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摘要:近年来,无人飞行器控制繁荣发展对控制精度与品质要求日益增高. 为了应对这一挑战,本文基于奇异摄
动的思想设计了四旋翼无人机非线性轨迹跟踪控制器. 首先,基于牛顿欧拉定律建立了四旋翼无人飞行器非线性
奇异摄动形式的数学模型. 然后,引入奇异摄动理论,通过时间尺度分解的方法将系统解耦成内环快子系统和外环
慢子系统.再者,根据非线性动态逆的思想分别建立快、慢伪线性子系统,并基于此分别设计外环轨迹跟踪、内环稳
定子控制器,综合子控制器生成应用于原系统的全阶控制器以兼顾跟踪精度和鲁棒特性. 针对内环快系统,采用线
性二次调节控制器以实现稳定快速地控制飞行器旋转动态;针对外环慢系统,运用经典的比例–微分–积分控制器
以跟踪所给定的轨迹. 最后给出了仿真实例说明本文结论的有效性.
关键词: 无人飞行器;仿真器;非线性控制;奇异摄动思想;比例–微分–积分控制器;线性二次调节控制器
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Dual-loop path tracking and control for
quad-rotor miniature unmanned aerial vehicles

XU Jing, CAI Chen-xiao†, LI Yong-qi, ZOU Yun
(School of Automation, Nanjing University of Science and Technology, Nanjing Jiangsu 210094, China)

Abstract: The recent development of unmanned aerial vehicle flight control creates a strong demand for higher control
accuracy and control quality. To meet such demands, we propose a nonlinear control strategy for path tracking control of
quad-rotor miniature unmanned aerial vehicles (MAVs). Firstly, based on Newton-Euler’s laws, the nonlinear mathematical
model of a quad-rotor MAV is built in singular perturbation form. By singular perturbation theory and time-scaling tech-
niques, we decouple the system into the fast inner-loop sub-system and the slow outer-loop subsystem. Then, we build the
fast pseudo-linear sub-system and the slow pseudo-linear sub-system based on the nonlinear dynamic inversion idea. On
the basis of these subsystems, we respectively design the outer sub-controller for path tracking and the inner sub-controller
for stabilization. These two sub-controllers are combined into a full-order controller for the original system to achieve the
required tracking accuracy and robustness. In the fast inner sub-system, we use the LQG controller to realize the rapid
control for the rotary dynamics of the aerial vehicle; in the slow outer sub-system, we employ the classical PID controller
to track the given path. Simulation results show the effectiveness of the conclusions made in this paper.

Key words: unmanned aerial vehicles; simulators; nonlinear control; singular perturbation; proportional integral deriva-
tive control; linear quadratic regular control

1 Introduction
Recent advances in the investigation of unmanned

vehicles have led to enormous exciting developments,
particularly, with the platform of quad-rotor minia-
ture unmanned aerial vehicles (MAVs). As opposed
to fixed wing vehicles, the quad-rotor MAV is a smal-
scale vehicle which might be more suitable for specif-
ic applications including search and rescue, surveil-
lance and remote inspection. The ability to maneu-
ver an actual MAV accurately along a given geo-
metric path is a primary objective for most appli-

cations. Previous work on path tracking of MAVs
has concentrated on techniques such as feedback lin-
earization, sliding mode control, proportional inte-
gral derivative control (PID) control, linear quadrat-
ic regular (LQR) control and backstepping control
methods [1–9]. In [1], a global trajectory tracking con-
trol of UAVs without linear velocity measurements
was designed based on inverse dynamic approaches.
The authors in [2] proposed a backstepping design for
the trajectory tracking problem of a class of underac-
tuated systems where the states are guaranteed to con-
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verge to a ball near the origin. A continuous sliding
mode control method based on feedback linearization
was presented in [3], and an output tracking control
was designed for a quad-rotor UAV. As demonstrated
in [4], a classical PID controller made a quad-rotor
able to track a given reference trajectory in presence
of minor perturbations.

On the other hand, singular perturbations and
time-scale techniques (SPaTSs) have been proven to
be effective tools for model reduction, analysis and
design of flight control systems. Modeling both kine-
matics and dynamics of quad-rotor MAVs results in a
model with high order, which may decrease feasibili-
ty of controller design. The main concept of SPaTSs
is to lower the model order by neglecting the fast part,
and to improve the the approximation by reintroduc-
ing their effects as boundary layer corrections in sep-
arate time-scales [10]. In [11], the design and stability
analysis of a hierarchical controller via using SPaTSs
was presented. Flight test trajectory control systems
based on time-scale techniques were designed to en-
able the pilot to follow complex trajectories for evalu-
ating an aircraft within its known flight envelop and to
explore the boundaries of its capabilities [12]. A cas-
cade decomposition method was discussed in [13] for
the longitudinal dynamics of a low-speed experimen-
tal UAV.

In this paper, we present a strategy of path track-
ing for a quad-rotor MAV to reduce position errors,
and to follow a reference geometric path. Based on
SPaTSs, models for inner- and outer-loops have been
constructed in different time-scales. The inner-loop
controller is made by integration of dynamic inver-
sion approaches and LQR control method to enhance
stability, and the two time-scale characteristics can be
preserved to facilitate controller design. The outer-
loop controller combines a dynamic inversion con-
troller with a PID controller to ensure a desired track-
ing performance. The dual-loop control structure is
adopted to coordinate inner-loop and outer-loop con-
trols, which can simplify the design procedure, and
improve control quality and quantity of the flight sys-
tem. The main contribution of this paper is outlined
as follows:

1) Different from current works, the mathemati-
cal model of a quad-rotor MAV in this paper is repre-
sented in the singular perturbed, affine nonlinear form
to facilitate controller design.

2) The dual loop control structure is then utilized
to facilitate decomposition, and to attenuate the con-
troller design difficulty of under-actuated MAVs. In
this sense, inner-loop and outer-loop controller design

can be done separately in different time-scales.
3) Input control energy is saved under the as-

sumption that small position errors are permitted. It
should be noted that the position of a MAV is guaran-
teed within a pipe centered on the given path.

4) Due to wind effects, there exists large initial
position errors off the references. The control strate-
gy of this work can eliminate the initial errors quickly,
and enable the MAV track the reference path within a
specified precision.

5) The modeling/control approach in this paper
delivers controllers that exploit both translational and
orientational dynamic capability of the aircraft, and
thus are ready to be used by higher level navigation
systems for complex autonomous missions.

Notation Throughout this paper, In is the n×n
identity matrix of order n. Rn and Rn×m denote, re-
spectively, the n-dimensional Euclidean space and the
set of all n×m real matrices. The superscripts “T”,
“ ∗ ”, “†” denote matrix transposition, complex trans-
pose and the Moore-Penrose inverse. The sx and cx
notations represent sinx and cosx respectively. Ma-
trices, if not explicitly stated, are assumed to have
compatible dimensions.
2 Dynamic modeling of the quad-rotor UAV

A quad-rotor MAV is controlled by the rotational
speeds of four rotors. The Newton-Euler formulation
is adopted to develop the mathematical model of the
quad-rotor UAV. The vehicle is represented using a
right hand Inertial coordinate system (I) of axes and
a right hand body frame (B). From [14], the equa-
tions of motion can take the concrete form in the body
frame (see also in Table 1),

u̇ = −(wq − vr)− gsθ,

v̇ = −(ur − wp) + gcθsϕ,

ẇ = −(vp− uq) + gcθsθ + u1/m,

ϕ̇ = p+ qsϕ tan θ + rcϕ tan θ,

θ̇ = qcϕ− rsϕ,

ψ̇ = qsϕ sec θ + rcϕ sec θ,

ṗ = (Iy − Iz)/Ixqr + u2/Ix,

q̇ = (Iz − Ix)/Iypr + u3/Iy,

ṙ = (Ix − Iy)/Izpq + u4/Iz,

(1)

where 
u1 = F1 + F2 + F3 + F4,

u2 = (−F2 + F4)l,

u3 = (−F1 + F3)l,

u4 = (−F1 + F2 − F3 + F4)λ,

(2)
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in which l is the distance between the motor and the
center of mass, λ is the scaling factor from the force
to moment and m is the body total mass of UAV.

Table 1 Formulation notations

Notations Description Unit

(u, v, w) Translational velocities m/s
(p, q, r) Rotational velocities rad/s
(ϕ, θ, ψ) Euler angles (roll, pitch, yaw) rad

(Ix, Iy, Iz) Rotational inertias kg· m2

Taking the rotation matrix

R(Θ)=

cθcψ sϕsθcψ−cϕsψ cϕsθcψ+sϕsψ

cθsψ sϕsθsψ+cϕcψ cϕsθsψ−sϕcψ
−sθ sϕcθ cϕcθ

 ,
the position vector in the inertial reference frame (I)
can be calculated by

ẋ = cθcψu+ (sϕsθcψ − cϕsψ)v+

(cϕsθcψ + sϕsψ)w,

ẏ = cθsψu+ (sϕsθsψ + cϕcψ)v+

(cϕsθsψ − sϕcψ)w,

ż = −sθu+ sϕcθv + cϕcθw.

(3)

Considering the fact that the closed-loop angular
rates evolve faster than the remaining dynamics, S-
PaTSs have been proven to be effective tools to sim-
plify the high-order UAV model (1). Denoting the
slow and fast variables as

x = [u v w ϕ θ ψ]T, z = [p q r ]T,

the singularly perturbed form of (1) is derived,{
ẋ = f(x)z + us,

ϵż = g(z) + uf ,
(4)

where

f(x)=

 0 w −v 1 sϕ tan θ 0

−w 0 u 0 cϕ sϕ sec θ

v −u 0 cϕ tan θ −sϕ cϕ sec θ

T

,

us = [0 0 u1/m 0 0 0]T,

g(z) =

(Iy − Iz)/Ixϵqr

(Iz − Ix)/Iyϵpr

(Ix − Iy)/Izϵpq

 , uf =
1/Ixϵu2
1/Iyϵu3
1/Izϵu4

 ,
and ϵ is a positive parameter to characterize two
time-scale nature of the UAV flight control system.
Considering the nonlinear nature of functions f(x)
and g(z), the classical slow-fast decomposition ap-
proach fails to work because it is difficult to get
the unique solution of z as zs = h(t, x, uf) for
order reduction. To make up for this drawback, the
fast variable z can be selected as the pseudo con-
trol input of x due to the relationship 0 = g(zs)

+ufs, as ϵ → 0, where zs is the quasi-steady state
of z.

Then, the slow subsystem (outer-loop model),
Σout, can be obtained,

ẋ = f̄(x)ūs, (5)

where f̄(x) = [f(x) I ], ūs = [zs us ]
T. The only

fast variables zf can be defined as

zf = z − zs, uff = uf − ufs,

and we can obtain the reduced fast subsystem (inner-
loop model), Σin, as

ϵżf = (g(zf + zs)− g(zs)) + uff , (6)

rewritten in the fast time-scale τ = t/ϵ as
dzf
dτ

= (g(zf + zs)− g(zs)) + uff . (7)

It should be pointed out that zs and ufs can be regard-
ed as constants in the fast time-scale.
3 Analysis and controller design

The trajectory tracking controller, applied direct-
ly to the flight control system, consists of inner- and
outer-loop controllers. The inner-loop controller pro-
vides high stabilization of the vehicle’s angular veloc-
ity by combing dynamic inversion approaches with
LQR control techniques. The PID control strategy, a-
long with direct measurements of the linear velocity,
angular velocity and position from Inertial Measure-
ment Unit, is utilized in the decouple outer-loops to
achieve desired tracking performance. In this case,
the slow components of angular velocities are select-
ed as pseudo controls of the outer-loops to solve the
control design difficulty caused by the under-actuated
nature of the vehicle. For the path tracking applica-
tions, time-scale separation between inner and outer-
loops is sufficient to guarantee that the interacted
terms can be ignored during the controller design pro-
cedure. In the sequel, we focus on the controller de-
sign for subsystems Σin and Σout.
3.1 Inner-loop controller design

As mentioned, the slow variable zs = [p̄ q̄ r̄]T

can be treated as constants in the fast time-scale τ .
The inner-loop model can be represented in detail as

ṗf = a2(qfrf + q̄rf + qf r̄) + b2u2f ,

q̇f = a3(pfrf + p̄rf + pf r̄) + b3u3f ,

ṙf = a4(pfqf + p̄qf + pf q̄) + b4u4f ,

(8)

where

a2 = (Iy − Iz)/Ixϵ, a3 = (Iz − Ix)/Iyϵ,

a4 = (Ix − Iy)/Izϵ, b2 = ϵ/Ix, b3 = ϵ/Iy,

b4 = ϵ/Iz, uff = [b2u2f b3u3f b4u4f ]
T.
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It can be seen that dynamics p, q and r can be
measured by the IMU, and p̄, q̄, r̄ can be derived
from the outer-loops. Then, the real fast variables can
be formulated as pf = p− p̄, qf = q− q̄, rf = r− r̄.

Denoting a pseudo control

vf =

a2(qfrf + q̄rf + qf r̄) + b2u2f
a3(pfrf + p̄rf + pf r̄) + b3u3f
a3(pfqf + p̄qf + pf q̄) + b4u4f

 ,
then the equivalent linear fast subsystem in the fast
time-scale using the dynamic inversion approach is
represented as żf = vf . We found that the real fast
control uff can be calculated by uff = vf −M, where

M =

a2(qfrf + q̄rf + qf r̄)

a3(pfrf + p̄rf + pf r̄)

a3(pfqf + p̄qf + pf q̄)

 .
Taking vf = Azf +Buin, the pseudo linear inner-

loop model can be obtained,

żf = Azf +Buin, (9)

with

B =

b2 0 0

0 b3 0

0 0 b4

 , uin =

u2fu3f
u4f

 ,
where A is the prescribed state-space matrices to rep-
resent the open-loop characteristics of the inner-loop
model. Note that the pair (A, B) must be control-
lable.

If the matrix A is selected to be diagonal,

A =

ap 0 0

0 aq 0

0 0 ar

 ,
then system (9) can be decomposed into three indi-
vidual subsystems:

–p subsystem:
ṗf = appf + b1u2f . (10)

–q subsystem:
q̇f = aqqf + b2u3f . (11)

–r subsystem:
ṙf = arrf + b3u4f . (12)

Combining SPaTSs with dynamic inversion ap-
proaches, the closed-loop inner-loop can be seen in
Fig.1.

Fig. 1 Inner-loop control structure

LQR is utilized in each inner-loop to ensure good
stability margin and strong robustness. It should be
pointed out that LQR is an optimal control approach
based on closed-loop optimal control with the linear
state feedback,

u2f(τ) = −κppf(τ),
u3f(τ) = −κqqf(τ),
u4f(τ) = −κrrf(τ),

and kp, kq, kr are searched, respectively, to minimize
the cost function

J =
w ∞

0
{zf(τ)TQzf(τ) + uTin(τ)Ruin(τ)}dτ,

withQ a symmetric and semi-positive definite matrix,
R a definite positive matrix, and

K ,

κp 0 0

0 κq 0

0 0 κr

 .
The anticipate time-domain characteristics can be
achieved by reasonable weight matrix configuration.

Remark 1 The LQR problem can be regarded as min-
imizing the cost formulated as a linear combination of the states
zf and the control input uin. The weighting matrix Q is used to
tighten the states are to be controlled, and the matrix R weights
the amount of control action. Commonly, Q and R are selected
as diagonal matrices.

In closed loop, the performance index J can be
rewritten as

J =
w ∞

0
{zf(τ)T(Q−KTRK)zf(τ)}dτ.

The state feedback gain K can be achieved by K =

R−1BTP, and P is obtained by solving the algebraic
Riccati equation (ARE)

ATP + PA− PBR−1BTP +Q = 0. (13)

The characteristics of the control system can be
investigated with the closed-loop poles. If the tran-
sient response specifications or the magnitude con-
straints are not satisfied, then we resort to re-choosing
Q and/or R and repeating the above procedure.

Thus, the nonlinear control law for the inner-loop
model (8), formulated by the dynamic inversion ap-
proach and LQR technique, is uff = −Kzf(τ)−M.

Remark 2 The inner-loop controller design method
in this paper has advantages compared with other existing
methods.

1) Based on the dynamic inversion approach, the three-
order inner-loop model can be fully decoupled into three single-
input-single-output (SISO) subsystems, and classical control
techniques, simple and practical, can be applied hereinafter.

2) It should be noted in [15] that LQR ensures robustness
by giving a gain margin of (−6,∞) db and a phase margin of
(−60, 60) degrees, which enhance the robustness of the flight
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system. Specific choice of weighing matricesQ andR can give
the desired poles.

3) Controller design difficulty caused by the under-
actuated nature of MAVs is attenuated. Angular velocities p, q
and r are separated into two groups, (ps, qs, rs) and (pf , qf , rf),
during the inner-loop controller design procedure. The slow
part (ps, qs, rs), achieving similar state variation rates as trans-
lational dynamics, is selected to be pseudo control input for the
outer-loops, and (pf , qf , rf), the real fast components, should
be stabilized.

3.2 Outer-loop controller design
In this subsection, the outer-loop controller is de-

signed based on the dynamic inversion approach and
PID control technique to achieve desired path track-
ing performance.

To attenuate the controller design difficulty
caused by the under-actuated nature of MAVs, the
“slow part” of z can be chosen as the pseudo con-
trol input of the outer-loop. In [16], it has been noted
that the number of control input should be equal to
that of states. In this sense, the slow states to be con-
trolled can be selected as xc = [u v w ϕ ]T, and the
remaining slow states, xf = [θ ψ ]T, can be treated
as free variables.

The controlled subsystemΣc of outer-loop can be
written in the following form,

ẋc = fc(xf) + fu(xc)ūs, (14)

where

fc(xf) =


−gsθ

gsϕcθ

gcϕcθ

0

 ,

fu(xc) =


0 −w v 0

w 0 −u 0

−v u 0 1/m

1 sϕ tan θ cϕ tan θ 0

 ,
ūs = [ps qs rs u1 ]

T,

and we have

ufs = −[a2qsrs/b2 a3psrs/b3 a4qsqs/b4 ]
T.

The uncontrolled subsystem Σf of the slow subsys-
tem can then be formulated as

ẋf = ff(xf)ūs, (15)

where

ff(xf) =

[
0 cϕ sϕ 0

0 sϕ sec θ cϕ sec θ 0

]
.

Remark 3 It should be remarked that once control
strategy is designed for Σc to achieve desired tracking perfor-
mance, and the movement laws of states θ and ψ can be for-

mulated subsequently based on internal structure. Thereby, the
controlled subsystem Σc is the focus hereinafter.

Defining a pseudo control input vs, one can de-
rive the equivalent linear model of Σc via the dy-
namic inversion approach, ẋc = vs, where vs =

fc(xf) + fu(xc)ūs. The real control of the outer-
loop can be calculated by ūs = f−1

u (xc)[vs− fc(xc)].
States xc and xf can be measured by a IMU to guaran-
tee the feasibility of the dynamic inversion approach.

Remark 4 The sufficient condition for the existence
of the inversion of f−1

u (xc) is det(fu(xc)) ̸= 0. For most tra-
jectory tracking cases of UAVs, such condition can be guaran-
teed. However, x in the last measurement time should be kept
when f−1

u (xc) does not exist.

For given position ξd(t) and roll angle ϕd(t), the
desired slow state can be derived xd(t) =

[ξ̇d(t) ϕd(t)]
T.

A PID controller, utilized in the outer-loop, is a
generic control loop feedback mechanism and regard-
ed as the standard control structures of the classical
control theory. To improve the tracking performance,
the slow errors can be formed by combination of po-
sition errors and velocity errors,

xe(t) = [xd(t)− xc(t)] + [ξd(t)− ξ(t)].

Then, the PID control can be derived

vs = kpxe(t) + ki
w t

0
xe(t) + kd

dxe(t)

dt
,

where kp, ki and kd are related PID gains. By adjust-
ing PID gains, the errors can reach zero, and desired
tracking performance can be achieved. The closed-
loop outer-loop can be shown in Fig.2.

Fig. 2 Outer-loop control structure

Remark 5 PID control, simple and practical, is uti-
lized in the outer-loop controller design, which is sufficient to
achieve desired path tracking performance. PID gains, kp, ki
and kd can be determined by trial and error method.

4 Design procedure
Complex future missions in civilian and mili-

tary scenarios will require UAVs to exploit their full
dynamic capabilities. For the trajectory tracking,
translational dynamics (slow states) are mainly re-
lated with tracking performance. Wind disturbances
may cause large initial state errors, and orientation-
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al dynamics (fast states) are easily excited by high-
frequency wind disturbances. It can be seen that lack-
ing effective control strategy for fast states may lead
to instability or poor performance of the flight system.

In this paper, the dual loop control structure is
adopted to achieve the desired tracking performance
and sufficient stability. The inner-loop controller is
composed by a dynamic inversion controller and a
LQR controller to achieve considerable stability mar-
gin, and two time-scale characteristics can be pre-
served. The outer-loop controller combines a dynam-
ic inversion controller with a PID controller for sig-
nificant performance distinctiveness (tracking perfor-
mance). It can be verified that the dual loop control
structure, shown in Fig.3, can simplify the design pro-
cedure and improve the control quality, which paves a
new way for dealing with high-frequency dynamics.

Fig. 3 Dual-loop control structure

The design process is carried out based on the fol-
lowing steps.

Step 1 We establish the singularly perturbed
model (4) of a UAV based on first principle or sys-
tem identification techniques. In this step, parameters
of the quad-rotor MAV are obtained, and the small
positive scalar ϵ is determined to characterize the two
time-scale nature of the flight system.

Step 2 We construct inner-loop and outer-loop
models via SPaTSs and dynamic inversion approach-
es. In this step, the original high-order flight control
system has been fully decomposed into reduced sub-
systems, and controllers for subsystems can be design
individually.

Step 3 We design the inner-loop controller.
Weighing matrices Q and R are chosen, and the ARE
(13) is solved to compute the LQR controller gain K.
Check the time response of the inner-loop whether the
desired stability requirement is satisfied. If not, re-
select Q and R and repeat this step.

Step 4 We obtain the outer-loop controller. Ad-
just the PID gains constantly to ensure desired trajec-
tory tracking performance.

Step 5 We formulate the composite control,

which can be applied to the original MAV control sys-
tem, {

ūs = f−1
u (xc)[vs − fc(xc)],

uf = ufs + uff ,
(16)

with

uff = vf −M,

ufs = −[a2qsrs/b2 a3psrs/b3 a4qsqs/b4 ]
T.

Real controls u1, u2, u3 and u4 can be obtained from
ūs and uf .

5 Simulation results
Before the practical implementation, we have

carried out a series of Matlab-based simulations to
demonstrate the validity of results in trajectory track-
ing of the quad-rotor MAV. Taking the nonlinear mod-
el (1) of quad-rotor MAV as the plant, the entire flight
control system is tested in the simulation. Related pa-
rameters are listed in Table 2.

Table 2 Parameters of a UAV dynamic model

Parameter Value

m 0.5 kg

g 9.781 kg ·m−2

l 0.2m

Ix 0.114 kg ·m2

Iy 0.114 kg ·m2

Iz 0.158 kg ·m2

Taking the fast response rate of LQR controller
into consideration, it is straightforward that LQR
scheme is well suited in the inner-loop to guarantee
sufficient stability of the fast states. The related LQR
controller gain is chosen as

κp = 20, κq = 20, κr = 20,

with ap = 1, aq = 1 and ar = 0.3. In Fig.4, it
is shown that the real fast dynamics converge to ze-
ro quickly with aid of the LQR controller, which can
ensure smooth operation of the whole flight system.

Fig. 4 Inner-loop dynamics

It can be seen from Fig.5 that the translational ve-
locities u, v and w achieve good time responses with
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respect to step, ramp and acceleration signals. Fig.6
illustrates that the trajectory tracking part of the de-
sign procedure works fairly well following the given
reference with a high accuracy. One of the reason-
s for that is that both translational and orientational
constraints are carefully considered, and related PID
gains are carefully selected and constantly adjusted to
wipe out errors caused by wind. In this case, the pqr
loop PID gains are chosen as

kp = 20, ki = 8, kd = 1,

and the ϕ loop PID gains are selected as

kp = 0.5, ki = 0.05, kd = 0.

Fig. 5 Time responses of the outer-loop

Fig. 6 Tracking performance

In Fig.7, motions of Euler angles are revealed.
Once the controlled dynamics u, v, w and ϕ are
formed, the remaining free dynamics θ and ψ can be
determined. As mentioned, the slow part of the fast
state p, q and r is selected as the pseudo control in-
put for outer-loops such that all the translational dy-
namics can be controlled, and the pseudo control is
demonstrated in Fig.8.

Fig.9 reveals the real controls u1, u2, u3 and u4.
The controller gains are not high, and the whole con-
trol energy in this flight system is permitted from en-
gineering perspective.

Fig. 7 Euler angles

Fig. 8 Pseudo control input

Fig. 9 Control input

Remark 6 Compared with the existing meth-
ods, the controller design method of this work ex-
hibits many advantages.

1) Advantage is thereby taken of the singularly
perturbed nature of the MAV flight system to design
a well-conditioned composite feedback controller to
incorporate inner-loop and outer-loop control.

2) Based on the SPaTSs and dynamic inversion
approaches, reduced-order SISO subsystems are con-
structed in different time-scales such that strong cou-
pling between the translational and orientational dy-
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namics can be alleviated to reduce the computation
complexity.

3) The inner-loop and outer-loop control strate-
gies, LQR and PID control techniques, are simple and
practical, which is well-suited for real engineering ap-
pliances. Related controller gain can be calculated by
MATLAB.

4) The modeling/control approach is ready to be
applied in higher level navigation systems for com-
plex autonomous missions.

6 Conclusions
In this paper, a nonlinear path tracking controller

is designed for a quad-rotor MAV. The singular per-
turbed form of a quad-rotor MAV is established to
obtain reduced-order subsystems to enhance feasibil-
ity of controller design. In order to compensate the
damped orientational dynamics, LQR techniques are
utilized in inner-loops. For out loops, classical PID
control is used to ensure satisfied path tracking per-
formance. To integrate inner-loop control with outer-
loop control, the dual-loop control structure is adopt-
ed. Simulation results prove the effectiveness of con-
sidered approach and demonstrate that the quad-rotor
MAV can follow the given path fairly well. Future
work will concentrate on extending the developed
controller to making the MAV more robust and ca-
pable of onboard, real-time implementation.
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