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摘要:末制导系统参数随着飞行环境及飞行条件的改变而存在摄动,针对这一问题本文提出根据动态灵敏度来
分析参数摄动对脱靶量的影响.基于伴随法推导出与系统动态方程相同规模的伴随方程,并通过一次伴随求解计算
得到脱靶量对所有可调参数及摄动参数的动态灵敏度,有效的提高了计算效率.传统的直接分析法是将系统状态变
量直接对参数变量进行微分,需要对每个参数变量求解一组代数或微分方程,对于状态变量及参数变量较多的情况
效率较低. 本文基于两种方法对末制导系统的参数灵敏度进行分析,分析结果揭示了参数摄动对脱靶量的影响程
度,较小的参数灵敏度为提高系统的鲁棒性提供了依据.
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Parameter sensitivity analysis for nonlinear terminal guidance system
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Abstract: This paper analyzes the parameter robustness for a homing terminal guidance system (TGS). The parame-
ter robustness is reflected in assessing the miss distance performance influenced by the parameter perturbation which is
described as the miss distance sensitivity with respect to the parameter. An efficient numerical method for sensitivity com-
putation of nonlinear TGS is developed based on the adjoint method, which consists of both forward integration of the
TGS and backward integration of the adjoint equation. Based on adjoint method, the sensitivity analysis of the TGS a-
gainst various scenarios of target maneuvers is conducted. Analysis results are examined with the direct sensitivity analysis
method, which reveal the perfect accuracy of the adjoint method. Comparing to direct method, adjoint method provides the
miss distance sensitivity with respect to all parameters in a single simulation. It reveals great advantage in the calculation
efficiency regarding integral index functions. By the parameter robustness analysis, with adjoint method, parameters with
minimum sensitivities can be obtained to ensure the robustness of TGS.

Key words: guidance system; miss distance; sensitivity analysis; adjoint method

1 Introduction
For the performance analysis of a homing guidance

loop, the miss distance is one of the key indicators of
success or failure of the interceptor’s mission. Param-
eters of a guided missile, the target maneuver and the
measurement are the main miss distance influences[1].
Being such an important factor in determining the per-
formance of a guided loop, the parameters of the guided
loop are considered as constants both from the point of
view of performance analysis as from the point of view
of guidance loop design almost all of the research[2–3].
However, these parameters are not exactly known most

of the time, due to perturbations of the terminal guid-
ance system (TGS) objects, such as the overloading set-
tling time and the time constant of the seeker are likely
to change, as flight conditions change. These changes
of the parameters have great effect on missile’s control
and guide precision[4]. Thus, there is a need for param-
eters sensitivity analysis of the TGS models. The sen-
sitivity also reveals the influence of design parameters’
changes on TGS dynamic performance[5–9]. Thus, this

paper presents the study of the miss distance sensitivity
with respect to the parameters. Existing studies about

the performance analysis are based on linear time vary-
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ing system under the assumption that the approaching
velocity between the flight vehicle and the target vehi-
cle is constant, it is just suitable for the near head-on
or tail-chase case[3, 10–11]. However, TGS is a complex
nonlinear system, especially when the target with large
angle maneuvers or the intercept angle is demanded; the
linear time varying model can not describe the TGS pre-
cisely[2]. Thus, this paper mainly studies the miss dis-
tance sensitivity with respect to parameters based on the
nonlinear model of a guide missile system.

There are three methods to solve the sensitivity
problem, such as the finite difference method, the direct
analysis and the adjoint methods. The finite difference
method has two shortcomings, low accuracy of calcula-
tion and more computational expense, which is in pro-
portion to the number of design variables[11]. In order
to analyze the parameters sensitivity performance of a
guide missile system, the direct differentiation method
that differentiates a state variable with respect to pa-
rameters and solves the simultaneous equation direct-
ly is used. In [4–5, 12] the direct sensitivity system for
differential-algebraic equation systems (DAEs) of index
is derived. The parameters sensitivity of a guide missile
performance can also be obtained by adjoint method-
s which is an alternative way to obtain the sensitivity.
If the sensitivities with respect to a larger number of
parameters need to be solved, meanwhile, the number
of state variables is also very large, the direct sensitiv-
ity approach then will be intractable. However, the ad-
joint sensitivity analysis approach gives the information
through solving adjoint equations once without many
procedures analysis. In [4, 13] the adjoint sensitivity
system for DAEs of index is derived and some of its
fundamental properties are investigated. Thus, the di-
rect sensitivity analysis approach and the adjoint vari-
able sensitivity analysis approach are all considered to
solve the sensitivity problems in this paper. And in the
following sections, some of the issues for the numerical
solution and the effectiveness of the adjoint method are
addressed. To compare with these two methods, their
own advantages and disadvantages are also given in the
end of the paper.

The outline of this study is as follows. In Section

2 the nonlinear model of TGS and performance index
are established. In Section 3 the sensitivities are eval-
uated accurately. In Section 4, the numerical results of
miss distance sensitivity with respect to the parameter-
s between two methods are obtained. Conclusions and

perspective for future work are given in Section 5.

2 Models of the terminal guidance system
The homing guidance systems are considered in this

paper. This section briefly describes the basic subsys-
tems of a missile’s guidance system. A typical guidance
system contains three main parts: the seeker, the guid-
ance law and the autopilot system[14–15]. The principal
frame of the missile guidance system is shown in Fig.1.

Fig. 1 Major subsystems of a missile guidance system

The missile-target kinematics determines the rela-
tive geometry of the intercept, and provides the line-of-
sight (LOS) angle for the seeker. The seeker provides
the measurement of target motion required to mecha-
nize the guidance law, and measures the LOS rate and
the closing velocity. For a missile, the inputs are tar-
get location and the measurement noises. The missile is
guided by a certain guidance law to track the target. In
this paper, the guidance law takes the LOS rate informa-
tion and produces guidance acceleration commands for
the autopilot system. The autopilot system is a closed-
loop system inside the main guidance subsystem that
ensures the missile achieves accelerations as command-
s and maintains stability. It takes these commands and
produces achieved acceleration and angular rates.

Consider a missile-target engagement under the fol-
lowing assumptions: the force due to gravity is ignored,
the missile and the target are assumed as mass particles,
the engagement is confined to the line-of-sight (LOS)
plane. The geometry of the engagement is depicted in
Fig.2.

In Fig.2, R represents the relative range between the
flight vehicle and the target along the LOS, γ represents
the trajectory inclination angle, q represents the LOS
angle, am and at represent the achieved missile acceler-
ation and the target acceleration normal to the LOS, vm
and vt represent the velocity of missile and target.
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Fig. 2 Missile-target intercept geometry

The relative kinematics relationship between the
missile and the target in the LOS coordinate can be de-
scribed as 

R̈ = Rq̇2,

q̈ = −2
Ṙ

R
q̇ +

at − am

R
,

(1)

where q̇ represents the LOS angle rate, Ṙ represents the
missile-target closing velocity.

For simplicity, the dynamic of the autopilot system
and the seeker are assumed as the following first order
system.

˜̇q =
1

Tss+ 1
q̇, am =

1

Ts+ 1
amc, (2)

where amc denotes the commanded missile lateral ac-
celeration which is produced by the guidance law sys-
tem, ˜̇q denotes the LOS angle rate measured by the
seeker, Ts denotes the time constant of the seeker, T
denotes the overload settling time reflecting the closed-
loop system dynamic of the flight vehicle and its au-
topilot. These two time constants parameters are two
of several factors which effect the accuracy of the mis-
sile, and they are not exactly known. Thus these two
parameters have perturbations for the guidance system.

Augmented proportional navigation guidance law is
a proportional navigation with an extra term to account
for the maneuvering target, it is given by

amc = −NṘ ˜̇q +Kãt, (3)

where N represents the effective navigation ratio. K

represents the modified coefficient to compensation the
target maneuver, when K = 0, this guidance law is the
true proportional navigation (TPN). The value of target
maneuver cannot be exactly measured. Therefore, tar-
get maneuver estimating is required. Supposing that the
estimation formula is

ãt =
1

τs+ 1
at, (4)

where ãt is the estimation value of the real target ma-
neuver at, τ is the time constant of the estimation pro-
cess which exists perturbation.

Combining Eqs.(1)–(4), suppose the state vector is
x = [x1 x2 x3 x4 x5 x6]

T = [R Ṙ q̇ ˜̇q am at]
T,

then the state space description of TGS is obtained.

ẋ1 = x2,

ẋ2 = x1x
2
3,

ẋ3 = −2x2x3

x1

− x5

x1

+
at

x1

,

ẋ4 = − 1

Ts

x4 +
1

Ts

x3,

ẋ5 = − 1

T
x5 −

N

T
x2x4 +

K

T
x6,

ẋ6 = −1

τ
x6 +

1

τ
at.

(5)

For simplicity, the missile DAEs description de-
pending on parameters is{

F (ẋ, x, t, α) = 0,

x(0) = x0,
(6)

or {
ẋ = f(x, t, α),

x(0) = x0,
(7)

where α = [T NTsτ ]
T is the parameter vector. N is

the design parameter, T , Ts and τ are the system pa-
rameters. The general approach in studying the perfor-
mance of guidance loops affected by parameters in all
previous studies is to assume that parameters have fixed
values. This paper studies the performance estimation
problem when there are parameter perturbations in the
missile system.

In this paper, the index function is given below

G′(x, α, t) =
w t

0
g(x, t, α)dt+ S(x, t, α)|0, (8)

where g(x, t, α) = x2, S(x, t, α)|0 = x1|0. The point
of closest approach of the missile and target is known
as the miss distance. The definition of miss distance is

ZEM = Rmin = R|te , (9)

where te is the terminal time when the approach of the
missile and target is closest. Then the index function is
the miss distance of the TGS. Thus, the miss distance
index is

G(x, α, te) =
w te

0
g(x, t, α)dt+ S(x, t, α)|0. (10)

The parameters sensitivities problems take the fol-

lowing form: find
dG

dαi

at terminal time te, for i =

1, · · · ,m. The solution requires the simultaneous so-
lution of the original DAE system with the m sensitivi-
ty systems obtained by differentiating the original DAE
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with respect to each parameter in turn. For large sys-
tems this may look like a lot of work, if m is relatively
small, by exploiting the fact that the sensitivity systems
are linear and all share the same Jacobian matrices with
the original system.

Some problems require the sensitivities with re-
spect to a large number of parameters. For these prob-
lems, particularly if the number of state variables is also
very large, the direct sensitivity approach is intractable.
These problems can often be handled more efficiently
by the adjoint method[16]. In the adjoint approach, we

are interested in calculating the sensitivity
dG

dα
of the in-

dex function denoted by Eq.(10). The cost in computing

the sensitivity
dG

dα
via the adjoint approach is the calcu-

lation of the intermediate adjoint variable. While the
direct sensitivity analysis approach is best suited to in-
vestigate sensitivities with respect to a small number of
parameters, the adjoint sensitivities analysis approach is
best suited to find the sensitivity with respect to a large
number of parameters.

The purpose of the sensitivity analysis for TGS is

1) The effects of parameter perturbations on the
system state variables and the output can be obtained.
Decide which parameters are more sensitive to the state
variables and the output of TGS.

2) As the future application of the sensitivity func-
tion, in the design demand, find a set of parameters cor-
responding to the minimum sensitivity function based
on the relationship between the sensitivity and the pa-
rameters. So that under the consideration of design re-
quirements, the system well robust to the variation of
parameters.

3 The algorithms of performance index
To analyze the miss distance sensitivity with respect

to parameters, the direct method and the adjoint method
these two methods are given to solve this sensitivity
problem in this section.

3.1 Direct sensitivity analysis
He sensitivity problem usually takes the form: find

dG

dα
, where α is a vector of parameters. First, the state

variable sensitivity with respect to α is

βi = (
∂x

∂α
)n, i = 1, 2, · · · , n, (11)

where β1 =
∂x

∂T
, β2 =

∂x

∂N
, β3 =

∂x

∂Ts

, β4 =
∂x

∂τ
.

The sensitivity differential equation of TGS nonlin-

ear description and the definition of sensitivity is given
by the[17].

β̇i = (
∂f

∂xi

) · βi + (
∂f

∂α
), i = 1, · · · , n, (12)

where (
∂f

∂xi

) is the Jacobian matrix.

The initial condition of sensitivity β is

β(t0) =
∂x0

∂α
− ẋ0

∂t0
∂α

, (13)

where x0 is the initial condition of system (5).

Thus, the miss distance sensitivity with respect to
model parameter α is

dG

dα
=

w te

0
(gxxα + gα)dt+ (Sxxα + Sα)|0 =w te

0
(gxβ2 + gα)dt+ (Sxβ1 + Sα)|0 =

β1(te). (14)

Combining Eq.(5), Eq.(12) and the sensitivity d-
ifferential equation (14), the miss distance sensitivity
with respect to α will be obtained.

By solving the nonlinear differential equation of T-
GS and the sensitivity differential equation, the mis-
s distance sensitivity with respect to parameter α can
be obtained. Two approaches can be taken for this di-
rect method, namely, discrete approach and continuous
approach. The discrete approach approximates the in-
dex function by a discrete nonlinear system and then
differentiates the discrete system with respect to the pa-
rameters[12]. The continuous approach differentiates the
index function with respect to the parameters first and
then discretizes the sensitivity to compute the approxi-
mate sensitivities[17]. This continuous approach is much
simpler than that from the discrete approach.

The direct method has disadvantage of heavy com-
puting burden for large systems, thus, the direct sensi-
tivity analysis method has been recognized as a costly
approach.

3.2 Adjoint sensitivity analysis

For convenience, this section presents a short ac-
count of the adjoint method. Some problems require the
sensitivity with respect to a large number of parameters.
For these problems, if the system is very complex, the
direct sensitivity approach is intractable. These prob-
lems can often be solved more efficiently by the adjoint
method[16, 18]. Thus, we have interested in calculating
the sensitivity of the miss distance index function de-
noted by Eq.(10) with respect to α by this approach.
The sensitivity of G(x, α) with respect to the parameter
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α is given by Eq.(14). To derive the adjoint sensitivity,
we introduce the adjoint variable λ. First, a theorem to
solve the adjoint sensitivity analysis problem is given.

Theorem 1 The miss distance sensitivity with
respect to the parameter α is described as the Eq.(14).
If there is existing the adjoint system{

−gx + λ∗Fx − (λ∗Fẋ)
T = 0,

λ(te) = 0,
(15)

then the sensitivity of TGS index function can be de-
scribed as

dG

dα
=

w te

0
(gα − λ∗Fα)dt. (16)

Proof The adjoint variable λ ∈ Rn is intro-
duced. The differential algebraic equation multiply the
transpose the adjoint variable, integral it in the interval
[0, te], then the description isw te

0
λ∗F (ẋ, x, α)dt = 0. (17)

Since F (ẋ, x, α) = 0, and
w te

0
λ∗F (ẋ, x, α)dt =

0. Eq.(10) minus Eq.(17), the derived function satisfies

I(x, α) = G(x, α)−
w te

0
λ∗F (ẋ, x, α)dt. (18)

Thus, the sensitivity of index function G(x, α) with
respect to parameter α can be obtained by the sensitivi-
ty of I(x, α) with respect to parameter α. We have the
following form of the sensitivity equations.

dI

dα
=

w te

0
(gxxα + gα)dt+ (Sxxα + Sα)|0 −w te

0
λ∗(Fẋẋα + Fxxα + Fα)dt, (19)

where subscripts ẋ, x and α on functions such as g, F
and S are used to denote partial derivatives. The sub-
script α on state variables such as ẋα, xα are used to
denote partial derivatives to α.

By integration by parts, we havew te

0
λ∗Fẋẋαdt =

λ∗Fẋxα|te0 −
w te

0
(λ∗Fẋ)

T
xαdt. (20)

Thus, the sensitivity equation of Eq.(19) becomes
dG

dα
=

dI

dα
=w te

0
(gα − λ∗Fα)dt−

w te

0
[−gx+

λ∗Fx − (λ∗Fẋ)
T]xαdt− λ∗Fẋxα|te0 . (21)

Define the adjoint system is{
−gx + λ∗Fx − (λ∗Fẋ)

T = 0,

λ(te) = 0.
(22)

Thus, the sensitivity of TGS can be described as
dG

dα
=

w te

0
(gα − λ∗Fα)dt. (23)

Prove up.

By Theorem 1, a is derivated to solve the adjoint
sensitivity analysis of the terminal guidance system for
simple.

Corollary 1 If the adjoint system is Eq.(14).

Then the sensitivity
dG

dα
of TGS subscribes as the

Eq.(5) is the initial value −ξ∗(0) of the following de-
scription: {

ξ̇ = g∗α − F ∗
αλ,

ξ(te) = 0.
(24)

Proof In order to avoid saving intermediate λ val-
ues just for the evaluation of the integral in Eq.(23), we
extend the backward problem with the following equa-
tions. Based on Theorem 1 and the sensitivity descrip-
tion Eq.(14) of TGS, introducing the adjoint variable ξ,
supposing {

ξ̇ = g∗α − F ∗
αλ,

ξ(te) = 0.
(25)

Integrating the adjoint system description of
Eq.(25) once yields

ξ(te)− ξ(0) =
w te

0
(g∗α − F ∗

αλ)dt. (26)

For ξ(te) = 0, the Eq.(26) simplified as

ξ(0) = −
w te

0
(g∗α − F ∗

αλ)dt. (27)

By Eq.(23)

(
dG

dα
)∗ =

w te

0
(g∗α − F ∗

αλ)dt. (28)

Similarly, the value of
dG

dα
in Eq.(21) can be ob-

tained as
dG

dα
= −ξ∗(0).

Prove up.

The adjoint sensitivity analysis method consists of
three major steps. First, the original nonlinear missile
system forward to a specific output time te is solved.
Second, the consistent initial conditions for the adjoint
system are computed at time te, and the consistent ini-
tial conditions must satisfy the boundary conditions. Fi-
nally, the adjoint system backward to the start point is
solved and sensitivities are calculated.

The adjoint state equation has to be solved only
once to obtain the sensitivity with respect to parame-
ters.
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4 Simulations
Recalling the system Eq.(5), the solution of miss

distance sensitivity with respect to α is computed by
the direct sensitivity analysis approach and the adjoint
method in this section. And some simulation results are
presented as well.

We consider that the homing guidance system is
guided by the augmented proportional navigation guid-
ance law. The parameters of a typical missile terminal
guidance loop and the control system at the terminal
phase are presented in Tabel 1. The initial simulation
conditions are presented in Table 2.

Table 1 The parameters of TGS

Sign Value Description

N 3.5 The effective navigation ratio
K 0.5 The correction factor
T 0.3 The time constant of autopilot
Ts 0.03 The time constant of seeker
τ 0.3 The time constant of target estimation

Table 2 The initial condition of TGS

Symbol Value Unit

x10 8000 m
x20 −1500 m/s
x30 0.02 rad/s
x40 0 rad/s
x50 0 g
x60 0 g

The Jacobian matrix of Eq.(5) is
∂f

∂x
=

0 1 0 0 0 0

x2
3 0 2x1x3 0 0 0

2x2x3+x5−at

x2
1

−2x3

x1

−2x2

x1

0 − 1

x1

0

0 0
1

Ts

− 1

Ts

0 0

0 −Nx4

T
0 −Nx2

T
− 1

T

K

T

0 0 0 0 0 −1

τ



.

(29)

Differentiate Eq.(5) with respect to parameter vari-
ables α is
∂f

∂α
=



0 0 0 0
x5+Nx4x2−Kx6

T 2
0

0 0 0
x4−x3

T 2
s

0 0

0 0 0 0 − x2x4

T
0

0 0 0 0 0
x6−at

τ 2


.

(30)

The index function with respect to parameter vector
α and state variables x are
∂g

∂α
= gα = [0]3×5,

∂g

∂x
= gx = [ 0 1 0 0 0].

The results of sensitivity we interested are shown in
the following Figs.3–6.

Fig. 3 Miss distance sensitivity to T

Fig. 4 Miss distance sensitivity to N

Fig. 5 Miss distance sensitivity to Ts
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Fig. 6 Miss distance sensitivity to τ

The sensitivity increases with the decrease of the
relative range between the flight vehicle and the target.
As shown in the above figures, it can be seen that the
results by the two methods are the same. Simulation re-
sults indicate that adjoint method is more effective and
efficiency.

5 Summary and conclusions
In this paper, the direct method and adjoint method

are used for calculation of higher-order sensitivity coef-
ficients in a nonlinear TGS model. These two methods
can successfully solve the miss distance sensitivity of
TGS respect to parameter vector and get the same re-
sults. The adjoint state equation has to be solved only
once. Thus, the adjoint method is more effective and
efficiency, and is advantageous over the direct method
for applications with a large number of sensitivity pa-
rameters. As the increases of parameters’ value and the
as the decrease of the relative range, the miss distance is
more sensitive to the parameter. The first-order sensitiv-
ity model works well in the parameter sensitivity analy-
sis of TGS. The second-order sensitivity with respect to
parameters will be studied in the future research.
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