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Abstract: State feedback controls for hybrid stochastic differential equations have attracted lots of attention in recent

years. It is more economic and practical that the states are observed at discrete time instead of continuous time. In addition,

most observations and feedback systems have some time delays in practice. Therefore, it is interesting to investigate

feedback controls based on discrete-time observations with sample delays for hybrid systems. In this paper, exponential

stabilisations both in H∞ and asymptotical sense are discussed using Lyapunov functionals. The upper bound of the delay

time is also improved. This work is devoted as a continuous research to Ref. [20].
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1 Introduction
Hybrid stochastic differential equations (SDEs)

have been attracting a lot of attention in recent years.

We refer the readers to monographs [1–2] for the de-

tailed introduction. As an important aspect of the study

on hybrid SDEs, the automatic control with the empha-

sis on the asymptotic stability analysis has been broadly

discussed. We just mention some of the works [3–18]

and the references therein. One classical problem of this

field is to design a control function u(x(t)) embedded

into the drift coefficient such that the modified system

dx(t) = [f(x(t), r(t), t) + u(x(t), r(t), t)]dt+

g(x(t), r(t), t)dB(t) (1)

is stable, while the original system, (1) without u(x(t),
r(t), t), is unstable.

Due to various reasons and unexpected effects, the

feedback control based on state observation suffers a

time delay τ0 in practice. To tackle this drawback, Mao

in [19] analysed the asymptotic stability of the follow-

ing model

dx(t)= [f(x(t), r(t), t)+u(x(t−τ0), r(t), t)]dt+

g(x(t), r(t), t)dB(t). (2)

On the other hand, it is expensive and impractical to

design the control function u(x(t), r(t), t) based on the

continuous state x(t). Actually, in practice the state can

only be observed at discrete time point. In [20], the au-

thor initialised this idea for hybrid SDEs and developed

the technique of feedback controls based on discrete-

time state observation. We need to mention that for the

deterministic counterparts this idea has been discussed

(see for examples [21–25]).

In [20], the author introduced the theory on stabili-
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sation that the feedback function can be designed based

on a sequence of countable states x(�t/τ�τ), where τ
is a positive number and �t/τ� denotes the maximal in-

teger not large than t/τ . Then the control function is

constructed as u(x(�t/τ�τ), r(t), t). One may see that

only the states at 0, τ, 2τ, · · · are required. Therefore,

the controlled system becomes

dx(t) = [f(x(t), r(t), t) + u(x(�t/τ�τ), r(t), t)]dt+
g(x(t), r(t), t)dB(t). (3)

Due to the general techniques used in proofs in [20], the

restriction on τ was quite strong in that paper. To tack-

le it, Mao and his group modified the techniques and

released the restriction on τ in [26–27].

The time-delayed feedback control has been used in

a large variety of systems in physics, chemistry, biology,

medicine, and engineering [28–32]. In this paper, we con-

sider a more realistic and economic controlled hybrid

system. We observe that due to some practical problem-

s the state at a discrete time kτ may be received after

a time delay. Alternatively, the state feedback control

signal may return the original system with a time delay.

In both cases, we denote the delay time by a constan-

t τ0. Based on this finding, we construct the feedback

control based on discrete-time state observations with

a time delay in this paper. The new controlled system

reads as (please find the details in Section 2)

dx(t) = [f(x(t), r(t), t) + u(x(δ(t)), r(t), t)]dt+

g(x(t), r(t), t)dB(t), (4)

where δ(t) = �t/τ�τ − τ0, τ0 is the length of delaying

time and τ is the discrete time gap.

One may notice that (3) is already a stochastic de-

lay differential equation because of the control function

u(x(�t/τ�τ), r(t), t) having time delay when kτ <
t < (k+ 1)τ for any positive integer k. But there is no

delay when t = kτ , which means the state observation

of x(kτ) returns immediately. However, the realistic

case is that the time delay always exists in the control

function u(x(kτ − τ0)) even at t = kτ . Thus some

new difficulties arise in the proof of this work compared

with [20, 26–27].

This paper is constructed in the following way. In

Section 2, some mathematical preliminaries are given.

Section 3 sees the application of the Lyapunov function-

al to the study on the H∞ stability and the mean square

asymptotical stability. Section 4 is devoted to the anal-

ysis of the stability rate. Examples and numerical simu-

lations are displayed in Section 5. Section 6 concludes

this paper with some possible future research.

2 Mathematical preliminaries
Throughout this paper, let (Ω,F , {Ft}t�0,P) be

a complete probability space with a filtration {Ft}t�0

satisfying the usual conditions that it is right contin-

uous and F0 contains all P-null sets. Let B(t) =

(B1(t), · · · , Bm(t))
T be an m-dimensional Brownian

motion defined on the probability space. For a vector

or matrix A, AT denotes its transpose. For x ∈ R
n,

|x| denotes its Euclidean norm. |A| = √
trace(ATA)

and ‖A‖ = max{|Ax| : |x| = 1} denote the trace and

operator norms of a matrix A, respectively. For a sym-

metric matrix A, i.e. A = AT, λmin(A) and λmax(A)
denote its smallest and largest eigenvalues, respective-

ly. We define A as non-positive and negative definite by

A � 0 and A < 0, respectively. Denote by L2
Ft
(Rn),

the family of all Ft-measurable Rn-valued random vari-

ables ξ such that E|ξ|2 < ∞, where E is the expecta-

tion with respect to the probability measure P. For a

non-negative real number a, let �a� denote the integer

part of a and �a� denote the smallest integer not less

than a. If a, b ∈ R, then a ∨ b = max{a, b} and

a ∧ b = min{a, b}. IA denotes the indicator function,

which means Iω = 1 for ω ∈ A and Iω = 0 otherwise.

Let r(t) denotes a right-continuous Markov chain

which taking values in a finite state space S = {1, 2,
· · · , N}. Set its generator by Γ = (γij)N×N , and

P{r(t+Δ) = j|r(t) = i} ={
γijΔ+ o(Δ), if i �= j,

1 + γiiΔ+ o(Δ), if i = j.

Here γij � 0 means the transition rate from i to j.

And γii = −∑
j �=i

γij . As usual, the Markov chain r(·)
and the Brownian motion w(·) are independent. It is

known that r(t) is a time-continuous and state-discrete

Markov chain. Thus, for any finite subinterval of t when

t ∈ [0,∞), r(t) only have a finite number of jumps.

Except these jumps, almost all paths of r(t) are con-

stant. We emphasise that almost all sample paths of r(t)
are right continuous.

The hybrid system that we will investigate is an n-

dimensional unstable hybrid system

dy(t) = f(y(t), r(t), t)dt+ g(y(t), r(t), t)dB(t),

(5)

for t � −τ0. Its initial data is y(−τ0) = y0 ∈ L2
F0
(Rn)

and r(−τ0) = r0.

Now for a constant time delay τ0 > 0, one could

design the control function based on the discrete-time

observations with a fixed gap τ > 0. Then the con-

trolled system is a hybrid SDEs as follows

dx(t) = [f(x(t), r(t), t) + u(x(δ(t)), r(t), t)]dt+

g(x(t), r(t), t)dB(t), (6)

for t � 0, where

δ(t) = � t
τ
�τ − τ0. (7)

It should be noticed that original system (5) only pro-

vides initial data at t = −τ0, but the controlled sys-

tem (6) requires a segment of initial data xθ := {x(θ),
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−τ0 � θ � 0}. To fill up this gap, we let the original

system (5) to evolve for a period of t ∈ [−τ0, 0]. Dur-

ing this period we would observe the states of systems

at the discrete time point. Then these observations are

regarded as the initial data for the controlled system (6).

Therefore, we have that

y(t) = x(t), for − τ0 � t � 0. (8)

We define a positive constant h here, as it will be used

through the rest of the paper.

h = �τ0
τ
�. (9)

The following assumptions are imposed.

Assumption 2.1 Assume that the functions

f : Rn×S×R+ → R
n, g : Rn×S×R+ → R

n×m

satisfy the local Lipschitz condition (see e.g. [1, 33–

35]). Besides, for all (x, i, t) ∈ R
n × S × R+, they

satisfy

|f(x, i, t)| � K1|x|, |g(x, i, t)| � K3|x|, (10)

where K1 and K3 are positive constants.

It is easy to see from (10) that

f(0, i, t) = 0, g(0, i, t) = 0, (11)

for all (i, t) ∈ S × R+.

Assumption 2.2 Assume that the controlling

function u : R
n × S × R+ → R

n is globally Lips-

chitz continuous that

|u(x, i, t)− u(y, i, t)| � K2|x− y|, (12)

for all (x, y, i, t) ∈ R
n ×R

n ×S ×R+, where K2 is a

positive constant. In addition, it satisfies

u(0, i, t) = 0 (13)

for all (i, t) ∈ S × R+, which indicates

|u(x, i, t)| � K2|x|. (14)

It should be pointed out that from [1] we know

that the original system (5) does not explode during

t ∈ [−τ0, 0] under Assumption 2.1, that is there exists

a positive constant C0 such that

sup
−τ0�t�0

E|x(t)|2 = sup
−τ0�t�0

E|y(t)|2 � C0. (15)

In the proofs of theorems in the next two sections,

some additional data xθ = {x(θ),−2(τ0 + τ) � θ <

−τ0} are required. However, the actual values of these

data are of no effect on our results. Bearing this in mind,

we simply set

x(θ) = y(−τ0), for θ ∈ [−2(τ0 + τ),−τ0). (16)

It needs to be pointed out that xθ = {x(θ),−2(τ0 + τ)

� θ < −τ0} are only required for the theoretical anal-

ysis but not in practice.

3 Asymptotic stabilization
We design a Lyapunov functional as follows

V (x̂t, r̂t, t) = U(x(t), r(t), t)+

θ
� t

t−τ−τ0

� t

s
[(τ + τ0)|f(x(v), r(v), v)+

u(x(δv), r(v), v)Iv�0|2 + |g(x(v), r(v), v)|2]dvds,
(17)

for t � 0, where θ > 0 is determined later on. We

let δv := δ(v). One may see that the Lyapunov func-

tional is based on the segments x̂t := {x(t + s) :
−2(τ + τ0) � s � 0} and r̂t := {r(t + s) :
−2(τ + τ0) � s � 0} for t � 0. x̂0 is defined in

Section 2 by (8) and (16), and r̂0 is defined in the simi-

lar way. Let U ∈ C2,1(Rn × S × R+;R+) denote the

family of all non-negative functions which are continu-

ously twice differentiable in x and once in t. As usual,

let us define an operator LU from R
n × S × R+ to R

by

LU(x, i, t) =

Ut(x, i, t) + Ux(x, i, t)[f(x, i, t) + u(x, i, t)] +

1

2
tr[gT(x, i, t)Uxx(x, i, t)g(x, i, t)] +

N∑
j=1

γijU(x, j, t), (18)

where

Ut(x, i, t) =
∂U(x, i, t)

∂t
,

Ux(x, i, t) = (
∂U(x, i, t)

∂x1

, · · · , ∂U(x, i, t)

∂xn

),

and

Uxx(x, i, t) = (
∂2U(x, i, t)

∂xi∂xj

)n×n.

Now we can present our first stability result in the sense

of H∞.

Theorem 3.1 For any system (6) that satisfies

Assumptions 2.1 and 2.2, if there exist functions U ∈
C2,1(Rn × S × R+;R+) and positive numbers λ1, λ2

so that

LU(x, i, t) + λ1|Ux(x, i, t)|2 � −λ2|x|2, (19)

for any (x, i, t) ∈ R
n × S × R+. Then� ∞

0
E|x(s)|2ds < ∞, (20)

for all initial data xθ := {x(θ),−τ0 � θ � 0} and

rθ := {r(θ),−τ0 � θ � 0}. If τ > 0 and τ0 > 0
fulfill

λ2 >
(τ + τ0)K

2
2

λ1

[2(τ + τ0)(K
2
1 + 2K2

2 ) +K2
3 ],

(21)

and

τ + τ0 � 1

4K2

, (22)

then the system (6) is H∞-stable.

Proof From the generalized Itô formula (see e.g.
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[1, 6]), one can see that

dV (x̂t, r̂t, t) = LV (x̂t, r̂t, t)dt+ dM(t), (23)

for t � 0. Here M(t) is a continuous martingale whose

explicit form is of no use, and M(0) = 0. By Assump-

tions 2.1, 2.2 and (19), it is easy to get

LV (x̂t, r̂t, t) �
LU(x(t), r(t), t) + λ1|Ux(x(t), r(t), t)|2+
θ(τ + τ0)[2(τ + τ0)(K

2
1 + 2K2

2 ) +K2
3 ]|x(t)|2+

(
K2

2

4λ1

+ 4θ(τ + τ0)
2K2

2 )|x(t)− x(δt)|2−

θ
� t

t−τ−τ0
[(τ + τ0)|f(x(s), r(s), s)+

u(x(δs), r(s), s)Is�0|2 + |g(x(s), r(s), s)|2]ds �

− λ|x(t)|2 + (
K2

2

4λ1

+ 4θ(τ + τ0)
2K2

2 )|x(t)−

x(δt)|2 − θ
� t

t−τ−τ0
[(τ + τ0)|f(x(s), r(s), s)+

u(x(δs), r(s), s)Is�0|2 + |g(x(s), r(s), s)|2]ds,
(24)

where

λ = λ(θ, τ, τ0) :=

λ2 − θ(τ + τ0)[2(τ + τ0)(K
2
1 + 2K2

2 ) +K2
3 ]. (25)

Noting that t − δt � τ + τ0 and u(x(δt), r(t), t) = 0
when t < hτ , we sperate the time interval into two part-

s. Firstly, for all t � hτ , which means δt � 0, it is not

hard to get from (6) that

E|x(t)− x(δt)|2 �

2E
� t

δt
[(τ + τ0)|f(x(s), r(s), s)+

u(x(δs), r(s), s)|2 + |g(x(s), r(s), s)|2]ds =
2E

� t

δt
[(τ + τ0)|f(x(s), r(s), s)+

u(x(δs), r(s), s)Is�0|2 + |g(x(s), r(s), s)|2]ds.
(26)

Secondly, for all 0 � t < hτ , we have

x(t)− x(δt) =� t

0
[f(x(s), r(s), s) + u(x(δs), r(s), s)]ds+� t

0
g(x(s), r(s), s)dB(s)+

� 0

δt
f(x(s), r(s), s)ds+� 0

δt
g(x(s), r(s), s)dB(s) =� t

δt
[f(x(s), r(s), s) + u(x(δs), r(s), s)Is�0]ds+� t

δt
g(x(s), r(s), s)dB(s), (27)

which then indicates that

E|x(t)− x(δt)|2 �

2E
� t

δt
[(τ + τ0)|f(x(s), r(s), s)+

u(x(δs), r(s), s)Is�0|2 + |g(x(s), r(s), s)|2]ds
(28)

holds for 0 � t < hτ . Together with (26), we see that

(28) holds for any t � 0. Now we choose

θ =
K2

2

λ1

. (29)

Together with (22)(29) yields

E(LV (x̂t, r̂t, t)) � −λE|x(t)|2, (30)

and it is easy to see that λ > 0 from (21). Then by (23)

we can get

0 � E(V (x̂t, r̂t, t)) � C1 − λ
� t

0
E|x(s)|2ds, (31)

for t � 0, where C1 is defined as

C1 = V (x̂0, r̂0, 0) =

U(x0, r0, 0) + θ
� 0

−τ−τ0

� 0

s
[(τ + τ0)

|f(x(v), r(v), v)|2 + |g(x(v), r(v), v)|2]dvds. (32)

Then we can see that� ∞

0
E|x(s)|2ds � C1/λ.

The proof is completed.

As same as [27], we will state that lim
t→∞

E(|x(t)|2)
= 0 as our second result. Let us introduce an useful

Lemma which will be used in the next theorem and next

section. The proof of this Lemma is in the Appendix.

Lemma 3.2 Let Assumptions 2.1 and 2.2 hold.

If γ � 0, and τ, τ0 > 0 satisfy that 2(h+1)K̄(τ, τ0) <
1, where

K(τ, τ0) = τ [6(τ + τ0)K
2
1 + 6K2

3 + 3(τ + τ0)K
2
2 ]·

e[6(τ+τ0)K
2
1+6K2

3 ](τ+τ0), (33)

and

K̄(τ, τ0) = K(τ, τ0)e
γhτ . (34)

Then the solution of system (6) satisfies� t

0
eγsE|x(s)− x(δ(s))|2ds �

2(h+ 1)K̄(τ, τ0)

1− 2(h+ 1)K̄(τ, τ0)

� t

0
eγsE|x(s)|2ds+

τ(h+ h2)K̄(τ, τ0)

2− 4(h+ 1)K̄(τ, τ0)
sup

θ∈[−τ0,0]

E|x(θ)|2, (35)

for any t � 0.

Now we state our second main result.

Theorem 3.3 The controlled system (6) is asy-

mptotically stable in the mean square sense under the

same conditions of Theorem 3.1. That is

lim
t→∞

E|x(t)|2 = 0,

for all initial data xθ := {x(θ),−τ0 � θ � 0} and

rθ := {r(θ),−τ0 � θ � 0}.

Proof As same as [27], by Assumptions 2.1–2.2
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and Itô formula, one can get

E|x(t)|2 � |x0|2 + C
� t

0
E|x(s)|2ds+

C
� t

0
E|x(s)− x(δs)|2ds. (36)

Here C denotes a positive constant, whose detailed for-

m is of no use. Let γ = 0, by Lemma 3.2 we have� t

0
E|x(s)− x(δ(s))|2ds �
2(h+ 1)K(τ, τ0)

1− 2(h+ 1)K(τ, τ0)

� t

0
E|x(s)|2ds+

τ(h+ h2)K(τ, τ0)

2− 4(h+ 1)K(τ, τ0)
sup

θ∈[−τ0,0]

E|x(θ)|2. (37)

Together with (36), we obtain that

E|x(t)|2 � C sup
θ∈[−τ0,0]

E|x(θ)|2 + C
� t

0
E|x(s)|2ds.

(38)

Theorem 3.1 guarantees that

E|x(t)|2 � C, (39)

for all t � 0. Then by the same techniques used in [27],

it is not hard to get that E|x(t)|2 is uniformly continu-

ous in t on R+. Thus the desired assertion lim
t→∞

E|x(t)|2
= 0 holds naturally. The proof is completed.

4 Exponential stabilization
We have discussed the stabilisation in the H∞ sense

and asymptotically stable in the mean square sense. In

practice, one may further ask for the stabilisation rate.

This section is devoted for this part.

Theorem 4.1 Let Assumptions 2.1 and 2.2 hold

for (6). If there exist two positive constants c1 and c2
such that the function U(x, i, t) fulfills (19) and

c1|x|2 � U(x, i, t) � c2|x|2, (40)

for all (x, i, t) ∈ R
n × S × R+, then the controlled

system (6) satisfies

lim sup
t→∞

1

t
log(E|x(t)|2) � −γ, (41)

and

lim sup
t→∞

1

t
log(|x(t)|) � −γ

2
a.s., (42)

for all initial data xθ := {x(θ),−τ0 � θ � 0} and

rθ := {r(θ),−τ0 � θ � 0}. Here, τ > 0 and τ0 > 0
satisfies (21)–(22) and 2(h+ 1)K̄(τ, τ0) < 1. λ and θ
are set to be the same as those in Theorem 3.1 by (25)

and (29), and the rate γ > 0 is the unique root to the

following equation

(τ + τ0)γe
(τ+τ0)γ(H1+

H2

2(h+ 1)K(τ, τ0)e
hτγ

1− 2(h+ 1)K(τ, τ0)ehτγ
) + γc2 = λ, (43)

in which

{
H1 = θ(τ + τ0)(2(τ + τ0)(K

2
1 + 2K2

2 ) +K2
3 ),

H2 = 4θ(τ + τ0)
2K2

2 .

(44)

Proof From the generalized Itô formula, we see

that

c1e
γtE|x(t)|2 � C1+� t

0
eγz[γE(V (x̂z, r̂z, z))− λE|x(z)|2]dz. (45)

By the Lyapunov functional (17), we have

E(V (x̂z, r̂z, z)) � c2E|x(z)|2 + E(V̄ (x̂z, r̂z, z)),
(46)

where

V̄ (x̂t, r̂t, t) :=

θ
� t

t−τ−τ0

� t

s
[(τ + τ0)|f(x(v), r(v), v)+

u(x(δv), r(v), v)Iv�0|2+
|g(x(v), r(v), v)|2]dvds. (47)

Using Assumptions 2.1 and 2.2, we obtain that

E(V̄ (x̂z, r̂z, z)) �

θ(τ + τ0)
� z

z−τ−τ0
[(2(τ + τ0)K

2
1 +K2

3 )E|x(v)|2+
2(τ + τ0)K

2
2E|x(δv)|2Iv�0]dv �

θ(τ + τ0)
� z

z−τ−τ0
[(2(τ + τ0)(K

2
1 + 2K2

2 ) +K2
3 )

E|x(v)|2+4(τ+τ0)K
2
2E|x(v)−x(δv)|2Iv�0]dv�� z

z−τ−τ0
[H1E|x(v)|2+

H2E|x(v)− x(δv)|2Iv�0]dv.

(48)

Together with (45), one can get that, for t � τ + τ0,

c1e
γtE|x(t)|2 �

C − (λ− γc2)
� t

τ+τ0
eγzE|x(z)|2dz+� t

τ+τ0
eγz

� z

z−τ−τ0
[γH1E|x(v)|2+

γH2E|x(v)− x(δv)|2Iv�0]dvdz. (49)

Here C is a positive constant whose accurate value is of

no use. Now we have� t

τ+τ0
eγz(

� z

z−τ−τ0
E|x(v)|2dv)dz �� t

0
E|x(v)|2(

� v+τ+τ0

v
eγzdz)dv �

(τ + τ0)e
(τ+τ0)γ

� t

0
eγvE|x(v)|2dv, (50)

and by Lemma 3.2 we see that� t

τ+τ0
eγz(

� z

z−τ−τ0
E|x(v)− x(δv)|2Iv�0dv)dz �

(τ + τ0)e
(τ+τ0)γ

� t

0
eγvE|x(v)− x(δv)|2dv �
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(τ + τ0)e
(τ+τ0)γ

2(h+ 1)K̄(τ, τ0)

1− 2(h+ 1)K̄(τ, τ0)
×

� t

0
eγsE|x(s)|2ds+ (τ + τ0)e

(τ+τ0)γ×
τ(h+ h2)K̄(τ, τ0)

2− 4(h+ 1)K̄(τ, τ0)
sup

θ∈[−τ0,0]

E|x(θ)|2. (51)

Together with (50), we see from (49) that

c1e
γtE|x(t)|2 �

C + [(τ + τ0)γe
(τ+τ0)γ(H1+

H2

2(h+ 1)K(τ, τ0)e
hτγ

1− 2(h+ 1)K(τ, τ0)ehτγ
) + γc2 − λ]

� t

0
eγzE|x(z)|2dz. (52)

Therefore, by using (43) in Theorem 3.1 we can achieve

that

c1e
γtE|x(t)|2 � C, ∀t � τ + τ0. (53)

The desired assertion (41) and (42) follows.

Theorem 4.1 shows that the exponential stabilisa-

tion result in the general form. One may ask how to

design the Lyapunov function U(x, i, t). Thus, we give

the next corollary. Set U(x, i, t) = xTQix, where Qi’s

are all symmetric positive-definite n× n matrices.

Corollary 4.2 For any system (6) that satisfied

Assumptions 2.1 and 2.2. If there exist symmetric

positive-definite matrices Qi ∈ R
n×n (i ∈ S) so that

2xTQi[f(x, i, t) + u(x, i, t)] +

trace[gT(x, i, t)Qi(x, i, t)g(x, i, t)] +
N∑
j=1

γijx
TQjx � −λ3|x|2, (54)

for all (x, i, t) ∈ R
n × S × R+, where λ3 is a pos-

itive constant. Then the assertions of Theorem 4.1

hold if τ > 0 and τ0 > 0 satisfied (21)–(22) and

2(h + 1)K̄(τ, τ0) < 1, where λ and θ are set as the

same in Theorem 3.1.

It is easy to see that (40) is fulfilled with

c1 = min
i∈S

λmin(Qi), c2 = max
i∈S

λmax(Qi).

If we set λ4 = 2max
i∈S

‖Qi‖, then (19) is fulfilled

when choose 0 < λ1 < λ3/λ2
4 and 0 < λ2 = λ3−

λ1λ
2
4. Therefore the Corollary 4.2 appears naturally.

5 Example
Example 5.1 Let us consider a 2-dimension lin-

ear hybrid system

dx(t) = A(r(t))x(t)dt+B(r(t))x(t)dB(t), (55)

for t � t0. Here B(t) is a scalar Brownian motion.

r(t) is a two state Markov chain with its space on

S = {1, 2}, and the generator is

Γ =

[−1 1
1 −1

]
,

and

A1 =

[
1 3
4 −5

]
, A2 =

[−3 4
5 2

]
,

B1 =

[
1 2
1 0

]
, B2 =

[
1 1
1 1

]
.

It can be seen from Fig.1 that the original system

(55) is not almost surely exponentially stable.

Fig. 1 Original system

Fig.1 shows the paths simulation of r(t), x1(t)
and x2(t) for the original system (55). Here we use

the Euler-Maruyama method, where the initial data is

r(0) = 1, x1(0) = −2 and x2(0) = 1, the time step is

10−6.

Assume that we observe the state with a time delay

τ0, which means we can only observe the state x(t−τ0)
at time t. In this situation, we consider a linear feed-

back control function u(x, i, t) = FiGix to stabilize

the system due to the linear coefficients of (55) based

on the discrete-time observations of the state. Thus the

controlled system can be regarded as a hybrid SDDE as

follow:

dx(t) = [A(r(t))x(t) + F (r(t))G(r(t))x(δ(t))]dt+

B(r(t))x(t)dB(t). (56)

Here, we consider the situation of state feedback, i.e.

assume that we know G1 = (1, 1), G2 = (1, 1). Now

we need to design F1 and F2 in R
2×1 and find the proper

condition on τ so that the controlled system to be both

mean square and almost surely exponentially stable. It

is easy to see that Assumptions 2.1 and 2.2 hold with

K1 = 6.672 and K3 = 2.289. Define the left-hand-

side term of (54) by

Q̄i := Qi(Ai + FiGi) + (AT
i +GT

i F
T
i )Qi+

BT
i QiBi +

2∑
j=1

γijQj.

Then using Corollary 4.2 we can verify that Q1 = Q2
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= I and

F1 =

[−7
−2

]
, F2 =

[−3
−8

]
, (57)

which implies

Q̄1 =

[−10 0
0 − 10

]
, Q̄2 =

[−10 0
0 − 10

]
. (58)

That is xTQ̄ix � −10|x|2. Which makes λ3 = 10 and

K2 = 12.083. One can verify that (40) is fulfilled with

c1 = c2 = 1 and λ4 = 2, λ1 = 1.25, and λ2 = 5.

Therefore, condition (21) and (22) becomes 6.25 >
146(τ+τ0)(673.02(τ+τ0)+5.24), τ+τ0 � 1/49 and

2(h+ 1)K̄(τ, τ0) < 1 which means τ + τ0 < 0.0049.

So let us set Fi as (57), then the controlled hybrid sys-

tem (56) is both mean square and almost surely expo-

nentially stable if τ + τ0 < 0.0049 by Corollary 4.2.

The simulations in Fig.2 are in line with the theoretical

result. It should be mentioned that the existing result in

Ref. [36] ask for τ + τ0 < 0.00003, but our new result

only needs τ + τ0 < 0.0049. This indicates that we

have improved the existing result significantly.

Fig. 2 Control system

Fig.2 shows the paths simulation of r(t), x1(t) and

x2(t) for the controlled system (56) with τ0 = 0.002
and τ = 0.0029. Here we use the Euler-Maruyama

method, where the initial data is still r(0) = 1, x1(0) =
−2 and x2(0) = 1, and the time step is 10−6 as well.

6 Conclusions and future research
This paper studies the stabilisation of hybrid SDEs

by the time-delay feedback control based on discrete-

time state observation. Making use of Lyapunov func-

tional, we discussed the stabilization in the sense of

H∞-stability, asymptotically stability and exponential

stability, and get a significantly improved bound on both

τ and τ0. An interesting question is if not only the stat

observations x(t) have time delay but also the Markov

chain r(t), which means the control function becomes

u(x(δ(t)), r(δ(t)), t), what is the stabilization theory

in such case. This could be one of the future research.
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Appendix Proof of Lemma 3.2
Proof One may notice that x(t) has different forms when

t < 0 and t � 0. This is because of that the initial data of the
controlled system (6) come from the observations of the origi-
nal system (5). More precisely, x(t) fulfills (6) when t � 0 and
(8) when t < 0. Therefore, x(δ(t)) also has different forms
when 0 � t < hτ and t � hτ , where h is denoted by (9). For
the first part, let n � h be an integer, for any t ∈ [nτ, (n+1)τ)
we have δ(t) = nτ − τ0 � 0. By the same techniques in [26],
it is not hard to obtain that for any t ∈ [nτ, (n+ 1)τ)

E|x(t)− x(δ(t))|2 � K(τ, τ0)
h∑

k=0

E|x((n− k)τ − τ0)|2,
(A1)

where K(τ, τ0) is define by (33). Then for the second part, let
0 � n � h − 1 be an integer, for any t ∈ [nτ, (n + 1)τ) we
have δ(t) = nτ − τ0 < 0. Then we have

x(t)− x(δ(t)) = x(t)− x(0) + x(0)− x(δ(t)) =� t

nτ−τ0
f(x(s), r(s), s)ds+

� t

nτ−τ0
g(x(s), r(s), s)dB(s) +

� t

0
u(x(δ(s)), r(s), s)ds.

It is not hard to get the same property (A1) for 0 � t < hτ by
using the same technique, together with the first part, we obtain
that (A1) holds for any t � 0. Then we can get

eαtE|x(t)− x(δ(t))|2 �

eαtK(τ, τ0)
h∑

k=0

E|x((n− k)τ − τ0)|2. (A2)

By dividing the interval [0, t] into subintervals, it follows

� t

0
eαsE|x(s)− x(δ(s))|2ds =

� t

nτ
eαsE|x(s)− x(δ(s))|2ds+

n−1∑

l=0

� (n−l)τ

(n−l−1)τ
eαsE|x(s)− x(δ(s))|2ds,

for any t � 0. Applying (A2) to each subinterval, we have

� t

0
eαsE|x(s)− x(δ(s))|2ds �

K(τ, τ0)
� t

nτ
eαs

h∑

k=0

E|x((n− k)τ − τ0)|2ds+

K(τ, τ0)
n−1∑

l=0

� (n−l)τ

(n−l−1)
τeαs

n−1−l∑

k=n−h−1−l

E|x(kτ − τ0)|2ds�

K(τ, τ0)
h∑

k=0

eαkτ
� t−kτ

(n−k)τ
eαsE|x(δ(s))|2ds+

K(τ, τ0)
n−1∑

l=0

h∑

k=0

eαkτ
� (n−k−l)

(n−1−k−l)τ
τeαsE|x(δ(s))|2ds.

Then the desired assertion (35) holds by combining the corre-
sponding integrals

� t

0
eαsE|x(s)− x(δ(s))|2ds �

K(τ, τ0)
h∑

k=0

eαkτ
� t−kτ

−kτ
eαsE|x(δ(s))|2ds �

(h+ 1)K(τ, τ0)e
αhτ

� t

0
eαsE|x(δ(s))|2ds+

K(τ, τ0)e
αhτ

h∑

k=1

� 0

−kτ
eαsE|x(δ(s))|2ds �

2(h+ 1)K(τ, τ0)e
αhτ

� t

0
eαs(E|x(s)− x(δ(s))|2 + E|x(s)|2)ds+

τ

2
(h+ h2)K(τ, τ0)e

αhτ sup
θ∈[−hτ−τ0,0]

E|x(θ)|2 �

2(h+ 1)K(τ, τ0)e
αhτ

1− 2(h+ 1)K(τ, τ0)eαhτ

� t

0
eαsE|x(s)|2ds+

τ(h+ h2)K(τ, τ0)e
αhτ

2− 4(h+ 1)K(τ, τ0)eαhτ
sup

θ∈[−hτ−τ0,0]
E|x(θ)|2.

The proof is complete due to

sup
θ∈[−hτ−τ0,0]

E|x(θ)|2 = sup
θ∈[−τ0,0]

E|x(θ)|2.
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