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摘要:哈希算法已被广泛应用于解决大规模图像检索的问题.在已有的哈希算法中,无监督哈希算法因为不需要数据
库中图片的语义信息而被广泛应用. 平移不变核局部敏感哈希(SKLSH)算法就是一种较为代表性的无监督哈希算法.
该算法随机的产生哈希函数,并没有考虑所产生的哈希函数的具体检索效果.因此, SKLSH算法可能产生一些检索效果
表现较差的哈希函数. 在本文中,提出了编码选择哈希算法(BSH). BSH算法根据SKLSH算法产生的哈希函数的具体检
索效果来进行挑选.挑选的标准主要根据哈希函数在3个方面的表现: 相似性符合度,信息包含量,和编码独立性. 然后,
BSH算法还使用了一种基于贪心的选择方法来找到哈希函数的最优组合. BSH算法和其他代表性的哈希算法在两个真
实图像库上进行了检索效果的对比实验. 实验结果表明,相比于最初的SKLSH算法和其他哈希算法, BSH算法在检索准
确度上有着明显的提高.
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Bit selection hashing for large scale image retrieval

TIAN Xing, LU Xiao-yi, WING W Y NG†, HUANG Jia-jian
(College of Computer Science and Engineering, South China University of Technology, Guangzhou Guangdong 510006, China)

Abstract: Hashing methods have been widely used for solving large scale image retrieval problems. Among existing
hashing methods, unsupervised hashing methods are most widely used because they do not require semantic information of
images in the database. The shift-invariant kernelized locality-sensitive hashing (SKLSH) is a representative unsupervised
hashing method which generates hash functions randomly without considering the performance of each projection. There-
fore, weak hash functions yielding low retrieval performances may be generated by the SKLSH. In this work, we propose
the bit selection hashing (BSH) which selects hash bits for the SKLSH based on the performance of hash bit projections in
three aspects: similarity fitness, information capacity, and code independence. Then, a greedy selection method is applied
to find the optimal combination of hash bits for the BSH. Two real world image databases are used to compare the perfor-
mance of the proposed BSH with other representative hashing methods. Experimental results show that the BSH yields a
significant improvement in comparison to the original SKLSH and other hashing methods.
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1 Introduction
Owing to the popularization of social websites, im-

age sharing websites and convenient digital image tak-
ing devices, a huge volume of images is uploaded to the
Internet in every hour. Therefore, fast image retrieval
methods are important to efficiently utilizing the huge
volume of image data on the Internet. Tree-based meth-
ods[1–2] are proposed for accurate image searches. How-
ever, tree-based methods are space expensive, especial-
ly, when the amount and the dimensions of images are
large. In the worst case, the searching performance is
degraded to a linear scan and the space for storing the
tree structure could be even larger than the original im-
age data[3]. Due to these disadvantages, tree-based re-

trieval methods are not well adaptive to the current big
data environment on the Internet.

In large scale image retrieval problems, exact sim-
ilarity computations are too time consuming and not
necessary. Owing to the nature of big data, a set of
approximate nearest neighbors provides a good enough
retrieval results and may be no worse than those found
by exact similarity. Hashing methods find approximate
nearest neighbor points using sub-linear time comp-
lexity and linear space complexity. Hashing methods
firstly find B hashing functions (projections) and map
the data from the high dimensional real-valued feature
space to a low dimensional binary space. Each image
is represented by a binary hash code. Each hash func-
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tion divides the original feature space into two parts and
these two parts are represented by 0 and 1, respectively.
With B hash functions, the original feature space is at
most being divided into 2B buckets by different hash
codes. Each image in the database is represented by a
hash code (instead of the original image data) and only
the hash code is used during the query. Images in the
same bucket (the same hash code) or neighboring buck-
ets are considered to be similar. In this way, the simi-
larity computation between two images is converted to
a fast Hamming distance calculation using fast XOR
operations.

Many hashing methods have been proposed to solve
image retrieval problems. According to whether seman-
tic labels information of images is used for training, cur-
rent hashing methods are generally divided into three
categories: unsupervised, semi-supervised, and super-
vised hashing methods. Unsupervised hashing meth-
ods train hash functions without using the semantic
information provided by the database. These meth-
ods are always time efficient but yield relatively low
retrieval accuracies. Supervised hashing methods use
semantic information for training hash functions which
are computationally expensive but achieve better ac-
curacies in comparison to unsupervised hashing meth-
ods. Semi-supervised hashing methods require partly
labeled database for training which take benefits from
both supervised and unsupervised hashing methods.

In the big data environment on the Internet, it is
cost-expensive to require images for training to be la-
beled. Therefore, unsupervised hashing methods are
more suitable for large scale image retrieval on the In-
ternet. The locality sensitive hashing (LSH) method[4–6]

is one of the most famous unsupervised hashing meth-
ods which creates hash functions randomly without
considering the data distribution and semantic informa-
tion of the training image set. The locality sensitive
binary codes form shift-invariant kernels (SKLSH)[7] is
an important improvement to the LSH. The SKLSH us-
es random Fourier features of the dataset to build hash
functions. As projections of the SKLSH are select-
ed randomly, some projections may have little distin-
guishability for the dataset and may even highly simi-
lar. Due to the aforementioned problem, the projection
selection hashing (PSH)[8] applies the relief feature se-
lection method[9] to select better hash codes and corre-
sponding projections. However, the PSH treats the pro-
jection selection problems as a feature selection prob-
lem for pattern classification instead of image retrieval.
The PSH evaluates the quality of a projection based on
whether it could distinguish the similar and dissimilar
images only without regarding the information indepen-
dence between projections and the information capacity
of each projection. For hashing methods, we hope the
information in each projection is maximized and hash
functions are independent with each other for less in-

formation redundancy. In this paper, a new bit selection
hashing (BSH) based on the SKLSH is proposed by se-
lecting the optimal bit projection combination for large
scale image retrieval problems.

Major contributions of this paper are summarized
as follows:

· Propose a similarity fitness evaluation method
based on the Hamming distance threshold to improve
the unsupervised retrieval performance.

· Propose a performance evaluation method for hash
functions by combining the similarity fitness, the in-
formation capacity, and the code independence of hash
functions.

· Propose the bit selection hashing based on the se-
lection of unsupervised hash functions to form the opti-
mal combinations of hash functions in greedy manner.

· The proposed BSH enjoys both benefits of high
performance of the SKLSH and the small storage by
selecting informative bits only.

In Section 2, related works on existing hashing
methods are introduced in detail. The proposed BSH
method is proposed in Section 3. Experimental results
of the BSH and comparison with current hashing meth-
ods are given in Section 4. Section 5 concludes this
work and gives ideas of feature works.

2 Related works
As aforementioned, hashing methods can be di-

vided into three categories: unsupervised, semi-
supervised, and supervised hashing methods. Super-
vised hashing methods such as the LDA[10], the LSH
with learned metric[11], and the online hashing[12], usu-
ally achieve higher retrieval accuracies but also require
a fully labeled train dataset which is impractical for
real data environment on the Internet. The LDA hash-
ing method applies linear discriminant analysis to the
dataset to find projection functions which minimize dis-
tances between similar data pairs and maximize dis-
tances between dissimilar data pairs in the Hamming
space. The LSH with learned metric method applies
the LSH in a metric space learned from the semantic
information instead of the original feature space. The
online hash updates hashing functions based on the new
semantic information in an online manner.

Semi-supervised hashing methods use partially la-
beled dataset to train hash functions, for instances, the
complementary hashing[13], the DCH[14], the SPLH[15],
the BSPLH[3], and the SCEM--SSH[16]. The SPLH[15]

trains each hash function by correcting the error made
by the previous hash function while the BSPLH[3] trains
each hash function by correcting the error made by all
the previous hash functions. The complementary hash-
ing[13] and the DCH[14] are both multi-hash extensions
of the SPLH. The SCEM--SSH[16] maximizes the con-
ditional entropy of a hash function with respect to all
previous hash functions.
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There are two major streams of unsupervised hash-
ing methods: data dependent and data independent
methods. Data dependent methods create hashing func-
tions based on the data distribution e.g. the ITQ[17],
the spectral embedded hashing[18], the two-phase hash-
ing[19], and the ACH[20]. The ITQ hashing method[17]

applies the Principle Component Analysis (PCA) to
find orthogonal hash projections based on the maximum
variance directions of the data. The projection is then
rotated to minimize the quantization loss between rotat-
ed data and its nearest vertex of a unit binary hypercube.
The spectral embedded hashing introduces a new re-
gularizer to the objective function of the spectral hash-
ing[21] to control the mismatch between the resultant
Hamming embedding[18]. The two-phase hashing[19]

firstly maps the data from the original feature space onto
a high dimensional real-valued space to preserve pair-
wise similarity using the SKLSH projection. Then, data
is mapped from the high dimensional real-valued space
onto a low dimensional Hamming space via a minimiza-
tion of the reconstruction error. The ACH[20] employs
a short hash code to store images in the database for
storage efficiency and a long hash code for query and
similarity comparison for high retrieval precision.

The LSH[4] and the SKLSH[7] are the two most
representative data independent hashing methods. The
LSH randomly creates hash function to split the feature
space into hash buckets. It is proved that the proba-
bility of two images falling into the same hash bucket
is directly proportional to the similarity between these
images[4].

Most hashing methods project images from the high
dimensional feature space to a low dimensional Ham-
ming space. In the SKLSH, hash functions are found
randomly via a random Fourier features (RFF) method.
The RFF (Φω,b(x)) is defined as

Φω,b(x) =
√
2 cos (ω · x+ b), (1)

where x ∈ RD, ω ∼ PK and b ∼ Unif[0, 2π] , and PK

denotes the probability measure of the dataset. Then,
the SKLSH performs a random binary quantization to
the RFFs using a random threshold t ∼ Unif[−1, 1]
and defines the hash function as follows:

hω,b,t(x) =
1

2
[1 + sgn(Φω,b(x) + t)], (2)

where sgn(u) = 1 if u > 0 and −1 otherwise.
The hash functions of the SKLSH are randomly

selected from the RFF, therefore the quality of each
hash function does not necessary to yield good perfor-
mance. Similar to the LSH, the SKLSH guarantees that
the accuracy of the similarity is directly proportional to
the number of hash functions (bits). However, a huge
number of hash bits may reduce the scalability of the
SKLSH. Moreover, each hash function is expected to
divide the original feature space into two parts such that
similar images are divided into the same side of the pro-

jection hyperplane while dissimilar images are divided
into different sides.

The projection selection hashing (PSH) treats each
hash function as a feature of a classification problem
and utilizes the relief feature selection method to select
hash functions[8]. The relief method randomly selects
m samples (R). For each sample in R, it finds k nearest
samples (nearest hit set H) among samples similar to R
and k nearest dissimilar samples (nearest miss set M ).
The weight (W [F ]) of all features are set to zero for ini-
tialization and then a weight is updated to evaluate the
quality of a feature as follows:

W [F ] = W [F ]−
k∑

j=1

diff(F,Ri,Hj)/(mk) +

k∑
j=1

diff(F,Ri,Mj)/(mk), (3)

where Ri and W [F ] and diff(F, ·, ·) denote the ith
sample in R, the weight for the feature F and the value
difference in the feature F between the selected sample
in R and its nearest hit or misses. For two samples si
and sj , diff(F, si, sj) = 0 if these two samples share
the same value in feature F and diff(F, si, sj) = 1 oth-
erwise. However unsupervised dataset does not carry
label information for samples, samples yielding Ham-
ming distances smaller than a pre-selected threshold is
regarded as similar samples and other samples are treat-
ed as dissimilar samples. The PSH attempts to find bet-
ter hash functions for the SKLSH in terms to improve
its performance. However, treating the hash function se-
lection problem as a feature selection problem for clas-
sification may not be appropriate. PSH method select
hash functions just rely on the similarity preservation
which is not good enough. The major concern of select-
ing hash functions for large scale image retrieval prob-
lems should rely on retrieval performance and infor-
mation provided by each hash function. What’s more,
code independence is also a useful standard to select
the best hash functions. A hash bit selection method is
proposed based on the similarity preservation and the
mutual independence of hash functions[22]. However,
it requires a very time consuming Euclidean distance
computation for finding the similarity preservation of
a hash function which may not be practical for large
scale image retrieval problems. Moreover, the mutual
independence in[22] is computed immediately by max-
imizing the sum of mutual information of all selected
hash functions which may be misled by a single hash
function yielding very large mutual information value
with others. Therefore, the proposed BSH method uses
a Hamming distance-based method to compute the sim-
ilarity fitness for better scalability and a greedy search
maximizing the worst independent pair of hash func-
tions iteratively in the BSH will be a better solution.
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3 Bit selection hashing
In order to improve the performance of the SKLSH

for large scale image retrieval problems, we propose the
BSH to select better hash functions for the SKLSH. The
BSH firstly creates a candidate set by generating exces-
sive number of hash functions using the SKLSH. Then,
hash functions in the candidate set are weighted for se-
lection. These hash functions are weighted according to
its performance in three metrics: similarity fitness(γ),
information capacity(δ), and code independence(φ).
The computations of these three metrics will be intro-
duced in Section 3.1.

The BSH performs a greedy search to select the
hash function from a candidate set yielding the largest
weight (i.e. max Wi) iteratively until a pre-selected nu-
mber of hash functions (B) is reached. The selected
hash function is added to the selected set and removed
from the candidate set. Hash functions in the selected
set are finally used to generate hash codes for images in
the database for retrieval.

The first hash function is selected using both the
similarity fitness and the information capacity only. The
selected hash function set is currently empty, so the
code independence cannot be calculated. Such that, the
hash function yielding the best retrieval precision and
separate samples in the feature spaces most evenly is
selected as the first selected hash function of the BSH.
Therefore, the weight for the ith hash function (Wi) is
computed as follows:

Wi = γi × δi. (4)

Then, for the 2nd to Bth hash functions, in addition to
its own fitness and information capacity, correlations (or
dependences) among different hash functions should be
minimized. In other word, when the code independence
of one candidate hash function is evaluated, we focus on
the relationship between this hash function and its most
depending hash function in the selected hash function
set. Therefore, the most independent candidate hash
function with respect to all selected hash functions is
preferred. If the average value of correlations among all
hash functions is minimized, it is easily being misled
by a single hash function with very large correlation to
the candidate hash function. Therefore, the BSH pre-
fers a hash function yielding the largest minimum pair-
wise independence (φ) with selected hash functions.
The weight for the ith hash function is computed as
follows:

Wi = γi × δi ×min(φij), (5)

where φij denotes the φ between the ith candidate hash
functions and the jth selected hash functions. The flow
diagram of the BSH for generating the selected set is
shown as Fig.1.

Fig. 1 Flow diagram of the BSH to generate the selected
hash bit set

3.1 Metric calculation for weighting
3.1.1 Semantic fitness

The similarity fitness (γ) evaluates the distinguisha-
bility of a hash function between similar and dissimilar
samples. Generally, a hash function can be regarded as
a hyperplane to divide the original data space into
two sides. Then, similar image pairs are preferred to be
divided into the same side of this hyperplane while dis-
similar images are preferred to be divided into different
sides. In this way, similar images share the same hash
code while dissimilar images have different hash code.
Therefore, similarity fitness is used to evaluate this
ability of a hash function. Firstly a subset of samples
(Xl ∈ Rm×d) is randomly selected from the original
dataset (X ∈ RN×d) where d, m, and N denote the
number of dimension of samples, the number of select-
ed samples, and the number of samples in the whole
dataset, respectively. Let S be the pairwise similarity
matrix of samples in Xl. Given a Hamming distance
threshold t, the similarity between samples xj and xk

in Xl (Sjk) is defined as follows:

Sjk =

{
+1, if xj and xk are similar,
−1, otherwise.

(6)

Samples xj and xk in Xl, are expected to have the
same (different) hash value if Sjk = +1 (Sjk = −1).
If this expectation is fulfilled, samples xj and xk are
correctly hashed. Therefore, for the ith hash function
and samples xj and xk, we define:

Ji(xj, xk) =

{
+1, correctly hashed,
−1, otherwise.

(7)

The fitness of the ith hash function among all se-
lected samples is then computed as follows:

ri =
∑

xj ,xk∈Xl,j ̸=k

Ji(xj, xk). (8)

In the best case, all sample pairs are correctly
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hashed, so the upper bound of ri is m2 − m. Mean-
while, the lower bound in which all samples are incor-
rectly hashed is −m2+m. Finally, the similarity fitness
of the ith hash function (γi) is computed as follows:

γi =
ri − (m−m2)

2(m2 −m)
. (9)

3.1.2 Information capacity
In information theory, a variable is expected to con-

tain more information if it has a larger entropy value.
This idea is introduced into hashing methods training
for large scale image retrieval problems [15]. When a
hash bit (i.e. hash function) is regarded as a variable,
it contains the largest amount of information when the
hyperplane of this hash function divides the data space
into two halves evenly. We use information capacity
(δ), i.e. the entropy of the hash bit, to denote the en-
tropy yielded by a hash projection. The hash values of
all images in the database are computed. For the ith

hash function, p(1)i and p
(0)
i denote the probabilities of

hash values of samples being equal to 1 and 0, respec-
tively. Then δi for the ith hash function is computed as
follows:

δi = −p
(1)
i log2p

(1)
i − p

(0)
i log2p

(0)
i . (10)

3.1.3 Code independence
For high code efficiency, hash projections should

be independent with each other. Mutual information is
used in the BSH to evaluate the code independence (φ)
between a candidate and a selected hash function. Let
vi ∈ {0, 1} and vj ∈ {0, 1} be the hash value of the
ith and the jth hash functions, respectively, for a giv-
en sample. Then the code independence between the
ith and the jth hash functions (φij) is computed as fol-
lows:

φij = 1−
∑

y∈{0,1}

∑
z∈{0,1}

p
(y,z)
ij log2

p
(y,z)
ij

p
(y)
i p

(z)
j

, (11)

where p(y,z)ij denotes the joint probability of vi = y and
vj = z. If the ith and the jth hash functions are highly
correlated, a large mutual information value is yielded
and therefore a small φij is yielded. The pseudo-code
of the BSH is shown in the Algorithm 1.

Algorithm 1 The BSH.
Input The database X , the number of bits B, ad-

ditional bits parameter a, the threshold t for judging
similar images.

Output B selected hash functions.
1) Train (B + a) hash functions using the SKLSH

based on X .
2) Calculate the similarity fitness γ by threshold t

and the information capacity δ for all hash functions to
get their weights using equation (4).

3) Selected set = null set.
4) Remove the hash function yielding the largest

weight from the candidate set and add it to the selected
set.

5) While the number of hash functions in the se-
lected set is less than B.

6) Calculate weights for hash functions in the can-
didate set using equation (5).

7) Remove the hash function yielding the largest
weight from the candidate set and add it to the selected
set.

8) End.
3.2 Time complexity analysis

The time complexity of the training phase of the
BSH is O(NdL+m2L+NL2), where L denotes the
total number of hash functions trained by the SKLSH
for selection, i.e. L = B + a. Owing to the fact that
m ≪ N and L ≪ d in general, the time complexity
of the BSH training can be simplified to be O(NdL).
In the query phase, the time complexity for computing
the hash code of a query is O(dB). Both d and B are
constants and the time complexity for query phase of
the BSH is the same to other hashing methods in com-
parisons. Therefore, the online query phase of the BSH
is very first.
4 Experimental results

In our experiment, two real world image sets (the
CIFAR10 and the MNIST) are used to compare the per-
formance of the BSH and current hashing methods. The
CIFAR10 image dataset consists of 6,000 images even-
ly distributed to 10 classes and each image is repre-
sented by a 512--dimensional GIST feature vector. The
MNIST is a handwritten digit image set consisting of
70,000 grey-scale images from 10 classes and each im-
age is represented by a 784--dimensional pixels vector.
For each dataset, 1,000 samples are randomly selected
as the testing set and the rest of samples are used as
the training set. Hashing methods are compared using
the number of hash bits (B) equals 128, 256, and 512,
respectively.

The BSH is compared with the SKLSH, the PSH,
and the LSH. The BSH is an improvement to the
SKLSH while the PSH is another extension of the
SKLSH, so they are compared. The LSH serves as the
baseline of comparisons. For unsupervised image re-
trieval problem, images with a Euclidean distance from
a sample smaller than a threshold are regarded as simi-
lar images of it. The average Euclidean distance of the
50th nearest neighbor of each sample in the database is
used as the threshold value[17]. For the BSH, m is set
to 1000. Similar to the PSH, the BSH also has two pa-
rameters: additional bits (a) and threshold (t). Given a
problem of selecting B hash functions, the set of candi-
date hash functions consists of (B + a) hash functions
for selection. If the Hamming distance between two im-
ages is larger than the threshold (t), they are dissimilar
and they are similar otherwise. This similarity measure
is applied in equation (6). Parameters selected for both
the BSH and the PSH for each experiment are listed in
Table 1. Figs.2 and 3 show the precision-recall curves of
different hashing methods on the datasets CIFAR10 and
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MNIST using 128 bits (a), 256 bits (b) and 512 bits
(c), respectively. Experimental results show that the
SKLSH improves more significantly in comparison to
the LSH when the number of bits (B) increases. The
PSH only considering the ability of hash functions
for distinguishing similar and dissimilar images is not
enough to find the optimal hash code combination. In
contrast, the BSH combines three metrics to evaluate
the performance of each hash function comprehensive-
ly. Moreover, in cases shown in Figs.2(a) and 2(b),
the PSH does not yield obvious improvement to the
SKLSH. In Figs.2(c) and 3(c), the performance of the
PSH is very close to that of the BSH because a longer
hash code is used which reduces the effects of hash bit
selection. In all experiments, the BSH yields the best
performance in terms of largest area under precision-
recall curves. This shows that the code independence
and the information capacity in the BSH are significant
for achieving higher retrieval performances.

Table 1 Values of parameters selected in our
experiments

CIFAR10 Additional bits Threshold

128 128 55
256 128 58
512 128 43

MNIST Additional bits Threshold

128 64 52
256 128 65
512 128 49

(a) CIFAR10 128bits

(b) CIFAR10 256bits

(c) CIFAR10 512bits
Fig. 2 Recall-precision curve of hash methods on CIFAR10

dataset with (a) 128 bits, (b) 256 bits, (c) 512 bits

(a) MNIST 128bits

(b) MNIST 256bits

(c) MNIST 512bits
Fig. 3 Recall-precision curve of hash methods on MNIST

dataset with (a) 128 bits, (b) 256 bits, (c) 512 bits
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5 Conclusions
In this paper, we propose the bit selection hash-

ing (BSH) to improve the image retrieval performance
of the SKLSH which selects hash functions randomly.
The BSH evaluates a hash function with three metrics:
information capacity, similarity fitness, and code inde-
pendence. By generating more hash functions randomly
at the beginning, a better set of hash function is selected
to form efficient hash code for image retrieval. Experi-
mental results show that the BSH yields better retrieval
performance than other hashing methods in compari-
son.

In our future works, we will extend the bit selec-
tion hashing to semi-supervised hashing methods for
large scale semantic image retrieval problems. In the
BSH, a Hamming distance threshold is applied to judge
whether two images are similar or not. If a partly la-
beled database is used for training, the semantic infor-
mation can be directly used which is more reliable. A
new semantic-based fitness will be researched for semi-
supervised cases. Furthermore, the combination model
of the three metrics should be improved to further en-
hance the retrieval performance.
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