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Dual-loop path tracking and control for
quad-rotor miniature unmanned aerial vehicles

XU Jing, CAI Chen-xiaof, LI Yong-gi, ZOU Yun
(School of Automation, Nanjing University of Science and Technology, Nanjing Jiangsu 210094, China)

Abstract: The recent development of unmanned aerial vehicle flight control creates a strong demand for higher control
accuracy and control quality. To meet such demands, we propose a nonlinear control strategy for path tracking control of
quad-rotor miniature unmanned aerial vehicles (MAVs). Firstly, based on Newton-Euler’s laws, the nonlinear mathematical
model of a quad-rotor MAV is built in singular perturbation form. By singular perturbation theory and time-scaling tech-
niques, we decouple the system into the fast inner-loop sub-system and the slow outer-loop subsystem. Then, we build the
fast pseudo-linear sub-system and the slow pseudo-linear sub-system based on the nonlinear dynamic inversion idea. On
the basis of these subsystems, we respectively design the outer sub-controller for path tracking and the inner sub-controller
for stabilization. These two sub-controllers are combined into a full-order controller for the original system to achieve the
required tracking accuracy and robustness. In the fast inner sub-system, we use the LQG controller to realize the rapid
control for the rotary dynamics of the aerial vehicle; in the slow outer sub-system, we employ the classical PID controller
to track the given path. Simulation results show the effectiveness of the conclusions made in this paper.

Key words: unmanned aerial vehicles; simulators; nonlinear control; singular perturbation; proportional integral deriva-

tive control; linear quadratic regular control

1 Introduction

Recent advances in the investigation of unmanned
vehicles have led to enormous exciting developments,
particularly, with the platform of quad-rotor minia-
ture unmanned aerial vehicles (MAVs). As opposed
to fixed wing vehicles, the quad-rotor MAV is a smal-
scale vehicle which might be more suitable for specif-
ic applications including search and rescue, surveil-
lance and remote inspection. The ability to maneu-
ver an actual MAV accurately along a given geo-
metric path is a primary objective for most appli-
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cations. Previous work on path tracking of MAVs
has concentrated on techniques such as feedback lin-
earization, sliding mode control, proportional inte-
gral derivative control (PID) control, linear quadrat-
ic regular (LQR) control and backstepping control
methods =1, In [1], a global trajectory tracking con-
trol of UAVs without linear velocity measurements
was designed based on inverse dynamic approaches.
The authors in [2] proposed a backstepping design for
the trajectory tracking problem of a class of underac-
tuated systems where the states are guaranteed to con-
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verge to a ball near the origin. A continuous sliding
mode control method based on feedback linearization
was presented in [3], and an output tracking control
was designed for a quad-rotor UAV. As demonstrated
in [4], a classical PID controller made a quad-rotor
able to track a given reference trajectory in presence
of minor perturbations.

On the other hand, singular perturbations and
time-scale techniques (SPaTSs) have been proven to
be effective tools for model reduction, analysis and
design of flight control systems. Modeling both kine-
matics and dynamics of quad-rotor MAVs results in a
model with high order, which may decrease feasibili-
ty of controller design. The main concept of SPaTSs
is to lower the model order by neglecting the fast part,
and to improve the the approximation by reintroduc-
ing their effects as boundary layer corrections in sep-
arate time-scales ['%!. In [11], the design and stability
analysis of a hierarchical controller via using SPaTSs
was presented. Flight test trajectory control systems
based on time-scale techniques were designed to en-
able the pilot to follow complex trajectories for evalu-
ating an aircraft within its known flight envelop and to
explore the boundaries of its capabilities ['?]. A cas-
cade decomposition method was discussed in [13] for
the longitudinal dynamics of a low-speed experimen-
tal UAV.

In this paper, we present a strategy of path track-
ing for a quad-rotor MAV to reduce position errors,
and to follow a reference geometric path. Based on
SPaTSs, models for inner- and outer-loops have been
constructed in different time-scales. The inner-loop
controller is made by integration of dynamic inver-
sion approaches and LQR control method to enhance
stability, and the two time-scale characteristics can be
preserved to facilitate controller design. The outer-
loop controller combines a dynamic inversion con-
troller with a PID controller to ensure a desired track-
ing performance. The dual-loop control structure is
adopted to coordinate inner-loop and outer-loop con-
trols, which can simplify the design procedure, and
improve control quality and quantity of the flight sys-
tem. The main contribution of this paper is outlined
as follows:

1) Different from current works, the mathemati-
cal model of a quad-rotor MAYV in this paper is repre-
sented in the singular perturbed, affine nonlinear form
to facilitate controller design.

2) The dual loop control structure is then utilized
to facilitate decomposition, and to attenuate the con-
troller design difficulty of under-actuated MAVs. In
this sense, inner-loop and outer-loop controller design

can be done separately in different time-scales.

3) Input control energy is saved under the as-
sumption that small position errors are permitted. It
should be noted that the position of a MAV is guaran-
teed within a pipe centered on the given path.

4) Due to wind effects, there exists large initial
position errors off the references. The control strate-
gy of this work can eliminate the initial errors quickly,
and enable the MAV track the reference path within a
specified precision.

5) The modeling/control approach in this paper
delivers controllers that exploit both translational and
orientational dynamic capability of the aircraft, and
thus are ready to be used by higher level navigation
systems for complex autonomous missions.

Notation Throughout this paper, I, is the n x n
identity matrix of order n. R™ and R"*" denote, re-
spectively, the n-dimensional Euclidean space and the
set of all » x m real matrices. The superscripts “T”,
“x7, “” denote matrix transposition, complex trans-
pose and the Moore-Penrose inverse. The s, and cx
notations represent sin z and cos z respectively. Ma-
trices, if not explicitly stated, are assumed to have
compatible dimensions.

2 Dynamic modeling of the quad-rotor UAV
A quad-rotor MAV is controlled by the rotational

speeds of four rotors. The Newton-Euler formulation

is adopted to develop the mathematical model of the

quad-rotor UAV. The vehicle is represented using a

right hand Inertial coordinate system (/) of axes and

a right hand body frame (B). From [14], the equa-

tions of motion can take the concrete form in the body

frame (see also in Table 1),

= —(wq —vr) — gsb,

0 = —(ur — wp) + gchse,

w = —(vp — uq) + gcdst + uy /m,

b =p+ qgsptanb + reg tan,

0 = qcd — 759,

¥ = gssect + redsecd,

p =y —I)/Ixqr + up/Ix,
g= I, — Ix)/Lypr +us/Iy,

7= (IX - Iy)/Iqu + u4/IZ7

(1
where
uy = F1 + Fo + F3 + Fy,
ug = (—Fy + Fy)l,
uz = (—F1 + F3)l,
uy = (—F1 + Fy — F3 + Fy) )\,

2
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in which [ is the distance between the motor and the
center of mass, A is the scaling factor from the force
to moment and m is the body total mass of UAV.

Table 1 Formulation notations

Notations Description Unit
(u, v, w) Translational velocities m/s
(», q, ) Rotational velocities rad/s
(¢, 0, v) Euler angles (roll, pitch, yaw) rad
(Ix, Iy, 1) Rotational inertias kg- m?

Taking the rotation matrix

cOcyp spsbc)—copsy copsOc)+spsy
sy spsOsp+copcy) copsfsp—socy |
—s6 spch cocl

the position vector in the inertial reference frame (7)
can be calculated by

& = chcpu + (spsbcy — copsip)v+
(cpsbcp + spsp)w,

y = cOspu + (s¢psbsy) + coc))v+ 3)
(coshst — set)uw,

z = —s0u + socbv + cpchw.

R(O)=

Considering the fact that the closed-loop angular
rates evolve faster than the remaining dynamics, S-
PaTSs have been proven to be effective tools to sim-
plify the high-order UAV model (1). Denoting the
slow and fast variables as

r=[uvweob YT, 2=[pqr]T,
the singularly perturbed form of (1) is derived,

T = f(x)z + us,
| f(x)z + us @
€z = g(Z) + ug,
where
0 w—-v 1 s¢ptanf 0 1"
fe)=|-w 0 wu 0 cp spsech|
v —u 0 cotant —s¢ cpsech |
us =[0 0 ui/m 0 0 0]%
(Iy — I,) ) Ixeqr 1/Iceus |
g(z) = (IZ - Ix)/IyepT , Uf = 1/IyEU3 s
(Ix — Iy)/1,epq 1/1,euy |

and € is a positive parameter to characterize two
time-scale nature of the UAV flight control system.
Considering the nonlinear nature of functions f(z)
and g(z), the classical slow-fast decomposition ap-
proach fails to work because it is difficult to get
the unique solution of z as zg = h(t,x,us) for
order reduction. To make up for this drawback, the
fast variable z can be selected as the pseudo con-
trol input of x due to the relationship 0 = g(zs)

+ug, as € — 0, where zg is the quasi-steady state
of z.

Then, the slow subsystem (outer-loop model),
Xout, can be obtained,

@ = f(x)is, S

where f(x) = [f(x) I], @s = [z us]*. The only
fast variables z; can be defined as

2f =2 — Zs, UF = Uf — Ufs,

and we can obtain the reduced fast subsystem (inner-
loop model), X, as

ezt = (9(2r + 25) — 9(2s)) + us, (6)
rewritten in the fast time-scale 7 = ¢ /e as

dzs

e (g2t + 25) — g(2s)) + ug. (N
It should be pointed out that z5 and ug can be regard-
ed as constants in the fast time-scale.

3 Analysis and controller design

The trajectory tracking controller, applied direct-
ly to the flight control system, consists of inner- and
outer-loop controllers. The inner-loop controller pro-
vides high stabilization of the vehicle’s angular veloc-
ity by combing dynamic inversion approaches with
LQR control techniques. The PID control strategy, a-
long with direct measurements of the linear velocity,
angular velocity and position from Inertial Measure-
ment Unit, is utilized in the decouple outer-loops to
achieve desired tracking performance. In this case,
the slow components of angular velocities are select-
ed as pseudo controls of the outer-loops to solve the
control design difficulty caused by the under-actuated
nature of the vehicle. For the path tracking applica-
tions, time-scale separation between inner and outer-
loops is sufficient to guarantee that the interacted
terms can be ignored during the controller design pro-
cedure. In the sequel, we focus on the controller de-
sign for subsystems X, and Xqy;.

3.1 Inner-loop controller design

As mentioned, the slow variable z; = [p q 7|*
can be treated as constants in the fast time-scale 7.
The inner-loop model can be represented in detail as

Pr = a(qere + qre + qeT) + bausy,
Gt = az(pgre + pre + per) + bguze,  (8)
7t = a4(prqs + Pgr + prq) + bauys,

where

as = (Iy — I,)/Ixe, a3 = (I, — Iy) /Iy,
as = (Ix — Iy) /1€, by = €/Iy, bz =€/,

by = ¢/I,, ug = [bougr buze byug)”.
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It can be seen that dynamics p, ¢ and r can be
measured by the IMU, and p, ¢, 7 can be derived
from the outer-loops. Then, the real fast variables can
be formulatedaspr =p—p, gg =q—q, re =1 — 7.

Denoting a pseudo control

az(qere + qre + qeT) + baugy
v = | az(pere + pre + per) + bauas |
a3(pegr + Par + peq) + bauas
then the equivalent linear fast subsystem in the fast
time-scale using the dynamic inversion approach is
represented as 2 = v¢. We found that the real fast
control ug can be calculated by ug = vf — M, where

az(qsre + qre + qeT)
az(pere + pre + pet)
a3(pege + Par + peq)
Taking v = Azf + Buyy, the pseudo linear inner-
loop model can be obtained,

M =

2¢ = Azt + Buyy, )
with
b2 0 0 uaf
B= |0 b3 0], upn= |us|,
0 0 by U4t

where A is the prescribed state-space matrices to rep-
resent the open-loop characteristics of the inner-loop
model. Note that the pair (4, B) must be control-
lable.

If the matrix A is selected to be diagonal,

apb 0 0
A=10 aq 0|,
0 0 a,

then system (9) can be decomposed into three indi-
vidual subsystems:
—p subsystem:

Pt = appr + biugs. (10)
—q subsystem:

gr = aqqr + bauss. (11
—r subsystem:

Tt = a;T¢ + bguas. (12)

Combining SPaTSs with dynamic inversion ap-

proaches, the closed-loop inner-loop can be seen in
Fig.1.

Inner—loop controller

16, 0 0

LQR |v + { 0 1/b, 0 } Uar s U

—_—_ 3 A
p,q,r?_» controller *&?__» 0 0 1/bJd]
! |

Fig. 1 Inner-loop control structure

LQR is utilized in each inner-loop to ensure good
stability margin and strong robustness. It should be
pointed out that LQR is an optimal control approach
based on closed-loop optimal control with the linear
state feedback,

ua(T) = —kppe(7),
use(T) = —Kqqe(T),
uge(T) = — Ky (T),

and ky, kq, k. are searched, respectively, to minimize
the cost function

oo T T

J = fo {2¢(7) " Qz¢(T) + wjpy (7) Ruijn (1) }d,
with () a symmetric and semi-positive definite matrix,
R a definite positive matrix, and
kp 0 0
0 rqO
0 0 k;
The anticipate time-domain characteristics can be
achieved by reasonable weight matrix configuration.

Remark 1

imizing the cost formulated as a linear combination of the states

K 2

The LQR problem can be regarded as min-

z¢ and the control input u;,. The weighting matrix @ is used to
tighten the states are to be controlled, and the matrix R weights
the amount of control action. Commonly, ) and R are selected
as diagonal matrices.

In closed loop, the performance index J can be
rewritten as

J = | a1 (Q = KT RE)z(r)}dr.

The state feedback gain K can be achieved by K =
R™'BTP, and P is obtained by solving the algebraic
Riccati equation (ARE)

ATP+ PA-PBR'B'"P+Q=0. (@13

The characteristics of the control system can be
investigated with the closed-loop poles. If the tran-
sient response specifications or the magnitude con-
straints are not satisfied, then we resort to re-choosing
(2 and/or R and repeating the above procedure.

Thus, the nonlinear control law for the inner-loop
model (8), formulated by the dynamic inversion ap-
proach and LQR technique, is ug = —Kz(7) — M.

Remark 2  The inner-loop controller design method
in this paper has advantages compared with other existing
methods.

1) Based on the dynamic inversion approach, the three-
order inner-loop model can be fully decoupled into three single-
input-single-output (SISO) subsystems, and classical control
techniques, simple and practical, can be applied hereinafter.

2) It should be noted in [15] that LQR ensures robustness
by giving a gain margin of (—6, co) db and a phase margin of
(—60, 60) degrees, which enhance the robustness of the flight
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system. Specific choice of weighing matrices () and R can give
the desired poles.

3) Controller design difficulty caused by the under-
actuated nature of MAVs is attenuated. Angular velocities p, ¢
and r are separated into two groups, (ps, gs, r's) and (pg, g¢, 7¢),
during the inner-loop controller design procedure. The slow
part (ps, gs, s ), achieving similar state variation rates as trans-
lational dynamics, is selected to be pseudo control input for the
outer-loops, and (pg, g, r¢), the real fast components, should
be stabilized.

3.2 Outer-loop controller design

In this subsection, the outer-loop controller is de-
signed based on the dynamic inversion approach and
PID control technique to achieve desired path track-
ing performance.

To attenuate the controller design difficulty
caused by the under-actuated nature of MAVs, the
“slow part” of z can be chosen as the pseudo con-
trol input of the outer-loop. In [16], it has been noted
that the number of control input should be equal to
that of states. In this sense, the slow states to be con-
trolled can be selected as z. = [u v w ¢]T, and the
remaining slow states, zy = [ 1], can be treated
as free variables.

The controlled subsystem .. of outer-loop can be
written in the following form,

Te = fc(xf) + fu(xc)ﬁs; (14)
where
—gsf
| gsoch
felar) = | 5001
0
0 —w v 0
w 0 —u 0
fulwe) = —v U 0 1/m|’
1 s¢ptanf cptanf O
Us = [ps gs Ts ul]Tv

and we have

Ufs = _[a2QSTs/b2 aSPsTs/b?) a4QsQS/b4]T~
The uncontrolled subsystem X of the slow subsys-
tem can then be formulated as

oy = fe(xe)us, (15)
where
|10 co s 0
filwe) = 0 spsech cpsech 0"
Remark 3 It should be remarked that once control

strategy is designed for X to achieve desired tracking perfor-

mance, and the movement laws of states # and v can be for-

mulated subsequently based on internal structure. Thereby, the
controlled subsystem X is the focus hereinafter.

Defining a pseudo control input vs, one can de-
rive the equivalent linear model of X via the dy-
namic inversion approach, . = wvs, where vy =
fe(xe) + fu(ze)us. The real control of the outer-
loop can be calculated by s = ! (xc)[vs — fo(ze)]-
States z. and x¢ can be measured by a IMU to guaran-
tee the feasibility of the dynamic inversion approach.

Remark 4  The sufficient condition for the existence
of the inversion of fi *(z¢) is det(fu(xc)) # 0. For most tra-
jectory tracking cases of UAVs, such condition can be guaran-
teed. However, z in the last measurement time should be kept

when fi ! () does not exist.

For given position &4(t) and roll angle ¢q4(t), the
desired slow state can be derived zq4(t) =
[Ea(t) pa(t)]T.

A PID controller, utilized in the outer-loop, is a
generic control loop feedback mechanism and regard-
ed as the standard control structures of the classical
control theory. To improve the tracking performance,
the slow errors can be formed by combination of po-
sition errors and velocity errors,

ze(t) = [wa(t) — zc(t)] + [Ca(t) — E(B)].
Then, the PID control can be derived
dze(t)

t
v = kpe(t) + ki [ @elt) + ha=r =,

where kp,, ki and kq are related PID gains. By adjust-
ing PID gains, the errors can reach zero, and desired
tracking performance can be achieved. The closed-
loop outer-loop can be shown in Fig.2.

PID v+
controller -

Sy

«ft‘:l (xc) ——

Fig. 2 Outer-loop control structure

Remark 5

lized in the outer-loop controller design, which is sufficient to

PID control, simple and practical, is uti-

achieve desired path tracking performance. PID gains, kp, k;
and kg can be determined by trial and error method.

4 Design procedure

Complex future missions in civilian and mili-
tary scenarios will require UAVs to exploit their full
dynamic capabilities. For the trajectory tracking,
translational dynamics (slow states) are mainly re-
lated with tracking performance. Wind disturbances
may cause large initial state errors, and orientation-
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al dynamics (fast states) are easily excited by high-
frequency wind disturbances. It can be seen that lack-
ing effective control strategy for fast states may lead
to instability or poor performance of the flight system.
In this paper, the dual loop control structure is
adopted to achieve the desired tracking performance
and sufficient stability. The inner-loop controller is
composed by a dynamic inversion controller and a
LQR controller to achieve considerable stability mar-
gin, and two time-scale characteristics can be pre-
served. The outer-loop controller combines a dynam-
ic inversion controller with a PID controller for sig-
nificant performance distinctiveness (tracking perfor-
mance). It can be verified that the dual loop control
structure, shown in Fig.3, can simplify the design pro-
cedure and improve the control quality, which paves a
new way for dealing with high-frequency dynamics.

u,0,W0,$,0,y

l

S Outer—loop

U AWLW W5 W, Quad-rotor ¢

controller UAV
ﬁ’q,f u2=u3 5u4
Inner—loop
controller
A p.q,7r

Fig. 3 Dual-loop control structure

The design process is carried out based on the fol-
lowing steps.

Step 1  We establish the singularly perturbed
model (4) of a UAV based on first principle or sys-
tem identification techniques. In this step, parameters
of the quad-rotor MAV are obtained, and the small
positive scalar € is determined to characterize the two
time-scale nature of the flight system.

Step 2 We construct inner-loop and outer-loop
models via SPaTSs and dynamic inversion approach-
es. In this step, the original high-order flight control
system has been fully decomposed into reduced sub-
systems, and controllers for subsystems can be design
individually.

Step 3 We design the inner-loop controller.
Weighing matrices () and R are chosen, and the ARE
(13) is solved to compute the LQR controller gain K.
Check the time response of the inner-loop whether the
desired stability requirement is satisfied. If not, re-
select ) and R and repeat this step.

Step4  We obtain the outer-loop controller. Ad-
just the PID gains constantly to ensure desired trajec-
tory tracking performance.

Step 5 We formulate the composite control,

which can be applied to the original MAV control sys-
tem,

(16)
U = Ugs + Ug,

{ Us = fgl(%)[vs — fe(xc)l,
with
ug = vg — M,
ugs = —[a2qsrs/by aspsrs/bs asqsqs/bal’.
Real controls u1, uo, ug and uy can be obtained from
g and ug.
5 Simulation results

Before the practical implementation, we have
carried out a series of Matlab-based simulations to
demonstrate the validity of results in trajectory track-
ing of the quad-rotor MAV. Taking the nonlinear mod-
el (1) of quad-rotor MAV as the plant, the entire flight
control system is tested in the simulation. Related pa-
rameters are listed in Table 2.

Table 2 Parameters of a UAV dynamic model

Parameter Value
m 0.5kg
g 9.781kg - m 2
l 0.2m
Iy 0.114 kg - m?
Iy 0.114kg - m?
I, 0.158 kg - m?

Taking the fast response rate of LQR controller
into consideration, it is straightforward that LQR
scheme is well suited in the inner-loop to guarantee
sufficient stability of the fast states. The related LQR
controller gain is chosen as

kp = 20, kg = 20, K, = 20,
with a, = 1, aq = 1 and a; = 0.3. In Fig4, it
is shown that the real fast dynamics converge to ze-

ro quickly with aid of the LQR controller, which can
ensure smooth operation of the whole flight system.

6 T T T T T
5+ — Pr A
4 qr
T3 7
2_ -
B OIf 1
g -1 7
2k j
3k _
,4 1 1 1 1 1
0 5 10 15 20 25 30

t/s

Fig. 4 Inner-loop dynamics

It can be seen from Fig.5 that the translational ve-
locities u, v and w achieve good time responses with
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respect to step, ramp and acceleration signals. Fig.6
illustrates that the trajectory tracking part of the de-
sign procedure works fairly well following the given
reference with a high accuracy. One of the reason-
s for that is that both translational and orientational
constraints are carefully considered, and related PID
gains are carefully selected and constantly adjusted to
wipe out errors caused by wind. In this case, the pqr
loop PID gains are chosen as

kp =20, ki =8, kq =1,
and the ¢ loop PID gains are selected as
kp = 0.5, ki = 0.05, kg = 0.

[{1 50 T T T T T T T T
...... uc _u
:E/ 0 L L 1 1 1 1 1
s 0 1 2 3 4 5 6 7 8 9 10
. t/s
[{110 I’UCI I/UI T T T I
o5k T ]
éoo 1 1 1 1 1 1 1 1
S 0 1 2 3 4 5 6 7 8 9 10
—~ t/s
w
. 2 T T T T T T T T
...... we ——w
1_
§ 0 1 1 1 1 1 1 1 1 1
s 0 1 2 3 4 5 6 7 8 9 10

t/s

Fig. 5 Time responses of the outer-loop

100 e Reference
—— Simulation

z/m

1 2 3 4 5 6 17
y/m

'l“/m lo-1 0

Fig. 6 Tracking performance

In Fig.7, motions of Euler angles are revealed.
Once the controlled dynamics u, v, w and ¢ are
formed, the remaining free dynamics # and v can be
determined. As mentioned, the slow part of the fast
state p, g and r is selected as the pseudo control in-
put for outer-loops such that all the translational dy-
namics can be controlled, and the pseudo control is
demonstrated in Fig.8.

Fig.9 reveals the real controls uy, u2, us and uy.
The controller gains are not high, and the whole con-
trol energy in this flight system is permitted from en-
gineering perspective.

0.]5 T T T T T
-9
0.10F e ) -—-0 A
/ \ / N 14 ,
005 \ / \ A
(R < \ P /
5 e \ ~ !
S 000+ s el X ~
Ny / \'\,T_,/ / \ ? ~
< -005F / Voo ol
\/ A !
~0.10 I_'[‘, 4 \J/ i
I
015} 1
,020 1 1 1 1 1
0 5 10 15 20 25 30
t/s
Fig. 7 Euler angles
20 T T T T T
P 15+ —D |
2 q,
2 10f r
T 05r A
< 00 e g
S 05t 1
< 10t 1
& 15t 1
,20 1 1 1 1 1
0 5 10 15 20 25 30
t/s
Fig. 8 Pseudo control input
_ 10 T T T T T |
3 ,18 1 1 1 1 1 <I
0 5 10 15 20 25 30
t/s
10 T T T T T
$ 0 :
-10 | | 1 1 |
0 5 10 15 20 25 30
t/s
10 T T T T T
=4 0
-10 1 1 1 1 1
0 10 15 20 25 30
t/s
] | T T T T
v I |
3 Orv |
-1 1 1 1 1 1
0 5 10 15 20 25 30
t/s

Fig. 9 Control input

Remark 6 Compared with the existing meth-
ods, the controller design method of this work ex-
hibits many advantages.

1) Advantage is thereby taken of the singularly
perturbed nature of the MAV flight system to design
a well-conditioned composite feedback controller to
incorporate inner-loop and outer-loop control.

2) Based on the SPaTSs and dynamic inversion
approaches, reduced-order SISO subsystems are con-
structed in different time-scales such that strong cou-
pling between the translational and orientational dy-
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namics can be alleviated to reduce the computation
complexity.

3) The inner-loop and outer-loop control strate-
gies, LQR and PID control techniques, are simple and
practical, which is well-suited for real engineering ap-
pliances. Related controller gain can be calculated by
MATLAB.

4) The modeling/control approach is ready to be
applied in higher level navigation systems for com-
plex autonomous missions.

6 Conclusions

In this paper, a nonlinear path tracking controller
is designed for a quad-rotor MAV. The singular per-
turbed form of a quad-rotor MAV is established to
obtain reduced-order subsystems to enhance feasibil-
ity of controller design. In order to compensate the
damped orientational dynamics, LQR techniques are
utilized in inner-loops. For out loops, classical PID
control is used to ensure satisfied path tracking per-
formance. To integrate inner-loop control with outer-
loop control, the dual-loop control structure is adopt-
ed. Simulation results prove the effectiveness of con-
sidered approach and demonstrate that the quad-rotor
MAV can follow the given path fairly well. Future
work will concentrate on extending the developed
controller to making the MAV more robust and ca-
pable of onboard, real-time implementation.
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