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摘要:针对航天器交会问题存在外部干扰和输入饱和的情况,本文提出了一个输出反馈跟踪控制器. 仅利用测量
得到的相对位置信息,设计了一个滑模观测器用来估计相对角速度,并根据该估计值设计了一个鲁棒反步控制律.
通过引入一个辅助系统,对输入饱和情况进行了分析.采用Lyapunov稳定性理论,证明了本文提出的该控制器能够
保证位置和速度跟踪误差的一致有界性. 最后通过数值分析验证了所设计的输出反馈控制器的有效性.
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Output feedback control for spacecraft rendezvous with
control saturation
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Abstract: An output feedback tracking control law is developed for spacecraft rendezvous problem in the presence of
external disturbance and input saturation. By only using the measurable relative position, a sliding-mode-based observer is
designed to estimate the relative velocity. With the estimated information, a robust backstepping control law is designed,
where an auxiliary system is introduced to analyze the saturated input. With the Lyapunov framework, the proposed
controller is proved to ensure the ultimate boundedness of the tracking errors of position and velocity. Numerical simulation
demonstrates the effect of the designed control law.
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1 Introduction
Spacecraft rendezvous is one of the fundamental

maneuvers in many space missions. Recently, great de-
velopments for spacecraft rendezvous control law de-
sign have been witnessed, and many control schemes
have been proposed[1–6]. However, many spacecraft
rendezvous models in literatures are simplified to match
the forms of design methods for convenience. Further-
more, full-state measurements of a spacecraft are al-
ways assumed to be available, i.e., the position and the
velocity. But this can not be achieved all the time, es-
pecially when some failures occur in velocity sensors
which may result in wrong measurements. Another
practical issue of significant importance in many appli-
cations is the physical constraint of actuators, that is,
input saturation, which imposes limitations on the mag-
nitude of the control input. Inspired by these three is-
sues, this paper presents an output feedback controller

by using fully nonlinear relative dynamics in the pres-
ence of external disturbances and input saturation.

Output-feedback controller design for spacecraft
rendezvous has attracted enormous amount of attention
all the time. In [7], an dynamic filter is established to
generate a pseudo-velocity tracking error signal to facil-
itate the output feedback control law design, which was
synthesized based on Lyapunov theory. In [8], a dynam-
ic output feedback controller is designed to place the
closed-loop poles within a specified disc, and computed
by using LMIs to satisfy multi-objective requirements.
In [9], the spacecraft rendezvous system was augmented
with a passivity-based filter to generate pseudo-velocity
estimates, with relative position error taken as the filter
input. In [10], the author proposed a sliding-mode ob-
server to reconstruct the full states with only the output
measurement available for a class of nonlinear systems.

Control input saturation is a very practical issue that
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can not be neglected in control law design, and various
approaches are proposed to tackle this problem. In [11],
a signal with non-achievable portion of control signal
was filtered to produce the magnitude, rate, and band-
width limited control input, and then, a controller was
designed based on backstepping scheme. In [12], a dead
zone operator based model was considered as the thrust
saturation phenomenon, and when the control law is
designed as based on the dead zone model, the satura-
tion constraint was directly satisfied. In [13], the author
proposed a continuous dynamic scheduling approach to
the stabilization of linear systems with input saturation.
In [14], an auxiliary system was introduced for the con-
venience of input constraint effect analysis, and when
the state of the auxiliary system was in a domain, the
non-existence of input saturation is guaranteed.

It is worth pointing out that most research deals
with spacecraft rendezvous either output feedback de-
sign or input saturation only. Further effort is needed
to research the integrated design for the two problems.
The main motivation and contribution of this paper is to
attempt to tackle the two problems together. In this pa-
per, a velocity-free tracking control law is designed for
spacecraft rendezvous described by the fully nonlinear
Clohessy-Wiltshire (C--W) equations in the presence of
input saturation and external disturbance. Because slid-
ing mode control has strong robustness and can achieve
finite-time convergence, a sliding-mode-based observ-
er is designed to estimate the relative velocity by only
using the measurable relative position. In addition, an
auxiliary system is introduced to analyze the saturated
input. The rest of the paper is organized as follows:
In Section 2, the fully nonlinear spacecraft rendezvous
model is presented. In Section 3, a sliding-mode ob-
server is designed, and a tracking controller is proposed.
Numerical simulation is presented to demonstrate the
effect of the derived controller in Section 4, and conclu-
sions are given in Section 5.

2 Mathematical model and problem formu-
lation

2.1 Mathematical model
Usually in spacecraft rendezvous problems, the

local-vertical-local-horizontal (LVLH) frame is used to
describe the relative orbit dynamics by attaching its o-
rigin to the center of mass of the target. The X-axis
points radially outward from its orbit, the Y -axis is per-
pendicular to X along its direction of motion, and the
Z-axis completes the right-handed coordinate system.
This frame is taken as the reference target trajectory for
the chaser spacecraft.

The relative motion between the chaser and the tar-
get in the LVLH coordinate can be described by the
fully nonlinear Clohessy-Wiltshire (C--W) equations,
shown as follows[9]:



ẍ = 2θ̇ẏ + θ̈y + θ̇2x− µ(rc + x)

ρ3
+

µ

r2c
+

1

m
Fx + dx,

ÿ = −2θ̇ẋ− θ̈x+ θ̇2y − µy

ρ3
+

1

m
Fy + dy,

z̈ = −µz

ρ3
+

1

m
Fz + dz,

(1)
where x, y, z stand for the relative position of
chaser with respect to the target, rc and ρ =√
(rc + x)2 + y2 + z2 represent the distance from the

center of the Earth to the target and the chaser respec-
tively, θ denotes the latitude angle of the target, and µ
is the gravity constant. Fi(i = x, y, z) is the control in-
put force acting on the chaser, and m is the mass of the
chaser. di(i = x, y, z) is the external disturbance with
known upper bound on the norm d∗, that is, ∥d∥ 6 d∗.

Let x1 = [x y z]T, x2 = [ẋ ẏ ż]T, F =

[Fx Fy Fz]
T, and d = [dx dy dz]

T, then the system
can be rewritten in the following equivalent form:{

ẋ1 = x2,

ẋ2 = A1x1 +A2x2 + g +
1

m
F + d,

(2)

where

A1 =


θ̇2 − µ

ρ3
θ̈ 0

−θ̈ θ̇2 − µ

ρ3
0

0 0 − µ

ρ3

 ,

A2 =

 0 2θ̇ 0

−2θ̇ 0 0

0 0 0

 , g =

−
µrc
ρ3

+
µ

r2c
0
0

 .

2.2 Problem formulation
Considering the spacecraft rendezvous relative dy-

namics model described by Eq.(1) with known initial
position of the chaser relative to the target, for any giv-
en desired relative position trajectory xd, the objective
of this paper is to design a control law without velocity
measurement, that is, x2 is not required, to guarantee
that all states in the closed-loop system are uniformly
ultimately bounded in the presence of external distur-
bance d and input constraint, that is, each actuator can
generate the force of no more than Fmax.

3 Design of tracking controller without ve-
locity measurements
In this section, we will derive a control velocity-

measurement-free law based on sliding-mode observer
for autonomous spacecraft rendezvous. Before giving
the main results, some notations and lemmas are neces-
sary to be introduced first.

Notation: ∥ · ∥ represents the Euclidean norm of
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vectors or induced norm for matrices. For a given vec-
tor x = [x1 x2 x3]

T ∈ R3 and a scalar α ∈ R, define
xα = [xα

1 xα
2 xα

3 ]
T, sgnx = [sgnx1 sgnx2

sgnx3]
T, and sigxα = [|x1|αsgnx1 |x2|αsgnx2

|x3|αsgnx3]
T; here, “sgn (·)” denotes the signum

function.
Lemma 1[15] For any ai ∈ R, i = 1, 2, · · · , n,

(|a1|+ |a2|+ · · ·+ |an|)υ 6
|a1|υ + |a2|υ + · · ·+ |an|υ,

where υ is a real number and υ ∈ (0, 1].
Lemma 2 [16] Suppose a1, a2, · · · , an and 0 <

υ < 2 are all positive numbers, then the following in-
equality holds:

(α2
1 + a2

2 + · · ·+ a2
n)

υ 6 (aυ
1 + aυ

2 + · · ·+ aυ
2)

2.

Lemma 3 [17] For system ẋ = f(x), f : D →
Rn, f(0) = 0, suppose there exist a continuously dif-
ferentiable function: V : D → R, real numbers k > 0
and α ∈ (0, 1), and a neighborhood U ⊂ D of the ori-
gin such that V is positive definite on U and V̇ +kV α is

negative semidefinite on U , where V̇ =
∂V (x)

∂x
f(x).

The origin is a finite-time-stable equilibrium of the sys-
tem. Moreover, if T is the settling time, then

T (x) 6 1

k(1− α)
V 1−α(x) (3)

for all x in some open neighborhood of the origin.
Lemma 4 [16] An extended Lyapunov description

of finite-time stability can be given with the form of fast
terminal sliding mode as

V̇ (x) + λ1V (x) + λ2V
α(x) 6 0,

where λ1 > 0, λ2 > 0, 0 < α < 1, and the settling
time can be given by

T 6 1

λ1(1− α)
ln

λ1V
1−α(x0) + λ2

λ2

, (4)

where V (x0) is the initial value of V (x).
Lemma 5 Consider the nonlinear system ẋ =

f(x,u), where x is a state vector, x is the input vector.
Suppose that there exist a Lyapunov function V (x) and
scalars α, β, γ, η ∈ R+, 0 < γ < 1, and 0 < ϑ < ∞,
such that V̇ (x) 6 −αV (x) − βV γ(x) + ϑ. Then,
the trajectory of this system is practical fast finite-time
stable (PFFS). Moreover, the trajectory of the system is
bounded in finite time as

lim
t→T

x∈ {V (x)6min{ ϑ

α(1− θ)
,

ϑ1/γ

β1/γ(1− θ)1/γ }}.

(5)

where 0 < θ 6 1. And the time needed to reach Eq.(5)
is bounded by

T 6 1

αθ(1− γ)
ln

αV 1−γ(x0) + β

β
, (6)

where V (x0) is the initial value of V (x).

Proof There exists a scalar 0 < θ 6 1, such that
V̇ (x) 6 −αV (x)− βV γ(x) + ϑ can be expressed as
follows:

V̇ (x)6−θ[αV (x) + βV γ(x)]−
(1− θ)[αV (x) + βV γ(x)] + ϑ. (7)

If −(1− θ)[αV (x) + βV γ(x)] + ϑ 6 0, it is ob-
tained that V̇ (x) 6 −θ[αV (x)+βV γ(x)]. According
to Lemma 4, V (x) converges into a invariant set satis-

fying αV (x)+βV γ(x) 6 ϑ

1− θ
in finite time. There-

fore, the trajectory of the closed-loop system is bounded
as

lim
θ→θ0, t→T

x∈ {V (x) 6 min{ ϑ

α(1− θ)
,

ϑ1/γ

β1/γ(1− θ)1/γ }}, (8)

where 0 < θ0 < 1, and the time needed is

T 6 1

αθ(1− γ)
ln

αV 1−γ(x0) + β

β
, (9)

where V (x0) is the initial value of V (x). QED.
Remark 1 The range of x and T estimated above

is conservative, which arises from the following two aspects.
When θ0 ∈ (0, 1) is specified a fixed value, V̇ (x) < 0 after
the time calculated from Eq.(9), then V (x) continues to de-
crease. Therefore, the ultimate bound of x is smaller than that
in Eq.(8), and the time needed is longer. On the other hand,
the conservative estimation of x in Eq.(8) comes from solving

the inequality αV (x) + βV γ(x) 6 ϑ

1− θ
due to γ ∈ (0, 1).

3.1 Sliding-mode observer design
Position sensors are equipped to measure the rela-

tive position between the chaser and the target; there-
fore, x1 is available. The output of system (2) defined
by xo = x1 is thus available. To estimate states x1 and
x2 in finite time, define x̂1 and x̂2 as the corresponding
estimates, and a sliding-mode observer is proposed as
follows[18]:

˙̂x1 = x̂2 − xv, (10)

˙̂x2 =A1x̂1 +A2x̂2 + g +
1

m
F − λo2xv −

λo3sig
α(xv), (11)

where xv = λo1sgn εo1, εo1 = x̂1 − x1 denotes
the observer error about position, λoi(i = 1, 2, 3) and
α ∈ (0, 1) are positive scalars. Define εo2 = x̂2 − x2,
the following theorem can be given.

Theorem 1 Consider the system (2) in combi-
nation with observer (10) and (11). Choose α and ob-
server gains λoi(i = 1, 2, 3) such that λo1 > ε0,

λo2 > ||A2|| +
d∗2

4ϵ
and λo3 > 0, where ϵ is a small

positive scalar. Then, the observer error εo1 converges
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to zero in finite time, that is, εo1 ≡ 0 for all t > To1,
and εo2 is practical fast finite-time stable (PFFS), that
is, ||εo2|| 6 ε0 for all time t > To2. And the expres-
sions of ε0, To1 and To2 are presented in the following
proof.

Proof The observer error dynamics can be ob-
tained from Eqs.(2)(10) and Eq.(11) as follows:

ε̇o1 = εo2 − εv, (12)

ε̇o2 = A1εo1 +A2εo2 − d− λo2xv −
λo3sig(xv)

α. (13)

Consider a candidate Lyapunov function as

Vo1(t) =
1

2
εT
o1εo1.

From Eq.(12) and Lemma 1, the derivative of it can be
then written as

V̇o1 = εT
o1ε̇o1 6

εT
o1εo2 − λo1∥εo1∥ 6 −∥εo1∥(λo1 − ∥εo2∥).

One could choose λo1 > ∥εo2∥ + lo1, where lo1 is a
positive scalar. Then, we have

V̇o1 6 −lo1∥εo1∥ = −
√
2lo1V

1/2
o1 .

By Lemma 3, Vo1 converges to zero in finite time, that
is, sliding surface εo1 = 0 can be reached in finite time

To1, where To1 = t0 +
∥εo1(t0)∥

lo1
according to Eq.(3).

Choosing λo1 > max
t∈[t0,To1]

∥εo2(t)∥, it then allows a

fixed value for λo1 to ensure ∥εo1∥ reaching sliding sur-
face. On the surface, εo1 = ε̇o1 = 0, from Eq.(12), we
have the equivalent control εo2 = (xv)eq.

After time To1, substituting (xv)eq into Eq.(13)
yields the following observer error dynamics:

ε̇o1 = 0, (14)

ε̇o2 = A2εo2 − d− λo2εo2 − λo3sig
α(εo2). (15)

Consider the candidate Lyapunov function this time

as Vo2(t) =
1

2
εT
o2εo2. Then, we can obtain the deriva-

tive of Vo2 by Eq.(14) and Eq.(15):

V̇o2 = εT
o2ε̇o2 =

εT
o2(A2εo2 − d− λo2εo2 − λo3sig

α(εo2)) 6
−(λo2 −∥A2∥)∥εo2∥2− λo3∥εo2∥α+1+ ∥εo2∥d∗ 6

−(2λo2 − 2∥A2∥ −
d∗2

2ϵ
)Vo2 −

2
α+1
2 λo3V

α+1
2

o2 + ϵ,

where ϵ is a small positive constant. Choosing λo2 >

∥A2∥+
d∗2

4ϵ
+ lo2 with lo2 being a positive scalar, gives

V̇o2 6 −γo1Vo2 − γo2V
β
o2 + ϵ,

where β =
α+ 1

2
, γo1 = 2λo2 − 2∥A2∥ − d∗2

2ϵ

and γo2 = 2βλo3. Employing Lemma 5 and choosing
θ = 0.5, εo2 can be then bounded as

εo2 ∈ Γ = {εo2|Vo2 6 min{ 2ϵ

γo1
,

ϵ
1
β

γ
1
β

o2(1/2)
1
β

}}

in finite time To2, where

To2 = To1 +
2

γo1(1− β)
ln

γo1V
1−β
o2 (To1) + γo2

γo2

by Eq.(6). Therefore, Γ is a region of attraction and
∥εo2∥ 6 ε0 for all t > To2, where ε0 is given by

ε0 , max{min{2ϵ
1
2

γ
1
2
o1

,
2

1+β
2β ϵ

1
2β

γ
1
2β

o2

}, ∥εo2(0)∥}.

The inequality λo1 > ∥εo2∥ + lo1 is thus always satis-
fied if λo1 > ε0, and the finite-time convergence of εo1

can be guaranteed. This theorem is proved thereby.
QED.
Remark 2 The existence of signum function in the

observer, i.e., in Eqs.(10) and (11), may lead to undesirable
chattering. The problem can be attenuated by introducing a
‘sigmoid function’[19]

sgnσ ≈ σ

|σ|+ δ0
,

where δ0 is a small positive scalar.

3.2 Tracking controller design
Employing the estimated states in the observer

Eqs.(10) and (11), with the help of Lyapunov stability, a
tracking control law for the spacecraft rendezvous sys-
tem can be designed based on backstepping approach in
the absence of velocity measurements, and the magni-
tudes of the input forces are guaranteed to be bounded
by Fmax. We first define the change of coordinates as
follows:

z1 = x̂1 − xd, (16)

z2 = x̂2 + (c+ 0.5η)z1 − ẋd, (17)

where c and η are positive scalars.
Design a control law as

F = sat(v, Fmax), (18)

where v is the input signal of the controller. From
Eq.(18), the forces acting on the chaser have the upper
and lower limit. Here, an auxiliary system is introduced
to analyze the saturated input conveniently[14]:

ẋa =

−k1xa −
g(∆F )

∥xa∥2
xa −

∆F

m
, ∥xa∥ > δ,

0, ∥xa∥ < δ,

(19)

where ∆F = F −v, g(∆F ) =
∥∆F ∥2

m2
, k1 is a posi-

tive scalar, xa ∈ R3 is the state of the auxiliary system,
and δ is a positive parameter to be designed.

The introduced mathematical treatment require-
ment deals with the input saturation in the following two
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situations: 1) If there exists input saturation, the state of
the auxiliary system satisfies the condition ∥xa∥ > δ.
2) While ∥xa∥ < δ represents the other case, that is,
there does not exist actuator saturation. The auxiliary
system is introduced to analyze the effect of input con-
straint, and xa is used to design the controller input.
The stability of the closed-loop system can be guaran-
teed by Lyapunov function, which is then given by rig-
orous proof of Theorem 2.

Theorem 2 Considering the spacecraft ren-
dezvous system denoted by Eq.(1) with the sliding-
mode observer Eqs.(10) and (11), design the input sig-
nal v of controller Eq.(18) as follows:

v=m{−A1x̂1 −A2x̂2 − g + ẍd −
(c+ 0.5η)[z2 − (c+ 0.5η)z1]−
z1 + χ− k2z2 − k3xa}, (20)

where χ = −0.5η[λ2
o2 + λ2

o3 + (c+0.5η)2]z2, k2 and
k3 are positive control gains satisfying

k2 − 1 > 0, k1 − 0.5k2
3 − 0.5 > 0. (21)

Then, the relative position of the closed-loop ren-
dezvous system can follow the desired trajectories, and
the tracking error satisfies ∥x1 − xd∥ < ε∗ for all
t > T ∗, where ε∗ and T ∗ is given in the proof.

Proof If the initial condition x1(0) = x̂1(0),
εo1 ≡ 0 for all t > 0, and εo2 = (xv)eq holds. From
Eqs.(16) and (17), the following derivatives can be ob-
tained

ż1 = z2 − (c+ 0.5η)z1 − εo2,

ż2 = ˙̂x2 + (c+ 0.5η)[z2 − (c+ 0.5η)z1 −
εo2]− ẍd.

Case 1 There exists input saturation, that is,
∥xa∥ > δ. Choose a candidate Lyapunov function as

V1(t) =
1

2
zT
1 z1 +

1

2
zT
2 z2 +

1

2
xT

a xa, then combining

Eqs.(11) and (20), yields

V̇1(t) =

zT
1 ż1 + zT

2 ż2 + xT
a ẋa =

−(c+ 0.5η)zT
1 z1 − zT

1 εo2 − k1∥xa∥2 −
∥∆F ∥2

m2
− xT

a

∆F

m
+ zT

2 [−λo2εo2 −

λo3|εo2|αsgn εo2 − (c+ 0.5η)εo2 +

∆F

m
+ χ− k2z2 − k3xa]. (22)

To estimate the bound of the above equality, the follow-
ing inequalities can be obtained by employing Young’s
inequality.

−zT
1 εo2 6 η

2
∥z1∥2 +

1

2η
∥εo2∥2, (23)

−xT
a

∆F

m
6 1

2
∥xa∥2 +

1

2

∥∆F ∥2

m2
, (24)

−λo2z
T
2 εo2 6 ηλ2

o2

2
∥z2∥2 +

1

2η
∥εo2∥2, (25)

−λo3z
T
2 |εo2|αsgn εo2 6

ηλ2
o3

2
∥z2∥2 +

3

2η
∥εo2∥2α, (26)

−(c+ 0.5η)zT
2 εo2 6

η(c+ 0.5η)2

2
∥z2∥2 +

1

2η
∥εo2∥2, (27)

zT
2

∆F

m
6 1

2
∥z2∥2 +

∥∆F ∥2

2m2
, (28)

−k3z
T
2 xa 6 1

2
∥z2∥2 +

k2
3

2
∥xa∥2. (29)

Then, substituting the above inequalities Eqs.(23)–
(29) into Eq.(22), and considering the expression of χ,
yields that V̇1(t) is bounded as follows:

V̇1(t)6−czT
1 z1 − (k2 − 1)∥z2∥2 − (k1 − 0.5k2

2 −

0.5)∥xa∥2 +
3

2η
∥εo2∥2 +

3

2η
∥εo2∥2α 6

−m1(∥z1∥2 + ∥z2∥2 + ∥xa∥2) +
3

2η
(∥εo2∥2 + ∥εo2∥2α) 6

−2m1V (t) + ε1,

where m1 = min{c, k2 − 1, k1 − 0.5k2
2 − 0.5}, ε1 =

3

2η
(∥εo2∥2 + ∥εo2∥2α). Using the comparison lemma

in [20], V1(t) is thus bounded as

V1(t) 6 V1(To2)e
−2m1t +

ε1
2m1

(1− e−2m1t).

Therefore, there exists a finite time T ∗
1 > To2 such that

the tracking errors satisfy ∥z1∥ = ∥x1−xd∥ 6 ε∗1 and

∥z2∥ 6 ε∗1 for ∀ε∗1 >
√

ε1
m1

.

Case 2 There does not exist input saturation, that
is, ∥xa∥ < δ and ∆F = 0. Due to ẋa = 0, this time
chooses the candidate Lyapunov function as V2(t) =
1

2
zT
1 z1 +

1

2
zT
2 z2, and the derivative can be obtained as

follows:

V̇2(t) =−(c+ 0.5η)zT
1 z1 − zT

1 εo2 +

zT
2 [−λo2εo2 − λo3|εo2|αsgn εo2 −

(c+ 0.5η)εo2 + χ− k2z2]. (30)

Employing the Young’s Inequality again, and substitut-
ing χ into Eq.(30), it is obtained, by similar means, that
V̇2(t) is bounded as

V̇2(t)6−czT
1 z1 − (k2 − 0.5)∥z2∥2 +

3

2η
(∥εo2∥2 + ∥εo2∥2α) +

k2
3

2
δ2 6

−m2V2(t) + ε2,

where m2 = min{c, k2−0.5}, and ε2 =
3

2η
(∥εo2∥2+
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∥εo2∥2α) +
k2
3

2
δ2. And

V2(t) 6 V2(To2)e
−2m2t +

ε2
2m2

(1− e−2m2t).

Thus, there exists a finite time T ∗
2 > To2 such that

∥z1∥ = ∥x1 − xd∥ 6 ε∗2 and ∥z2∥ 6 ε∗2 for ∀ε∗2 >√
ε2
m2

.

Combining the above two cases, the tracking er-
rors satisfy ||x1 − xd|| 6 ε∗ and ||z2|| 6 ε∗ for
∀ε∗ > max{ε∗1, ε∗2} and t > T ∗ = min{T ∗

1 , T
∗
2 }. In

the proof, the saturation constraint always holds. This
theorem is thus proved. QED.

4 Simulation results
In this section, the simulation about autonomous s-

pacecraft rendezvous is performed to demonstrate the
effectiveness of the proposed controller, and the param-
eters needed are formulated as follows.

Suppose that the target spacecraft is on the geosyn-
chronous orbit of radius rc = 42164 km and the grav-
ity constant is µ = 3.986 × 1014 m3/s2. Thus, the
target angular velocity is θ̇ =

√
µ/r3c , and θ̈ = 0.

The mass of chaser is m = 300 kg. It is pointed out
that the disturbances acting on spacecrafts from oth-
er objects may result in periodic influence[21]. There-
fore, the external disturbance in the rendezvous mod-
el is formulated as periodic functions and chosen as in
the form[22]: d = [3 cos(0.2t) + 1 1.5 sin(0.2t) +
3 cos(0.2t) 3 sin(0.2t) + 1]T × 10−5 m/s2. The
desired relative trajectory is the chaser flying around
the target, and the reference is specified as xd =
[0 1000 sin(0.002π) 1000 cos(0.002π)]T m. The
observer parameters are chosen as λo1 = 1.5, λo2 =
7.5, λo3 = 1.5 and α = 0.6. Select the scalars in the
auxiliary system as k1 = 3, δ = 0.001, and the con-
troller gains are designed as c = 0.01, η = 0.2, k2 =
5 and k3 = 0.75. Besides, assume that the actuators
fixed on the chaser can generate the maximum force of
Fmax = 200 N. The initial states of the rendezvous dy-
namics are given as x1 = [50 − 80 1100]T m, x2 =
[0.1 1 − 0.4]T m/s, and the observer initial values as
x̂1 = x1, x̂2 = [0 0 0]T m/s.

With the application of the proposed terminal
sliding-mode observer Eqs.(10) and (11), Fig. 1–4 show
the observer errors. It is seen that the estimated rel-
ative position error reaches the sliding surface εo1 =
0 in finite time at about 0.8 s, and obtains a high ac-
curacy of |εo1i| < 2×10−9(i = 1, 2, 3) after having
a steady behavior from Fig. 2. About 0.2 s later, the ve-
locity error is well converged, and bounded as |εo2i| <
3 × 10−8(i = 1, 2, 3) ultimately, as shown in Fig. 4.
The results demonstrate the finite-time convergence of
εo1 and εo2 with high accuracy in the presence of exter-
nal disturbance which is illustrated in Theorem 1.

Fig. 1 The initial response of observer error εo1

Fig. 2 The steady-state behavior of observer error εo1

Fig. 3 The initial response of observer error εo2

Fig. 4 The steady-state behavior of observer error εo2
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Employing the designed controller described by
Eqs.(18) and (20), the chaser flies around the target a-
long the reference trajectory as shown in Fig. 5. Ac-
cording to Fig. 6–9, it is shown that relative motion
tracks the desired xd precisely, and the tracking errors
of position and velocity are |x1i − xdi| < 2 × 10−5

and |x2i − ẋdi| < 3 × 10−5 respectively. This verifies
the effectiveness of the controller even without velocity
measurement.

Fig. 10 and Fig. 11 show the generated forces acting
on the chaser. It is noted that the forces always satisfy
the input constraint, and the controller prevents the ac-
tuator saturation effectively.

Fig. 5 The relative position between the chaser and the target

Fig. 6 The initial response of position tracking error x1 − xd

Fig. 7 The steady-state behavior of x1 − xd

Fig. 8 The initial response of velocity tracking error x2 − ẋd

Fig. 9 The steady-state behavior of x2 − ẋd

Fig. 10 The whole command control input F

Fig. 11 The initial command control input F
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5 Conclusions
In this paper, a tracking controller without veloc-

ity measurement is proposed for the autonomous ren-
dezvous subjected to input constraint. The relative dy-
namics described by Clohessy-Wiltshire equations is
fully nonlinear with external disturbance. Different
from many approaches dealing with output feedback, a
terminal sliding-mode observer is designed to estimate
the relative velocity in finite time. In addition, to man-
age the input saturation, an auxiliary system is intro-
duced in the design of the tracking controller. Numer-
ical simulations are presented to validate the previous
analysis; meanwhile, the estimation from observer and
flying around can be achieved with high accuracy.
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