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摘要:序批式反应器(SBR)的处理过程的数据具有非高斯分布和高度非线性的特点,传统特征提取方法在进行特征提
取时仅仅考虑信息最大化而忽略数据的簇结构信息导致数据特征提取的不完整. 由于多向核熵成分分析是一种新的监
测方法,在监测过程中的应用表明能够克服传统监测方法的缺陷,减少误报警率.因此本文结合多向核熵成分分析的的
优势,提出多向核熵独立成分分析方法用于SBR过程监测及故障诊断. 首先,将三维SBR过程数据利用一种新的数据展
开技术变为二维数据;其次,利用核熵成分分析将展开后的二维数据映射到高维空间用独立成分分析进行独立成分提
取;最后提出一种基于多向核熵独立成分分析的故障诊断方法进行故障诊断. 将该方法和传统方法应用于80升
的SBR处理过程的监测结果表明,本文提出的方法优于传统的多向独立成分分析方法.
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Abstract: The data of sequencing batch reactor (SBR) has characteristics of non-Gaussian distribution and high nonlinearity, In order
to solve the problem that SBR process monitoring algorithm can only maximize the use of data information and ignore the information
in the structure of data cluster, a new multi-way kernel entropy component analysis (MKECA) method is proposed. It also address
the shortcomings of the traditional monitoring method in omission failure rate. A novel contribution analysis scheme named bar plot
is developed for MKEICA to diagnose faults. The proposed MKEICA method consist of three steps: 1) the three-dimensional data of
SBR is unfolded into two-dimensional by a new data expanding method. 2) kernel entropy principal component analysis (KEPCA) is
adopted to map the two-dimensional data into a high dimensional feature space and use independent component analysis (ICA) to extract
independent components (ICs) in feature space. 3) in the stage of online monitoring,bar plot is used to identify the variables causing
the fault. This method is successfully applied to an 80 L lab-scale SBR, and the experimental results demonstrate that, comparing with
traditional MKICA, the proposed MKEICA method exhibits better performance in fault detection and diagnose.
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1 Introduction
As a flexible and low-cost process, sequencing

batch reactors (SBRs) are commonly used for biolog-
ical waste water treatment. The SBR’s process is nor-
mally operated in a series of predefined phases: fill, re-
act, settle, draw, and idle[1]. The advantage of the SBR’s
process is that its single-tank designs and the flexibility

enable it to meet different treatment objectives[2]. In
consideration of the increasingly stringent regulations
of effluent quality, the on-line monitoring of SBR’s pro-
cesses shows its great significance in enhancing process
performance by detecting disturbances resulting to ab-
normal process operation at an early stage. In recent
years, several methods based on multivariate statisti-
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cal analysis have been developed for online monitoring
of the SBR’s process. However, the SBR’s process is
highly non-linear and non-Gaussian from the perspec-
tive of nonlinear biological reaction kinetics[3]. Thus,
real-time online monitoring of the SBR’s process is a
giant challenge.

More recently, fault detection based on indepen-
dent component analysis (ICA) has become a hot top-
ic[4–15]due to ICA’s assumption that latent variables do
not contain a Gaussian distribution, which is consider as
an extension of the principal component analysis(PCA).
The method exploits higer-order statistical information
to extract mutually independent latent variables called
independent components (ICs) from the non-Gaussian
process. Therefore, ICA is specially suitable for fault
detection on non-Gaussian process. In spite of attrac-
tive advantages of ICA, it is naturally a linear statisti-
cal method and can only be adopted to separate linearly
mixed ICs. But when process data are nonlinear, ICA
would be unable to recover ICs from process data,
leading to insufficient feature extraction. Kernel ICA
(KICA)[16–24] is emerged to come up with the non-
linear problems which is essentially kernel PCA plus
ICA. Normal operating data whitened by KPCA (k-
ernel PCA) and ICA is performed to search for ICs.
In light of superior capability of KICA in tackling with
nonlinear behavior of process. Lately, fault detection
based on MKICA has been focused, the multiway
kernel ICA (MKICA) methods uses higher order statis-
tics like negentropy or mutual information and extract-
s more information to obtain the independent compo-
nents. Zhang ect.[16] utilized KICA to extract some
dominant nonlinear independent component from non-
linear batches and proposed their usage for process
monitoring. Tian ect.[17] proposed to use KICA based
on feature samples as to reduce computational cost. Cai
ect.[22] put forward a modified KICA method to moni-
tor nonlinear time-varying processes. The main part of
KICA, commonly used for linear ICA, adopts the max-
imum non-Gaussian criterion for the optimization ob-
jective of IC feature extraction. If there’re two or more
ICs in Gaussian distribution, the criterion cannot effec-
tively distinguish their distribution characteristics. On a
more practical level, Fan ect.[23] applied filter KICA–
PCA for nonlinear batch process monitoring, Zhao
ect.[24] combined MKICA and MKPCA to improve the
performance of fault detection in nonlinear cases.

KPCA based data whiten solely focusing on maxi-
mizing data variance and ignore the phase process da-
ta information. Robert Jenssen ect.[25–26], proposed a
new Kernel entropy component analysis method for da-
ta transformation and dimensionality reduction, it based
on kernel entropy to extract data information. the stage
of treatment of bleaching dealing with damage charac-
teristics of original data can guarantee the angle struc-

ture data information. The KECA algorithm realizes da-
ta transformation and dimensionality by projecting the
input space to the KPCA axes, and its largest differ-
ence from KPCA is to select the principal element[15]

by the contribution of the entropy value of the input
space. Some scholars have applied KECA on pro-
cess monitoring[27–30], and have proven the useful in
chemical processes modeling. Several extension have
been proposed for feature selection[25–26] class depen-
dent feature extraction. And Semi supervised learning
as well. In this article, we use a novel spectral data
transformation method, which is fundamentally differ-
ent from other spectral methods in two very important
ways as follows:

1) KECA algorithm project input space onto KP-
CA axes to realize data transformation and dimension
reduction. The principal component selected by KECA
has a certain angle structure.

2) The linear ICA is extended to the nonlinear do-
main.

The remainder of the paper is organized as follows:
In Section 2, MKECA and MKEICA is introduced; Sec-
tion 3 process falut monitoring using MKEICA for fault
diagnosis is developed; Finally, Section 4 concludes this
article.

2 Preliminary
2.1 Kernel entropy component analysis

The Renyi quadratic entropy[25–26] is given by

H(p) = − log
w
p2(x)dx, (1)

where p(x) is the probability density function generat-
ing the data set, or sample, D = [x1 x2 · · · xn]
Since the logarithm is a monotonic function，we may
concentrate on the quantity:

V (p) = − log
w
p2(x)dx. (2)

In oder to estimate V (p) and H(p), we may invoke
a Parzen window density estimation described as

p̂(x) =
1

N

∑
xt∈D

kσ(x, xi), (3)

where kσ(x, xi) is the so-called Parzen window, or
kernl, centred at xi and with a width governed by the
parameter σ. Moreover, the Renyi entropy estimator
may be expressed in terms of the eigenvalues and eigen-
vectors of the kernel matrix, which may be eigen de-
composed as K = EDET, where as before, D is
a diagonal matrix storing the eigenvalues λ1, · · · , λN

and E is a matrix with the corresponding eigenvectors
e1, · · · , eN as columns. We then have been rewriting:

V̂ (p) = (
1

N2

N∑
i=1

√
λie

T
i 1). (4)

Each term in Eq. (2) will contribute to the entropy esti-
mate. This means that certain eigenvalues and eigenvec-
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tors will contribute more to the entropy estimate than
others since the terms depend on different eigenvalues
and eigenvectors. The eigenvalues and eigenvectors se-
lected are the first d largest contribution to the entropy
estimate in KECA so that the cumulative contribution
rate of the selected Renyi entropy reaches 85% of all the
Renyi entropy. Note that kernel PCA performs dimen-
sionality reduction by selecting eigenvalues and eigen-
vectors solely based on the size of the eigenvalues, and
the resulting transformation may be based on uninfor-
mative eigenvectors from an entropy perspective.

2.2 Kernel entropy independent component an-
laysis

Assuming that the observation vectors x1, x2, · · · ,
xn are non-linearly mapped into the feature space F ,
the covariance matrix[12] of the mapped data can be ex-
pressed by

CF =
1

n
ΦΦT. (5)

Assume for the time being that the mapped data are
centred. Define Q = [Φ(x1) Φ(x2) · · · Φ(xn)]. De-
fine the the Gram matrix K = QTQ.

Whose elements are defined by the given kernel
function kij as follows:

kij = Φ(xi)Φ
T(xj) = K(xi,xj). (6)

The polynomial, sigmoid and radial basis kernels are
widely for kij . In this paper, the radial basis kernel is
used:

K(x,y) = exp[−∥x− y∥2/2σ2], (7)

where σ is the Gaussian kernel width. The applica-
tion of the eigen decompoistion of the Gram matrix
leads to K = V ΛV T, where V ∈ Kn×d is the ma-
trix containing the orghonormal eigenvectors of K and
Λ = diag{λ1, λ2, · · · , λd} is the diagonal matrix con-
sisting of the eigenvalues of K. The eigenvalues and
eigenvectors selected are the first d largest to the vari-
ance in KECA so that the cumulative contribution rate
of the selected reaches 85% of all the variances.

d∑
i=1

V̂ (p)i /
n∑

i=1

V̂ (p)i × 100% > 85%. (8)

Thus the expression of CF in the case of K = QTQ
is as follows:

CF = (QV Λ−1/2)
Λ

n
(QV Λ−1/2)−1. (9)

As mentioned previously, the mapped data in the
feature space F should be centred before application of
the KECA projection. But it is difficult to centre the
data in F because the nonlinear map is unknown. How-
ever, a slight modification of notation circumvents this
difficulty, and one can centre the matrix K and the vec-
tor knew respectively, as follows[1–12]:

K̄ = K − LNK −KLN + LNKLN, (10)

K̄new = Knew − LnewK −KnewLN + LnewKLn

(11)

with

Ln = 1/n

1 · · · 1
...

. . .
...

1 · · · 1

 ∈ zn×n,

Lnew = 1/n[1 · · · 1] ∈ zn.

The whitened score is

z =
√
nΛ−1V TKT. (12)

The next task is to implement the ICA algorithm:

ŝ = W · z̄. (13)

From E{ŝŝT} = WE{z̄z̄T}WT = WWT = I ,
we get the conclusion that W is an orthogonal matrix
which can of course be obtained by the fast ICA algo-
rithm[12]. Assume that the most dominant independent
components ŝm are extracted, and denote the corre-
sponding de-mixing matrix as Wm. Then

ŝm = Wm · z̄, (14)

where the independent components s have the maxi-
mized statistical independency in terms of entropy am-
ong each other. Given a new sample vector xnew, and
its corresponding independent component can be ex-
pressed as

ŝnew = Wm · z̄new. (15)

Furthermore, the I2 and SPE statistics can be de-
fined process monitoring as follows:

I2 = ŝTmŝm ·
m∑

p=1

ŝTp ŝp, (16)

SPE = eTe ·
m∑
q=1

eTq eq, (17)

where e = (L−AmWm)K̄, with I denotes an identi-
fy matrix Am is the inverse matrix Wm. Given a new
sample vector xnew, its corresponding and SPEnew

statistics can be defined process monitoring as follows:

I2new = ŝTnewŝnew ·
m∑

p=1

ŝTnew,pŝnew,p, (18)

SPEnew = eTnewenew ·
m∑
q=1

eTnew,qenew,q
, (19)

where enew = (Lnew −AmWm)K̄new, the confidence
limits for the two statistics above can be estimated
through kernel density estimation strategy[10]. Conven-
tional statistical process monitoring methods like ICA
lack the ability to monitor non-Gaussian processes for
three main reasons. Firstly, the ICA method only uses
lower-order statistics, such as variance, to monitor pro-
cesses. Variance is a lower-order statistic, and hence
it is only sensitive to amplitude instead of sensitive to



No. 5

CHANG Peng et al: Fault diagnosis of sequential batch reaction process with nonlinear and

non-Gaussian coexistence 731

phase. However, phase and amplitude are equally im-
portant in monitoring non-Gaussian processes. Second-
ly, the ICA method only utilizes higher-order statistics
to extracting the ICs rather than monitor the process.

3 Process monitoring based on KEICA
3.1 Three dimensional data of the SBR

As a typical batch process, the data of SBR is a
three-dimensional array X(I × J ×K), where I , J ,
and K are numbers of batches, variables, and samples,
respectively. Since the multivariate statistical analysis
methods can only model for two-dimensional data, first
of all, SBR’s three-dimensional data should be trans-
formed into two-dimensional. The original method is
to unfold along batch[12], which means to unfold the
three-dimensional array to a matrix, and then normalize
the matrix according to Equations (20)–(22). The dis-
advantage of this method is that the future value of the
current batch must be estimated for on-line monitoring.

x̃i,kj =
xi,kj − x̄kj

skj
, (20)

x̄kj =
1

I

I∑
i=1

˜̃xi,kj, (21)

skj =

√
1

I − 1

I∑
i=1

(˜̃xi,kj − x̄kj)
2
. (22)

To avoid the drawback of unfolding along batch,
Lee et al.[14] proposed a new unfolding method, which
firstly unfolds the array X(I × J ×K) to a matrix
X(I × JK), and normalizes the matrix according to
Equations (20)–(22), and then unfolds the normalized
matrix to X̄(KI × J) along variable.

3.2 Fault diagnose
Once the fault is detected by the MKICA method,

the next step is to find out the root cause variables. Fault
reconstruction and contribution plots are two common-
ly used fault diagnosis methods, but both method need
a number of historical fault, which limits its applica-
tion. Therefore, this paper considers a new contribution
analysis scheme, bar graph, which can be convenient-
ly applied to kernel methods without historical failure
data.

The centroid matrix C ∈ RK×J of X̄(KI × J)
which is obtained in section “Processing of SBR’s
three-dimensional data” can be calculated by the fol-
lowing equation:

x̄kj =
1

I

I∑
i=1

˜̃xi,kj. (23)

Assuming that xk the test data at sample time k, The
steps to find a fault source using the bar plot method
are introduced as follows. First of all, the row vector

B (B ∈ RJ ) at k sample time is take from C and let
j = 1. Repeat the following 1)–5) steps until j > J .

1) Let B̄ = B.
2) The value of jth variable in B̄ is replaced by the

value of jth variable in xk.
3) The new data B̄ is monitored by MKEICA

again, and we can obtain the new I2(j) and SPE(j) sta-
tistics.

4) Let the new obtained I2(j) and SPE(j) sub-
tract the control limits at k sample time respective-
ly, and the results can be expressed as DI2(j) and
DSPE(j).

5) Let j = j + 1.
When the J th variables of DI2(j) and DSPE(j)

(DI2 ∈ RJ , DSPE ∈ RJ ) are achieved according to
the above steps, we can judge whether the DI2(j) and
DSPE(j) statistics are greater than zero respectively. If
the results are greater than zero, the J th variable can be
regarded as a fault variable; or else, it will be regarded
as a normal one.

3.2.1 Off-line modeling
1) Acquire an operating normal data. Unfold

X(I × J ×K) to X(I ×KJ) and normalize the ma-
trix according to Equation (1), then unfold the normal-
ized matrix to X̄(KI × J) along variable.

2) Obtain the centroid matrix C according to E-
quation (23). Calculate the gram Kernel matrix G ac-
cording to Equation (4). Then, center and normalize G
according to Equations (11) and (12).

3) Apply eigenvalue decomposition to G̃scl accord-
ing to Equation (8). Select d positive eigenvalues ac-
cording to Equation (10).

4) Extract the independent component matrix S
by the ICA model which is obtained by Equation (11),
and then p primary ICs are chosen to construct primary
component space Sp.

5) Construct two monitoring statistics I2 and SPE
according to Equations (19) and (20) respectively. Car-
ry out the kernel density estimation method to compute
the control limits of I2 and SPE.

3.2.2 On-line monitoring
1) For the k time data, xk(1 × J), normalize it

and achieve the kernel vector. Obtain the new indepen-
dent component sk and the new residual ek according
to Equation (19) and Equation (20). Calculate the new
I2k and SPEk statistics and judge them whether sur-
pass their control limits. If either of them surpasses the
control limit, execute Step 4; else, execute Step 4.

2) Take out the row vector B(B ∈ RJ ) at the k
sample time from C and let j = 1. let B̄ = B, re-
place the value of jth variable in B̄ by the value of jth
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variable in xk; monitoring the replaced new data B̄ by
MKEICA again, then we obtain the new monitoring s-
tatistics of I2 and SPE.

3) Let the new acquired I2 and SPE subtract their
control limits at the k samples, and the results can be
expressed as the DI2(j) and DSPE(j).

4) Let j = j + 1 jump to Setp 2; until j > J . Let
k = k + 1 ; if k 6 K, go to Step 1; or else finish.
3.3 Case study
3.3.1 Lab-scale plant SBR

The SBR data used in this article comes from a
pilot-scale SBR system. A fill-and-draw SBR with an
80-liter working volume is operated in a 6 h cycle mode
and each cycle consists of fill/anaerobic (60 min), aero-
bic (150 min), anoxic (60 min), re-aerobic (30 min) and
settling/draw (60 min) phases. Temperature (T), PH,
oxidation reduction potential (ORP), the first derivative
of ORP (dORP/dt), dissolved oxygen (DO), six elec-
trodes for conductivity, weight (W) in Table 1 are con-
nected to the individual sensors to check the status of
the SBR. A set of on-line measurements is obtained ev-
ery 3 minutes (120 times points per cycle). The experi-
ment lasted for 20 days, and 80 batches of data are col-
lected among which two batches fault data are included.
Fault 1 is a single fault. Aeration system should have
been stopped when the process moved to the third stage
(anoxic) from the second stage (aerobic). But in fact,
the aeration system was broken，causing to abnormal
rise of DO. This fault lasted from 211 min (sample num-
ber 71) to 290 min (sample number 90). Fault 2 is a
multiple fault, which is artificially added as a sensor
fault on the basis of Fault 1. The value of PH sensor
no longer changes since 131 min (sample number 44)
until the end of the reaction, namely the value remains
at 130 min. As biological reactions in the settling and
drawing phases were assumed to be negligible, the first
100 sampling time instants were only used. 60 batch-
es of normal data are selected to build model, and the
two fault batches described above are utilized to sim-
ulate monitoring on-line. Traditional MKICA and our
proposed method are experimented respectively.

Table 1 List of variables used for the monitoring of
process

Symbol Variables

x1 Temperature (T)

x2 Ph

x3 Oxidation reduction potential (ORP)

x4 The first derivative of ORP ((dORP/dt))

x5 Dissolved oxygen (DO)

x6 Six electrodes for conductivity

x7 weight (W)

3.3.2 Analysis of the results
60 batches of normal operating data X(60 × 7 ×

100) are used to build MKICA and MKEICA moni-
toring model, and Kernel Density Estimation method is
utilized to compute the control limits with 99% confi-
dence limits, and then two faulty batches data are mon-
itored respectively. Three variables 1, 3, 5 are selected
for non-Gaussian test. The results show that the pro-
cessing data deviate from the red line, indicating that
the data have non Gaussian characteristics from Fig. 1.

Fig. 1 1, 3, 5 normal test of process variables

Figure 2 shows the online monitoring results of
MKICA and MKEICA for the fault 1 batch. The fault
lasted from sample number 70th to 90th. Although
there is a false alarm point at about 70th sample in the
chart of MKICA and MKEICA, overall, both methods’
charts show fine fault detection performance. Never-
theless, the SPE chart of MKICA occurs a number of
leakage alarms between sample number 75th and 87th.
The fault detection performance is much less than the
SPE chart of MKICA.
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Fig. 2(a) Monitoring charts for MKICA

Fig. 2(b) Monitoring charts for MKEICA

Figure 3 shows the online monitoring results of the
and SPE charts of MKICA and MKEICA for the fault 2

batch. Fault 2 is a multiple fault, which is caused by two
variables. There into, the first PH sensor fault appeared
in the sample number 44th. This PH sensor fault is a
simulation of the value that no longer change, thus the
fault magnitude shows less at the initial stage, and it is
unable to detect the fault yet. Both and SPE charts of M-
KICA start to detect the occurrence of failure at sample
number 48th, and then they give an alarm till the end
of the process. Whereas the chart of MKICA detects
the occurrence of failure at sample number 49th. Even
worse, some leak alarms occur at sample number 50th,
55th and 97th. In addition, the SPE chart of MKICA de-
tects the occurrence of failure starting at sample number
48th, but leaks a point at sample number 49th. In sum-
mary, in consideration of the nonlinear problem of the
process variables, MKEICA shows better performance
than MKICA both at the timeliness of fault detection
aspects and at the occurrence of false alarm and alarm
failure aspects. Once a fault is detected, fault diagnose
comes next. The traditional contribution plot considers
the variable having the biggest contribution to be faulty
source while our proposed bar plot method considers all
variables greater than zero as fault variables.

Fig. 3(a) Monitoring charts for MKICA
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Fig. 3(b) Monitoring charts for MKEICA

Figure 4 is the contribution plots of MKEICA for
fault 1 at sample number 76th.

Fig. 4(a) Contribution plots of I2

Fig. 4(b) Contribution plots of SPE

Fig. 4(c) New bar plots of I2 for fault 1 at sample 75th

Fig. 4(d) New bar plots of SPE for fault 1 at sample 75th

Figure 4(a) indicates that variable 5 (DO) is the fault
variable, which is right. However, Fig. 4(b) indicates
that variable 7 (W) is the fault variable, which is false.
Fig. 4 is the new bar plots of MKEICA for Fault 1 at
sample number 75th. Both Fig. 4(c) and Fig. 4(d) indi-
cate that variable 5 (DO) is the fault variable, which is
right.

Figure 5 is fault diagnosis charts of MKEICA for
Fault 2 at sample number 82th. Fault 2 is a multi-
ple fault at this sample number. From Fig. 5(c) and
Fig. 5(d), we can see clearly that the values of variable
2 (Ph) and variable 5 (DO) are greater than zero, so
they are fault variables. Our proposed method can com-
pletely and accurately identify the two faulty sources
while the traditional contribution plot normally consid-
ers the variable having the biggest contribution to be
faulty source. Fig. 5(a) and Fig. 5(b) can only identify
variable 2 (Ph) as the fault variable, but neglect another
fault variable, namely variable 5 (DO).

Fig. 5(a) Contribution plots of I2
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Fig. 5(b) Contribution plots of SPE

Fig. 5(c) New bar plots of I2 for Fault 1 at sample 85th

Fig. 5(d) New bar plots of SPE for Fault 1 at sample 85th

4 Conclusions
In this article, we proposed a novel monitoring stra-

tegy based on MKEICA for the online detection fault
of batch process. The data mapped into feature space
become redundant and linear data introduce error when
the kernel trick is used. In addition, in the training pro-
cess of kernel principal component analysis (KPCA),
the eigenvalues and eigenvectors selected are the first
largest contribution to entropy estimate in KECA so that
the cumulative contribution rate of the selected Renyi
entropy reaches 85% of all the Renyi entropy. Unlike
other kernel feature extraction methods, the top eigen-
values and eigenvectors of the kernel matrix are not nec-
essarily chosen. Data are interestingly mapped with a
distinct angular structure, which is exploited to derive
a new angle-based spectral clustering algorithm based
on the mapped data. The method takes advantage of
higer-order statistics, which are more sensitive to faults.
Consequently, the proposed approach can effectively

capture the nonlinear non-gaussian relationship among
the process variables and its application to process mon-
itoring shows better performance. The case study on
the Penicillin fermentation process demonstrates the
method of MKEICA is considerably more effective than
conventional method of MKICA in fault detection and
diagnosis. With further development, the proposed
method will be useful to nonlinear non-gaussian SBR’s
process monitoring.
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