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Abstract: In this paper, we consider non-cooperative stochastic adaptive multi-player games described by linear
discrete-time stochastic systems with unknown parameters. The least-squares algorithm together with the certainty e-
quivalence principle is used by each player in designing the strategy for optimizing its own one-step-ahead payoff function.
It will be shown that the resulting adaptive strategy profile can make the closed-loop system globally stable and at the same
time, the profile converges to an asymptotic Nash equilibrium in some sense.
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1 Introduction
In the areas of the control and game, much progress

have been made in both theory and application over
the past half century. Game theory and control theo-
ry have been developed in parallel to a large extent[1–7],
although they are related in many aspects (e.g. [8]).
With the investigation of complex adaptive systems, the
combination of the control theory and the game the-
ory has received increasing attention in recent years
(e.g. [9–12]). A classical situation is the differential
games[3, 13] which were motivated by combat problems,
and have been applied in many disciplines, such as so-
ciology, biology, economics, management science and
power systems (e.g. [14–17]). However, in the classical
game model, almost all of the existing studies assume
that the model parameters are known to the players,
which are unrealistic in many practical situations, since
there always exist uncertainties in modelling real world
systems[18], and the uncertainties may even change from

time to time. When the structure and the parameters
are unknown, a nature way in control systems design is
to use the online measurement information to estimate
the unknowns, which are then used to construct or up-
date the controller. This is usually called adaptive con-
trol design[4–7], which is known to be a powerful tool in
dealing with systems with large structure uncertainties.
Since the adaptive control is a typically nonlinear feed-
back which performs identification and control simulta-
neously in the same feedback loop, a rigorous theoret-
ical investigation for the closed-loop adaptive control
systems is well-known to be complicated, even if the
open-loop control systems are linear. Therefore, when
we deal with game problems using adaptive control ap-
proaches, a central theoretical problem is how to estab-
lish the convergence of the adaptive strategy profile by
overcoming difficulties arising from nonlinearities. Li
and Guo[11–12] have studied adaptive game problems de-
scribed by continuous-time state space stochastic mod-
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els with full state information. Moreover, Yuan and
Guo[19] have investigated related problems for a zero-
sum game described by an input-output stochastic mod-
el with stringent assumptions on the system parameters.

In this paper, we will extend the work of Yuan
and Guo[19] and Hu and Guo[20] to general multi-player
non-cooperative stochastic games. We assume that the
parameters are unknown to the players in the system
model, and attempt to use the ideas and methods of
adaptive control to deal with the unknown parameters
and to design a strategy profile for the players, aiming
at minimizing the respective payoff functions. We will
prove that the adaptive strategy profile can make the
system globally stable, and at the same time, the pro-
file is an asymptotic Nash equilibrium solution to our
game problem.

The remainder of the paper is organized as follows:
The problem formulation and the main results will be
presented in the next section, the stability and perfor-
mance analysis will be conducted in Sections 3, and fi-
nally some concluding remarks will be given in the last
section.

2 The main results
Consider the following linear stochastic input-

output model with r players:

A(z)yt+1 = B1(z)u1t + · · ·+Br(z)urt + wt+1,

(1)

where {yt} and {wt} are, respectively, the system out-
put and noise process, {uit}(i = 1, · · · , r) are the con-
trols or strategies of the players (without loss of gener-
ality, we assume yt = wt = uit = 0, ∀ t < 0, i =
1, · · · , r), and A(z), Bi(z)(i = 1, · · · , r) are polyno-
mials in the backward-shift operator z:

A(z)=1+a1z+· · ·+apz
p, p > 0,

B1(z)=b11+b12z+· · ·+b1q1z
q1−1, q1 > 1,

...

Br(z)=br1+br2z+· · ·+brqrz
qr−1, qr > 1,

(2)

where ai, bjk are coefficients with non-zero leading
coefficients b11, · · · , br1 and p, q1, · · · , qr are upper
bounds on the true orders. We assume that {wt} sat-
isfies the following condition:

A1) The noise sequence {wt,Ft} is a martingale
difference sequence (where Ft is a sequence of nonde-
creasing σ-algebras) with conditional variance σ2, i.e.

E[w2
t+1|Ft] = σ2 > 0, a.s.. (3)

Also, assume that there exists a constant κ > 2 such
that

sup
t

E[|wt+1|κ|Ft] < ∞, a.s.. (4)

For convenience of subsequent discussions, we also
assume that there is a nondecreasing positive determin-

istic sequence {dt} such that

w2
t = O(dt), a.s., dt+1 = O(dt). (5)

It is easy to prove[21] that under Condition A1), {dt}
can be taken as

dt = tδ, ∀ δ ∈ (
2

κ
, 1), (6)

where κ is given by (4).
The objective of this paper is to design the play-

ers strategies u1t, · · · , urt based on the past measure-
ments {y0, · · · , yt−1, u10, · · · , u1(t−1), · · · , ur0, · · · ,
ur(t−1)} to minimize the following payoff functions re-
spectively:

J1[u1(t) · · · ur(t)] = lim sup
n→∞

1

n

n−1∑
t=0

J1t,

...

Jr[u1(t) · · · ur(t)] = lim sup
n→∞

1

n

n−1∑
t=0

Jrt

(7)

with the following one-step-ahead payoff functions:

J1t =J1t[u1(t) · · · ur(t)] =

E[(yt+1 − y∗
1(t+1))

2
+ λ1u

2
1(t)|Ft],

...

Jrt =Jrt[u1(t) · · · ur(t)] =

E[(yt+1 − y∗
r(t+1))

2
+ λru

2
r(t)|Ft],

(8)

where λ1, · · · , λr are positive weighting constants.

Remark 1 We will consider the case where the play-
ers are of ‘bounded rationality’. Here the ‘bound rationality’
means that the players may not have the complete information
about the system parameters because of the complexity and un-
certainty of the environment, and that even though the players
can get the complete parameter information, they may be able
to only minimize the one-step-ahead payoff functions(8).

Furthermore, we assume that the players share the
same estimator produced by the least-squares estima-
tion. We will study whether or not there exists an adap-
tive strategy profile that can make the system stable and
satisfy some other nice properties.

First, we give the definition of the global stabiliza-
tion:

Definition 1 The stochastic system (1) is called
globally stabilizable, if the strategy profile ({u1t}, · · · ,
{urt}) makes the system satisfy

1

n

n−1∑
t=0

(y2
t + u2

1t + · · ·+ u2
rt) = O(1), a.s., (9)

for any initial value y0 ∈ R.

In addition to Condition A1), the following assump-
tions will be also needed:

A2) D(z) ̸= 0, ∀ z : |z| 6 1, where D(z) =
r∑

i=1

bi1
λi

Bi(z).
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A3) E(z) ̸= 0, ∀ z : |z| 6 1, where E(z) =
A(z) +D(z).

A4) {y∗
1t}, · · · , {y∗

rt} are bounded random or de-
terministic reference sequences that are independent of
{wt}.

Remark 2 Conditions A2) and A3) are generaliza-
tions of the classic minimum-phase condition, which is neces-
sary for the internal stability of the closed-loop system, even if
the parameters are known[22].

To simplify the analysis, in this paper, we consid-
er the case where the ‘high-frequency gain’ parameters
b11, · · · , br1 are known. We collect the rest unknown
parameters into a vector

θ = [−a1 · · · − ap b12 · · · b1q1 · · · br2 · · · brqr ]
T
,

and define the corresponding regressor

φt =[yt · · · yt−p+1 u1(t−1) · · · u1(t−q1+1)

· · · ur(t−1) · · · ur(t−qr+1)]
T.

Thus, the system (1) can now be rewritten in the form:

yt+1 = θTφt + b11u1t + · · ·+ br1urt + wt+1. (10)

The recursive least-squares (LS) method is used to give
estimates for the unknown parameter θ in the model
(10):

θt+1 = θt + atPtφt(yt+1 − b11u1t − · · · −
br1urt − θT

t φt), (11)

Pt+1 = Pt − atPtφtφ
T
tPt, (12)

at = (1 + φT
tPtφt)

−1
, (13)

where the initial value θ0 and P0 > 0 can be chosen
arbitrarily.

Using Condition A1), we can get the expressions of
payoff functions as follows:

J1t[u1t · · · urt] =σ2 + (θTφt + b11u1t + · · ·+
br1urt − y∗

1(t+1))
2 + λ1u

2
1t,

...

Jrt[u1t · · · urt] =σ2 + (θTφt + b11u1t + · · ·+
br1urt − y∗

r(t+1))
2 + λru

2
rt.

(14)
Let the derivatives with respect to u1t, · · · , urt be

respectively set to zero in the above payoff functions.
Then we get the following linear equations:

(λ1 + b211)u1t + · · ·+ b11br1urt =

− b11(θ
Tφt − y∗

1(t+1)),

...

br1b11u1t + · · ·+ (λr + b2r1)urt =

− br1(θ
Tφt − y∗

r(t+1)).

(15)

It is easy to prove that the determinant of the coef-

ficient matrix is λ1λ2 · · ·λr(1 +
r∑

i=1

b2i1
λi

) > 0. There-

fore, the solutions of these linear equations are unique,
and the solutions can minimize the one-step-ahead pay-
off functions (8). In the case where the parameter θ is
unknown, we will replace the θ in (15) by its LS es-
timate θt, and obtain the adaptive actions u1t, · · · , urt

from the following linear equations:

(λ1 + b211)u1t + · · ·+ b11br1urt =

− b11(θ
T
t φt − y∗

1(t+1)),

...

br1b11u1t + · · ·+ (λr + b2r1)urt =

− br1(θ
T
t φt − y∗

r(t+1)).

(16)

For the multiple output situation, yt and uit are vec-
tors, and Ai, Bjk are corresponding dimension coeffi-
cient matrices. The corresponding one-step-ahead pay-
off functions are Jit = E[(yt+1 − y∗

i(t+1))
TQi(yt+1 −

y∗
i(t+1)) + uT

itRiuit|Ft]. The linear equations (15),
where the coefficient matrix depends on A,B,Q,R,
may have no solutions we need, then more conditions
are needed. Moreover, the analysis of the stability and
optimality where the coefficients are matrices is more
complicated. Therefore, we just consider the single out-
put situation in this paper.

For the sake of convenience, let (U1, · · · ,Ur)
(where Ui = {uit, t > 0}, i = 1, · · · , r) be the adap-
tive strategy profile defined by the adaptive actions (16).
We proceed to prove that this profile (U1, · · · ,Ur) can
make the closed-loop system globally stable.

Now, we give a theorem on global stability of the
closed-loop system.

Theorem 1 Consider the linear stochastic sys-
tem (1) with unknown parameter θ. If Conditions A1)–
A4) are fulfilled, and if the players adopt the strategy
profile (U1, · · · ,Ur) defined by the adaptive action-
s (16), then the corresponding closed-loop system is
globally stable, in the sense that for any initial value
y0 ∈ R,

1

n

n−1∑
t=0

(y2
t + u2

1t + · · ·+ u2
rt) = O(1), a.s..

Next, we consider the optimality of the adaptive s-
trategy profile (U1, · · · ,Ur). First, we give some no-
tations. From the definition of the (J1t[u1t · · · urt],
· · · , Jrt[u1t · · · urt]), it is easy to see that the pay-
off functions depend on not only the current action-
s uit(i = 1, · · · , r) but also the previous action-
s ui0, ui1, · · · , ui(t−1)(i = 1, · · · , r). Then, we can
rewrite the payoff functions as (J1t[U1t · · · Urt], · · ·,
Jrt[U1t · · · Urt]), where Uit = (ui0, ui1, · · · , uit),
i = 1, · · · , r. Moreover, let (Ω1t, · · · , Ωrt) be cor-
responding admissible strategy set of (u1t, · · · , urt).

In addition, if a positive sequence {xt > 0; t > 0}
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satisfies lim
n→∞

1

n

n−1∑
t=0

xt = 0, then we simply write xt =

o(1)[19–20]. Now, we give the definition of asymptotic
Nash equilibrium:

Definition 2 The strategy profile (U1, · · · ,Ur)
is called an asymptotic Nash equilibrium, if it makes the
one-step-ahead payoff functions (8) satisfy

J1t[U1t · · · Urt]=o(1)+ inf
u′
1t∈Ω1t

J1t[U
′
1t · · · Urt],

...
Jrt[U1t · · · Urt]=o(1)+ inf

u′
rt∈Ωrt

Jrt[U1t · · · U ′
rt],

(17)
where the U ′

it = (Ui(t−1), u
′
it), i = 1, · · · , r.

From the following theorem, we can see that the
adaptive strategy profile (U1, · · · ,Ur) defined by (16)
is an asymptotic Nash equilibrium.

Theorem 2 Consider the linear stochastic sys-
tem (1). If Conditions A1)–A4) are fulfilled, then
the strategy profile (U1, · · · ,Ur) defined by the adap-
tive actions (16) is an asymptotic Nash equilibrium of
the non-cooperative games with the payoff functions
(J1t[u1t · · · urt], · · · , Jrt[u1t · · · urt]), where the
admissible strategy set of (U1, · · · ,Ur) is (R, · · · ,R).
3 Analysis of stabilization and optimality

To prove the stability and optimality, we need some
lemmas. First of all, we introduce some notations that
will be used throughout the sequel:

αt ,
(θ̃T

t φt)
2

1 + φT
tPtφt

, δt , tr(Pt − Pt+1), (18)

rt , 1 +
t∑

i=0

∥φi∥2, θ̃t , θ − θt, (19)

where ∥ · ∥ is the Euclidean norm.

Lemma 1 (see [23]) Consider the linear
stochastic system (1). The prediction error {θ̃T

t φt} of
the LS algorithm (11) − (13) has the following asymp-
totic property:

t∑
i=0

αi = O(log rt), a.s. t → ∞ (20)

with αi and rt defined by (18) and (19), respectively.

Lemma 2 Consider the linear stochastic system
(1). If Conditions A1)–A4) are fulfilled, then there ex-
ists a positive random process {Lt} such that

y2
t 6 Lt, ∀ t > 0, a.s., (21)

and {Lt} satisfies the following ‘linear time-varying re-
lationship’

Lt+1 6 βLt +M0

t∑
i=0

αt−iαiδiLi + ξt, (22)

where the constants α, β ∈ (0, 1), M0 > 0, αt and
δt are defined by (18), and {ξt} is a positive random

process satisfying

ξt = O(dt log rt) (23)

with dt and rt defined, respectively, by (5) and (19).

Proof 1 Combining (10) and (16), we can get

u1t = −b11
λ1

(yt+1 − y∗
1(t+1) − θ̃T

t φt − wt+1),

...

urt = −br1
λr

(yt+1 − y∗
r(t+1) − θ̃T

t φt − wt+1).

Substituting uit(i = 1, · · · , r) into (1), we get

E(z)yt+1 = D(z)θ̃T
t φt +

r∑
i=1

bi1
λi

Bi(z)y
∗
i(t+1) +

(D(z) + 1)wt+1, (24)

where D(z),E(z) are defined by Conditions(A2)(A3).
Let us now introduce the following notations:

ηt,
r∑

i=1

bi1
λi

Bi(z)y
∗
i(t+1)+(D(z) + 1)wt+1, (25)

η̄t,D(z)θ̃T
t φt + ηt. (26)

Then, (24) can be simply written

E(z)yt+1 = η̄t. (27)

Let Yt+1 = [yt+1 yt · · · yt−h+2]
T, where h =

max{p, q1 − 1, · · · , qr − 1}. By (27) and Condition
A3), there exists a stable matrix A ∈ Rh×h and a col-
umn vector B ∈ Rh such that

Yt+1 = AYt + Bη̄t. (28)

By the stability of A, there is a matrix norm ∥ · ∥
such that α = ∥A∥ < 1. From (28) we have

∥Yt+1∥2 = ∥At+1Y0 +
t∑

i=0

At−iBη̄i∥2 =

O(αt+1) + O(
t∑

i=0

αt−i∥η̄i||2) =

O(
t∑

i=0

αt−i(D(z)θ̃T
i φi)

2
) +

O(
t∑

i=0

αt−i∥ηi∥2). (29)

Note the definition of ηi. The second term of (29) has
the following estimation:

O(
t∑

i=0

αt−i∥ηi∥2) =

O(
t∑

i=0

αt−i{w2
i+1 +

r∑
k=1

y∗
k(i+1)

2}) =

O(
t∑

i=0

αt−idi+1) = O(dt). (30)

According to (20) and the property of φT
i Pi+1φi 6 1,

we can estimate the first term of (29) as follows:

O(
t∑

i=0

αt−i(D(z)θ̃T
i φi)

2
) =
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O(
t∑

i=0

αt−i(θ̃T
i φi)

2
) =

O(
t∑

i=0

αt−iαi[1+φT
i Pi+1φi+φT

i (Pi−Pi+1)φi]) =

O(log rt) + O(
t∑

i=0

αt−iαiδi∥φi∥2). (31)

By the adaptive actions (16), it is easy to see the rela-
tionship of uit and ujt:

λibj1uit − λjbi1ujt = bi1bj1(y
∗
i(t+1) − y∗

j(t+1)). (32)

Substituting (32) into (1), we can get

uit =
bi1
λi

D(z)
−1
(A(z)yt+1 +

r∑
j=1

bj1
λj

(y∗
i(t+1) −

y∗
j(t+1))− wt+1). (33)

Under Condition A2), from (33) it is known that there
exists β ∈ (0, 1) such that

u2
1(t−j)=O(

t∑
i=0

βt−iy2
i )+O(dt), j=1,· · ·, q1−1,

...

u2
r(t−j)=O(

t∑
i=0

βt−iy2
i )+O(dt), j=1,· · ·, qr−1.

Therefore,

∥φt||2 =
p−1∑
i=0

y2
t−i+

q1−1∑
i=0

u2
1(t−i)+· · ·+

qr−1∑
i=0

u2
r(t−i) =

O(
t∑

i=0

βt−iy2
i ) + O(dt).

Let Lt =
t∑

i=0

βt−i∥Yi∥2. It is obvious that (21) is

satisfied. Then,

∥φt∥2 = O(Lt) + O(dt). (34)

From
∞∑
j=0

δj =
∞∑
j=0

(trPj − trPj+1) = trP0 < ∞, we

know that δt → 0. According to (29)–(31), we have
that

∥Yt+1∥2 = O(log rt+dt)+O(
t∑

i=0

αt−iαiδi(Li+di)) =

O(log rt + dt) + O(
t∑

i=0

αt−iαiδiLi) +

O(max
06j6t

{δjdj} log rt) 6

M0

t∑
i=0

αt−iαiδiLi + O(dt log rt).

Then, we arrive at (22), i.e.

Lt+1 = βLt + ∥Yt+1||2 6

βLt +M0

t∑
i=0

αt−iαiδiLi + O(dt log rt).

The proof is complete. QED.

Lemma 3 Under the conditions of Lemma 2, we
have

∥φt∥2 = O(rεtdt), a.s. ∀ ε > 0, (35)

where rt and dt are defined by (19) and (5), respective-
ly.

Proof 2 Define

Kt+1 = M0

t∑
i=0

αt−iαiδiLi, K0 = 0, (36)

then
Kt+1 = αKt +M0αtδtLt, (37)

and from (22), we have

Lt+1 6βLt +Kt+1 + ξt =

βLt + αKt +M0αtδtLt + ξt. (38)

Then, we define

L̂t+1=βL̂t+αKt+M0αtδtLt+ξt, L̂0=L0. (39)

From (38), it is easy to see

Lt+1 6 L̂t+1.

Therefore, we have the following iterative equations:[
L̂t+1

Kt+1

]
=

[
β α
0 α

] [
L̂t

Kt

]
+[

1
1

]
M0αtδtLt +

[
1
0

]
ξt. (40)

Let C =

[
β α
0 α

]
and Zt =

[
L̂t

Kt

]
. Since C is a

stable matrix, there exists some norm ∥ · ∥ such that
λ = ∥C∥ < 1. Consider 1-norm ∥Zt∥1 = L̂t + Kt.
According to the norm property, there exists a con-
stant M2 > 0 such that ∥Zt∥1 6 M2∥Zt∥, then

L̂t 6 M2∥Zt∥. Denote M1 = ∥
[
1
1

]
∥, from (40), we

have

∥Zt+1∥ 6∥C∥·∥Zt∥+
∥∥∥∥[11

]∥∥∥∥M0αtδtLt+

∥∥∥∥[10
]∥∥∥∥ ξt 6

λ∥Zt∥+M1M0αtδtL̂t + ξt 6
λ∥Zt∥+M2M1M0

αtδt∥Zt∥+ ξt =

(λ+M2M1M0αtδt)∥Zt∥+ ξt. (41)

Let M3 = M2M1M0, then

∥Zt+1∥ 6
t∏

i=0

(λ+M3αiδi)∥Z0∥+

t∑
i=0

t∏
j=i+1

(λ+M3αjδj)ξj =

λt+1
t∏

i=0

(1 + λ−1M3αiδi)∥Z0∥+

t∑
i=0

λt−i
t∏

j=i+1

(1 + λ−1M3αjδj)ξj. (42)

By δt → 0, we know that for any ε > 0, there exists i0
large enough that

λ−1M3

t∑
j=i

αjδj 6 ε log rt, ∀ t > i > i0.

According to this and inequality 1 + x 6 ex(x > 0),
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∀ t > i > i0, we have
t∏

j=i+1

(1 + λ−1M3αjδj) 6

exp(λ−1M3

t∑
j=i

αjδj) 6 exp(ε log rt) = rεt .

Substituting this into (42) and using (23), we have

Lt+1 6 L̂t+1 6 M2∥Zt+1∥ = O(rεtdt log rt).

By the arbitrariness of ε, we have Lt+1 = O(rεtdt).
Then, from (34), we have

∥φt∥2 = O(rεtdt).

The proof is complete. QED.

Proof of Theorem 1
From (29), we have

n−1∑
t=0

∥Yt+1∥2 =O(
n−1∑
t=0

t∑
i=0

αt−i∥η̄i∥2) =

O(
n−1∑
t=0

∥η̄t∥2). (43)

Under Condition A1), it is easy to know[5] that
n−1∑
t=0

w2
t+1 = O(n). (44)

Moreover, from (25)–(26)(43)–(44), Lemmas 1 and 3,
we have

n−1∑
t=0

∥Yt+1∥2 =

O(
n−1∑
t=0

(D(z)θ̃T
t φt)

2
) + O(

n−1∑
t=0

∥ηt∥2) =

O(
n−1∑
t=0

αt) + O(
n−1∑
t=0

αtδt∥φt∥2) + O(n) =

O( max
06i6n

{δirεi di} log rn) + O(n) =

O(rεndn) + O(n). (45)

By the definition of Yt+1, we have
n−1∑
t=0

y2
t+1 = O(rεndn) + O(n).

From this and Condition A2), we have from (33)
n−1∑
t=0

u2
it = O(rεndn) + O(n), i = 1, · · · , r.

Therefore,
n−1∑
t=0

∥φt∥2 =
n−1∑
t=0

(
p−1∑
i=0

y2
t−i +

r∑
k=1

qk−1∑
i=0

u2
k(t−i)) =

O(rεndn) + O(n). (46)

Then, by (46) and (6) we have for any ε > 0,

rn =1 +
n−1∑
t=0

∥φt∥2 = O(rεndn) + O(n) =

O(rεnn
δ) + O(n), ∀ δ ∈ (

2

κ
, 1). (47)

Take ε small enough that ε+ δ < 1. We have

rn
n

=O((
rn
n
)ε

1

n1−ε−δ
) + O(1) =

O(1) + o((
rn
n
)ε).

Hence, rn = O(n). That is

1

n

n−1∑
t=0

(y2
t + u2

1t + · · ·+ u2
rt) = O(1), a.s..

The proof is complete. QED.
Proof of Theorem 2
First, we prove

(θ̃T
t φt)

2
= o(1).

In fact, using Lemma 3 we have
n−1∑
t=0

(θ̃T
t φt)

2
= O(

n−1∑
t=0

αt)+O(
n−1∑
t=0

αtδt∥φt∥2) =

O(log rn) + O( max
06t6n−1

{δtrεtdt} log rt) =

O(rεndn log rn) = O(nε+δ log rn). (48)

Take ε small enough that ϵ + δ < 1, it is easy to know
that

1

n

n−1∑
t=0

(θ̃T
t φt)

2
= o(1).

Next, we prove that for any action u′
1t ∈ R,

J1t[U1t · · · Urt] = o(1) + inf
u′
1t∈R

J1t[U
′
1t · · · Urt].

From (14) and (16), we have

J1t[U
′
1t · · · Urt] =

σ2 + (θTφt + b11u
′
1t + b21u2t + · · ·+ br1urt−

y∗
1(t+1))

2 + λ1u
′2
1t =

(λ1 + b211)(u
′
1t +

b11
λ1 + b211

(θT
t φt + b21u2t + · · ·+

br1urt − y∗
1(t+1) + θ̃T

t φt))
2 +min =

(λ1 + b211)(u
′
1t − u1t +

b11θ̃
T
t φt

λ1 + b211
)2 +min, (49)

where min =
λ1

λ1 + b211
(θT

t φt+b21u2t+ · · ·+br1urt−

y∗
1(t+1) + θ̃T

t φt)
2 + σ2.

From this, it is obvious that

min
u′
1t∈R

J1t[U
′
1t · · · Urt] = min .

Then, the adaptive strategy profile can make the first
player’s one-step-ahead payoff function satisfy

J1t[U1t · · · Urt] =

b211(θ̃
T
t φt)

2

λ1 + b211
+min

u′
1t

J1t[U
′
1t · · · Urt] =

o(1) + min
u′
1t

J1t[U
′
1t · · · Urt]. (50)

Similarly, we can also prove that for any i = 1, · · · , r,
for its any action u′

it,

Jit[U1t · · · Urt] =
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o(1) + min
u′
it∈R

Jit[U1t · · · U ′
it · · · Urt].

The proof is complete. QED.

4 Concluding remarks
Dynamic game theory has been investigated exten-

sively over the past several decades from various aspect-
s, and also has been widely used in the study of many
practical systems. However, less research attention has
been paid in theory to the case where the mathematical
model contains parametric or nonparametric uncertain-
ties. This paper is a continuation and extension of the
authors’ research on adaptive game theory. Due to the
theoretical difficulties for analysing complicated non-
linear stochastic dynamical systems resulted from gen-
eral adaptive game problems, there are still a number
of problems remain to be investigated in the future, for
examples, it would be interesting to extend the result-
s of the paper to the case of general multi-input and
multi-output linear stochastic systems, the case of time-
varying unknown parameters and nonlinear uncertain
systems, and to the situations of other type of payoff
functions, etc.
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