, for t = 0, · · · , T , when we set αk at
different values (with ωT = 0.2). We can observe
that the intertemporal risk level is decreasing when
we increase αk. Fig. 2 plots the efficient frontier of
(E[sT], Var[sT]) for different αk, k = 1, · · · , T − 1,
when we vary ωT. The efficient frontier generated
from a larger αk is dominated by the one generated by
a smaller αk. Thus, there is a tradeoff when choosing
αk, i.e., larger αk may help reduce the intertempo-
ral risk of st but worsen the efficiency of the terminal
surplus, sT.

Now let us assume that the investor considers
model (P2) with ηk = 0, k = 1, · · · , 5, β1 = 0.2,
β2 = 0.2, β3 = 0.2, β4 = 0.25 and β5 = 0.25.
From Proposition 3 and the simple searching algo-
rithm mentioned in Remark 1, we can compute λ∗k =
0 for k = 1, · · · , T − 2 and λ∗T−1 = 0.001. The
statistics of E[st], Var[st] and E[ut] are listed in Ta-
ble 1. That is to say, all the inequalities constraints,
Var[st] 6 βt(E[st] − ηt)2, in problem (P2) hold
strictly. To verify the effect of model (P2) in pre-
venting the surplus falling into bankruptcy, we gen-
erate 2000 sample paths of the returns of the risky
assets and liability which are assumed to be jointly
normally distributed according to the expected vector

and covariance matrix given in (31) and (32). Then
we implement the optimal portfolio policies for these
2000 samples. The column ‘num’ in Table 1 records
the number of bankruptcy occurrence with st < 0 in
2000 rounds.

Fig. 1 Intertemporal variance Var[st]

Fig. 2 (Var[sT], E[sT]) pair of model (P1)

Table 1 The statistics from simulation test for
model (P2)

t E[st] Var[st] E[ut] num

0 5 0 –0.854 0
1 5.398 0.688 –0.942 0
2 5.780 1.764 –1.040 0
3 6.124 3.542 –1.150 7
4 6.406 5.958 –1.274 35
5 6.588 9.865 –1.414 61
6 6.623 15.940 — 73

Remark 2 In our model, we assume that all the returns
of the risky assets and liability rate are statistically indepen-
dent. However, in real applications, the assets returns always
exhibit certain degree of correlation among different time peri-
ods. Thus, investigating the correspondent ALM problems by
using the mean-field control approach when assets returns are
correlated is a challenge and meaningful future research direc-
tion.



No. 9 WU Wei-ping et al.: Stochastic control for multiperiod mean-variance asset-liability management 1207

References:
[1] MARKOWITZ H M. Portfolio selection [J]. Journal of Finance,

1952, 7(1): 1063 – 1070.

[2] LI D, NG W L. Optimal dynamic portfolio selection: Multiperiod
mean-variance formulation [J]. Mathematical Finance, 2000, 10(3):
387 – 406.

[3] ZHOU X Y, LI D. Continuous time mean-variance portfolio selec-
tion: A stochastic LQ framework [J]. Applied Mathematics and Opti-
mization, 2000, 42(1): 19 – 33.

[4] COSTA O L V, NABHOLZ R B. Multi-period mean-variance opti-
mization with intertemporal restrictions [J]. Journal of Optimization
Theory and Applications, 2007, 134(2): 257 – 274.

[5] ZHU S S, LI D, WANG S Y. Risk control over bankruptcy in dynamic
portfolio selection: a generalized mean-variance formulation [J].
IEEE Transactions on Automatic Control, 2004, 49(3): 447 – 457.

[6] GAO J J, LI D, CUI X Y, et al. Time cardinality constrained
mean-variance dynamic portfolio selection: A stochastic control ap-
proach [J]. Automatica, 2015, 54: 91 – 99.

[7] CUI X Y, GAO J J, LI X, et al. Optimal multiperiod meanvariance
policy under no-shorting constraint [J]. European Journal of Opera-
tional Research, 2014, 234(2): 459 – 468.

[8] CUI X Y, LI X, LI D. Unified framework of mean-field formulations
for optimal multi-period mean-variance portfolio selection [J]. IEEE
Transactions on Automatic Control, 2014, 59(7): 1833 – 1844.

[9] SHARPE W F, TINT L G. Liabilities–-a new approach [J]. Journal of
Portfolio Management, 1990, 16(2): 5 – 10.

[10] WARING M B. Liability-relative investing I [J]. Portfolio Manage-
ment, 2004, 30(4): 8 – 20.

[11] WARING M B. Liability-relative investing II [J]. Portfolio Manage-
ment, 2004, 31(1): 40 – 53.

[12] LEIPPOLD M, TROJANI F, VANINI P. A geometric approach to
multiperiod mean variance optiization of assets and liabilities [J].
Journal of Economic Dynamics & Control, 2004, 28(6): 1079 – 1113.

[13] CHIU M C, LI D. Asset and liability management under a
continuous-time mean-variance optimization framework [J]. Insur-
ance: Mathematics and Economics, 2006, 39(3): 330 – 355.

[14] YI L, LI Z F, LI D. Multi-period portfolio selection for asset-liability
management with uncertain investment horizon [J]. Journal of Indus-
trial and Management Optimization, 2008, 4(3): 535 – 552.

[15] ZENG Y, LI Z F. Asset-liability management under benchmark and
mean-variance criteria in a jump diffusion market [J]. Journal of Sys-
tems Science and Complexity, 2011, 24(2): 317 – 327.

[16] CHEN P, YANG H L. Markowitz’s mean-variance asset-liability
management with regime switching: a continuous-time model [J].
Insurance: Mathematics and Economics, 2011, 43(3): 456 – 465.

[17] YI L, WU X P, LI X, et al. A mean-field formulation for optimal
multi-period meanõvariance portfolio selection with an uncertain
exit time [J]. Operations Research Letters, 2014, 42(8): 489 – 494.

[18] CUI X Y, LI X, WU X P, et al. A mean-field formulation for op-
timal multi-period asset-liability mean-variance portfolio selection
with an uncertain exit time [J/OL]. submitted for publication, 2015.
http://ssrn.com/abstract=2680109.

[19] COSTA O L V, ARAUJO M V. A generalized multi-period mean-
variance portfolio with Markov switching parameters [J]. Automat-
ica, 2008, 44(10): 2487 – 2497.

[20] BERTSAKAS D P. Nonlinear Programming [M]. 2nd edition. Bel-
mont, MA: Athena Scientific Press, 2004.

�ö{0:
ÇÇÇ���²²² (1988–),I,u2011cÚ2014c©O¼�U9�ÆÆ¬

Úa¬Æ ,y3�3þ°�Ï�ÆôÖÆ¬Æ ,8cïÄ���`

znØ,�Å�`��9Ù37Kó§¥�A^, E-mail: godream@

sjtu.edu.cn;

pppïïï��� (1980–),I,u2003c!2005cÚ2009c©O¼�¥I

�ÆEâ�ÆÆ¬Æ !�l¥©�ÆXÚó§�ó§+nXa¬�

Æ¬Æ ,¿u2012c\\þ°�Ï�ÆgÄzXú?AOïÄ
,8

cïÄ���`znØ,�Å�`��9Ù37Kó§�+n�Æ¥�

A^, E-mail: jianjun.gao@sjtu.edu.cn;

ooo ààà (1952–),I,u1977c!1982c!1987c©O¼�E��

ÆÆ¬Æ ,þ°�Ï�ÆgÄ��a¬Æ !{IpdÜ;�ÆXÚ

ó§Æ¬Æ ,¦u1987c�1994c©Oú?{I63Zæ�ÆB�

ÇÚó§XÚºx+n¥%BÌ?,¿u1994c\\�l¥©�Æ,y

3ú?�l¥©�ÆXÚó§�ó§+nXPatrick Huen Wing Mingù

R�Ç,¦uL�L175�ÏrØ©,¿u2006���Ó�öÑ�Í�

/Nonlinear Integer Programming0,Qú?(y?)IEEE Transactions on

Automatic Control, Journal of the Operations Research Society of China,

the Journal of Global Optimization, and the IIE Transactions on Opera-

tions Engineering�BÌ?½��BÌ?,8cïÄ���`z!�`

��!7Kó§!ûü�{, E-mail: dli@se.cuhk.edu.hk.


