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Abstract: In this paper, we consider non-cooperative stochastic adaptive multi-player games described by linear
discrete-time stochastic systems with unknown parameters. The least-squares algorithm together with the certainty e-
quivalence principle is used by each player in designing the strategy for optimizing its own one-step-ahead payoft function.
It will be shown that the resulting adaptive strategy profile can make the closed-loop system globally stable and at the same
time, the profile converges to an asymptotic Nash equilibrium in some sense.
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1 Introduction

In the areas of the control and game, much progress
have been made in both theory and application over
the past half century. Game theory and control theo-
ry have been developed in parallel to a large extent!!~7!,
although they are related in many aspects (e.g. [8]).
With the investigation of complex adaptive systems, the
combination of the control theory and the game the-
ory has received increasing attention in recent years
(e.g. [9-12]). A classical situation is the differential
games'® * which were motivated by combat problems,
and have been applied in many disciplines, such as so-
ciology, biology, economics, management science and
power systems (e.g. [14—17]). However, in the classical
game model, almost all of the existing studies assume
that the model parameters are known to the players,
which are unrealistic in many practical situations, since
there always exist uncertainties in modelling real world
systems!!®!, and the uncertainties may even change from
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time to time. When the structure and the parameters
are unknown, a nature way in control systems design is
to use the online measurement information to estimate
the unknowns, which are then used to construct or up-
date the controller. This is usually called adaptive con-
trol design[4‘7], which is known to be a powerful tool in
dealing with systems with large structure uncertainties.
Since the adaptive control is a typically nonlinear feed-
back which performs identification and control simulta-
neously in the same feedback loop, a rigorous theoret-
ical investigation for the closed-loop adaptive control
systems is well-known to be complicated, even if the
open-loop control systems are linear. Therefore, when
we deal with game problems using adaptive control ap-
proaches, a central theoretical problem is how to estab-
lish the convergence of the adaptive strategy profile by
overcoming difficulties arising from nonlinearities. Li
and Guo!''"1?! have studied adaptive game problems de-
scribed by continuous-time state space stochastic mod-
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els with full state information. Moreover, Yuan and
Guo!"! have investigated related problems for a zero-
sum game described by an input-output stochastic mod-
el with stringent assumptions on the system parameters.

In this paper, we will extend the work of Yuan
and Guo!'”! and Hu and Guo!®! to general multi-player
non-cooperative stochastic games. We assume that the
parameters are unknown to the players in the system
model, and attempt to use the ideas and methods of
adaptive control to deal with the unknown parameters
and to design a strategy profile for the players, aiming
at minimizing the respective payoff functions. We will
prove that the adaptive strategy profile can make the
system globally stable, and at the same time, the pro-
file is an asymptotic Nash equilibrium solution to our
game problem.

The remainder of the paper is organized as follows:
The problem formulation and the main results will be
presented in the next section, the stability and perfor-
mance analysis will be conducted in Sections 3, and fi-
nally some concluding remarks will be given in the last
section.

2 The main results

Consider the following linear stochastic input-
output model with r players:

A(Z)yt+1 = Bl(z)ult +- BT(Z)uTt + Wi,

ey
where {y;} and {w;,} are, respectively, the system out-
put and noise process, {u;; }(i = 1,--- ,r) are the con-

trols or strategies of the players (without loss of gener-
ality, we assume y; = wy = u;; = 0, Vit <0, i =
1,---,7),and A(z), B;(2)(i = 1,--- ,r) are polyno-
mials in the backward-shift operator z:
A(z)=14a12+---+a,2”, p =0,

Bi(2)=bii+biaz+- - 4big, 227, ¢ 2 1,
(2)

B.(2)=b+bpzt-+b 277 g > 1,
where a;, b, are coefficients with non-zero leading
coefficients by;,---,b, and p,qi,--- ,q,. are upper
bounds on the true orders. We assume that {w,} sat-
isfies the following condition:

Al) The noise sequence {wy, %#;} is a martingale
difference sequence (where .%; is a sequence of nonde-
creasing o-algebras) with conditional variance o2, i.e.

Elw},,|#] =0 >0, as.. 3)

Also, assume that there exists a constant x > 2 such
that

sup E[|w;11]"[.%] < o0, as.. )
t

For convenience of subsequent discussions, we also
assume that there is a nondecreasing positive determin-

istic sequence {d;} such that
w? = 0(dy), as., diy1 = O(d,). (5)

Itis easy to provel?!! that under Condition A1), {d, }
can be taken as

dy=t°, Vo€ (%,1), (6)

where £ is given by (4).

The objective of this paper is to design the play-
ers strategies ui¢, - - - , U,y based on the past measure-
ments {y07 Y1, W10, UL(t—1) U0y s
Ur(¢—1) } to minimize the following payoff functions re-
spectively:

. 1 n=1
Jiug(t) -+ u.(t)] = limsup— > Jyg,
n—oo T t=0
(7
1 n=1
Jefur(t) -+ up(t)] = limsup— > J
n—oo Tl t=0
with the following one-step-ahead payoff functions:
Jlt :Jlt[ul(t) cee UT(t)] =
E[(yi1 — fo(t+1))2 + M)A,
: (8)
th :th[ul(t) tee 'U,T(t)] =
E[(yi11 — ?/:(t+1))2 + )\ruf(t)|ﬁt],

where A\, - - - , A, are positive weighting constants.
Remark 1

ers are of ‘bounded rationality’. Here the ‘bound rationality’

We will consider the case where the play-

means that the players may not have the complete information
about the system parameters because of the complexity and un-
certainty of the environment, and that even though the players
can get the complete parameter information, they may be able
to only minimize the one-step-ahead payoff functions(8).

Furthermore, we assume that the players share the
same estimator produced by the least-squares estima-
tion. We will study whether or not there exists an adap-
tive strategy profile that can make the system stable and
satisfy some other nice properties.

First, we give the definition of the global stabiliza-
tion:

Definition 1 The stochastic system (1) is called
globally stabilizable, if the strategy profile ({w1:}, - - - ,
{u,+}) makes the system satisfy

1 n=1

2 (i Al ) = 0(1), as, )

=0
for any initial value yo € R.

In addition to Condition A1), the following assump-
tions will be also needed:
A2) D(z) #0,V z:

L
> —Bi(2).
=1 A7 (Z)

|z| < 1, where D(z) =
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A3) E(z) # 0,V z: |z| <1, where E(z) =
A(z) + D(z).

A4 {yi,}, -+, {y’} are bounded random or de-
terministic reference sequences that are independent of
{w,}.

Remark 2  Conditions A2) and A3) are generaliza-
tions of the classic minimum-phase condition, which is neces-
sary for the internal stability of the closed-loop system, even if

the parameters are known[*?.

To simplify the analysis, in this paper, we consid-
er the case where the ‘high-frequency gain’ parameters
bi1,- -+, b1 are known. We collect the rest unknown
parameters into a vector

0=]—a -

and define the corresponding regressor

—ap iy big e byg e by

o =y - Yi—p+1 Ur(t—1) "

. u’!‘(t—l) “e e

Ui(t—g1+1)

UT(t—qﬁ-l)]T'

Thus, the system (1) can now be rewritten in the form:
Y1 = 070 + biiung + -+ + bt + wipq. (10)

The recursive least-squares (L.S) method is used to give
estimates for the unknown parameter # in the model
(10):

011 = 01 + At Popr (Y1 — briugy — - -+ —

bt — 0101, (11)

Pt+1 =P - atPtSOtSOtTPta (12)
-1

ar = (14 ¢, Popi) (13)

where the initial value 6, and P, > 0 can be chosen
arbitrarily.

Using Condition A1), we can get the expressions of
payoff functions as follows:

Jlt[ult s urt] :0'2 + (HTQDt + b11U1t + -+
britys — yiﬂ(t+1))2 + >\1U§t7
Jre[trg -+ U =0’ + (QT% +byup + -+
b1ty — y:(t+1))2 + )\T‘U'?‘t'
(14)
Let the derivatives with respect to w4, -« - , Uy be

respectively set to zero in the above payoff functions.
Then we get the following linear equations:

(A1 + 07 urs + -+ + biibpu, =
- 511(9T<Pt - yik(t+1))7

: (15)
bribiiug + -+ (A + b?l)um =

- le(HTgot - y:(t+1))‘
It is easy to prove that the determinant of the coef-

r b2
ficient matrix is Aj Az - - A.(1 + > )\Ll) > (. There-

fore, the solutions of these linear equations are unique,
and the solutions can minimize the one-step-ahead pay-
off functions (8). In the case where the parameter 6 is
unknown, we will replace the 6 in (15) by its LS es-
timate 0;, and obtain the adaptive actions wyy, - -+ , Uyt
from the following linear equations:

(A + b7 )ure + -+ + biibuy =
T *
— b (0, 0 — yl(t+1))7
: (16)
bpibriuge 4 - + (A + b2y Jup =
- brl(etTSOt - Z’J:(t+1))-

For the multiple output situation, ¥; and u;; are vec-
tors, and A;, B, are corresponding dimension coeffi-
cient matrices. The corresponding one-step-ahead pay-
off functions are Ji; = E[(yi11 — Y 41) Qi(Yre1 —
yj(tﬂ)) + ul Ryu;i|-%;]. The linear equations (15),
where the coefficient matrix depends on A, B, @, R,
may have no solutions we need, then more conditions
are needed. Moreover, the analysis of the stability and
optimality where the coefficients are matrices is more

complicated. Therefore, we just consider the single out-
put situation in this paper.

For the sake of convenience, let (%, - ,%,)
(where %; = {u;,t > 0}, i = 1,--- ,r) be the adap-
tive strategy profile defined by the adaptive actions (16).
We proceed to prove that this profile (%, - - , %, ) can
make the closed-loop system globally stable.

Now, we give a theorem on global stability of the
closed-loop system.

Theorem 1 Consider the linear stochastic sys-
tem (1) with unknown parameter . If Conditions A1)-
A4) are fulfilled, and if the players adopt the strategy
profile (%, -+ ,%,) defined by the adaptive action-
s (16), then the corresponding closed-loop system is
globally stable, in the sense that for any initial value
Yo € R,

]_ n—1
n t;) (th + u%t +oet u?t) =0(1), as..

Next, we consider the optimality of the adaptive s-
trategy profile (%4, - - ,%,). First, we give some no-
tations. From the definition of the (Jy [uy; <+ Uy,

oy Julury o+ ug)), it is easy to see that the pay-
off functions depend on not only the current action-

s uy(i = 1,---,7) but also the previous action-
S Wio, Uit - -+ Wie—1y(¢ = 1,---,r). Then, we can
rewrite the payoff functions as (Jy,[Uy -+ Unl, -,
th[Uu Urt])’ where U, = (uiOauilv"' ,Uit)7
i = 1,---,r. Moreover, let ({214,---,{2,,) be cor-
responding admissible strategy set of (w1, -« -, Upt).

In addition, if a positive sequence {z; > 0; ¢t > 0}
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n—1 . .
satisfies lim — > a; = 0, then we simply write z; =  PrO¢®sS satisfying
n—00 1, {—
o & = O(d;logry) (23)

o(1)192% Now, we give the definition of asymptotic
Nash equilibrium:

Definition 2  The strategy profile (%4, - - , %)
is called an asymptotic Nash equilibrium, if it makes the
one-step-ahead payoff functions (8) satisfy

JulUse -+

Un] = (1)4‘“,111612“ Ju[Uf; - -+ Upel,

JulUy - Upl=0(1)+ inf J,[Uy -~ UL,

ul, €2t
(7)
where the U/, = (U;4-1), uly), i =1,--- 7.

From the following theorem, we can see that the
adaptive strategy profile (%4, - - , %, ) defined by (16)
is an asymptotic Nash equilibrium.

Theorem 2 Consider the linear stochastic sys-
tem (1). If Conditions Al)-A4) are fulfilled, then
the strategy profile (%4, - - - , %,) defined by the adap-
tive actions (16) is an asymptotic Nash equilibrium of
the non-cooperative games with the payoff functions
(Jue[wre -+ wpe)y -+ Jpt[tne -+ up]), where the
admissible strategy set of (%4, -+ , %) is (R,--- | R).

3 Analysis of stabilization and optimality

To prove the stability and optimality, we need some
lemmas. First of all, we introduce some notations that
will be used throughout the sequel:

2
A (9?@75) A
£ ——— §=tr(P— P 18
t= 7 Lo TPy t r( P, 1), (18)
t -
re 21+ 3 el 0. =0 -0, (19)
=0
where || - || is the Euclidean norm.

Lemma 1 (see [23]) Consider the linear
stochastic system (1). The prediction error {6]¢;} of
the LS algorithm (11) — (13) has the following asymp-
totic property:

t
a; = O(logry), a.s. t — oo (20)
=0

K2

with «; and r; defined by (18) and (19), respectively.

Lemma 2 Consider the linear stochastic system
(1). If Conditions A1)-A4) are fulfilled, then there ex-
ists a positive random process { L, } such that

v < L, Yt =0, as., (21)

and { L, } satisfies the following ‘linear time-varying re-
lationship’

t .
Liyy <PL+ My Y oo, Li + &, (22)
i=0

where the constants «, 8 € (0,1), My > 0, o; and
J; are defined by (18), and {&,} is a positive random

with d; and r; defined, respectively, by (5) and (19).

Proof 1 Combining (10) and (16), we can get

b1y X 5
Urg = —Tl(ytﬂ “Yig+1) — 0 o1 — wiy1),
le * nT
Urp = — b\ (Ye1 — Yrierr) — b oe — Wei1).
Substituting u;; (i = 1, -+ ,7) into (1), we get
- " b N
E(2)yr1 = D(2)0] 1 + ; TBi(Z)yi(tJrl) +
(D(z) + w1, (24)

where D(z),E(z) are defined by Conditions(A2)(A3).
Let us now introduce the following notations:

Tbi
mé;f&wmmﬁw@+nwW(m

= D(2)0] 0 + . (26)
Then, (24) can be simply written
E(2)ys11 = 0 (27)

Let Vi1 = [Yes1 Y -+ Ye—nio|', where h =
max{p,q; — 1,--+,q. — 1}. By (27) and Condition
A3), there exists a stable matrix A € R"*" and a col-
umn vector B € R" such that

Yii =AY, + Bn,. (28)

By the stability of A, there is a matrix norm || - ||
such that « = ||A|| < 1. From (28) we have

t .
Yera|* = LAY, + 2 ATBI|* =

t .
O(a"™) +0(3 a'~*[l7|]*) =
i=0

t
0(;)Oét_illmll2)- (29)

Note the definition of ;. The second term of (29) has
the following estimation:

t .
0( o~ Ini?) =

t . T
O( > o' ~H{wi; + kZ—:1 Z/Z(i+1)2}) =

t
o2 a'~id;, 1) = O(d,). (30)

According to (20) and the property of ¢! Py 1p; < 1,
we can estimate the first term of (29) as follows:

O(y (D)) =
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O(y o' (@p)") =

t .
O(Y o' "a;[14@] Piagit @) (Pi—Pi1)ei]) =

i=0
t .
O(logr;) +O(>" o'ty pil|?)- 1)
i=0

By the adaptive actions (16), it is easy to see the rela-
tionship of u;; and . ;:

)\ibjluit - )\jbilujt = bilbjl(y;‘k(t.t,_l)
Substituting (32) into (1), we can get

?/] t+1) ). (32)

b; _
w = 5 D(2) " (A(2)yes + z 3 Wi
Yisn) = Wes1)- (33)

Under Condition A2), from (33) it is known that there
exists 3 € (0, 1) such that

ui(t—j)zo(%ﬁt ‘ 2)+O(dt) _1 7Q1_17
ui(t—j) (Z Bt 2)+O(dt) =1, q—1
Therefore,

gr—1

e |* = Eyt it Z ul(t gt Z u? (t—i) —

O(3- 657) +0(dy).

Let L, = Z B|Yi]|2. It is obvious that (21) is
satisfied. Then
I* = O(L¢) + O(dy). (34)

From Z 0; = Z (trP; — trPj 1) = trPy < oo, we
=0 7=0

know that d; — 0. According to (29)-(31), we have

that

t .
Vit ||* = O(log e +dy) +O( Y a6 (L +d;)) =

=0

t
O(logr; +d;) +O(3 '~

=0

O(max {d;d;}logr;) <

O<]<

iaiéiLi) +

M, Z a'~'a;0;L; + O(d; log ry).

i=0
Then, we arrive at (22), i.e.
Lipy = BL + ||V |” <

¢
BL: + M, > o

=0

_iO(i(SiLi + O(dt ].Og Tt).

QED.

Lemma3 Under the conditions of Lemma 2, we
have

The proof is complete.

lloel? = O(r5d,), as. Ve >0, (35)

where r; and d; are defined by (19) and (5), respective-
ly.
Proof 2  Define
t
=My > o' o6, L;, Ko =0, (36)

=0

KtJrl

then
K1 = aK; + Mya,6, Ly, (37)

and from (22), we have
Lt+1 gﬁLt + Kt+1 + ft =
BL; + aK; + Moo, 0, L + &;. (38)
Then, we define
fft+1 :Bf/t+aKt+MOat6tLt +&:, f/o =Lo. (39)
From (38), it is easy to see
L < fft+1-

Therefore, we have the following iterative equations:
Et+1 _ Ba i/t +
Ky Oaf K
1 1
[1} Mooy 0, Ly + [0} &s- (40)

~

B | Ly . .
Let C = [Oa and Z; = Kt.SlnceCma

stable matrix, there exists some norm || - || such that
A = ||C|| < 1. Consider 1-norm || Z||, = L; + K,.
According to the norm property, there exists a con-
stant My > 0 such that ||Z;]|; < M,||Z;, then

L, < My||Z,]. Denote M, = || m

||, from (40), we

have
1 1
t+1]] X || 4t 00t Lot
1Zessl <ll-1Zi+ | 1| Moadie | g

A Z4| + MlMoat5tﬁt +& <
M Ze|| + My My M| Zy || + & =
()\+M2M1M0at5t)HZtH +£t (41)

t S

Let Mg = MngMQ, then
t
[ Zea |l < TT (A + Mzad,)[| Zo ||+
=0

Xt: f[ (A + Mza;0;)8; =

i=0 j=i+1

t
)\H—l H (1 + )\_lMgoéz(sz)||ZO||+

=0

t t
SN (L4 AT Maa;05)E5. (42)
i=0 j=it+1

By §; — 0, we know that for any € > 0, there exists 4
large enough that
t
)\_1Mg Z ozj5j < €lOg’I“t, Vi = 7 = ’io.
j=i

According to this and inequality 1 + = < e®(z > 0),
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YVt >4 > i, we have Tn _yTnye_ L O(1) =
t " _o(("y ) o)
1 A M6, < n\e
JJZL( AT Maasty) o(1) +o((™2)
¢ o .
exp(\ 1M 3 a,0;) < exp(elog ) = 7% Hence, 7, = O(n). That is
j=i 1 n—1 oy
Substituting this into (42) and using (23), we have n Z (47 +ufy + - +ufy) = O(1), as.,
Li < i/t+1 < Ms||Zyy1|| = O(rid; logry). The proof is complete. QED.
By the arbitrariness of ¢, we have L;.; = O(r{d;). P.roof of Theorem 2
Then, from (34), we have First, we prove
~ 2 —_—
lel* = O(ridy). (0 ¢0)” = o(1).
The proof is complete. QED. In fact, using Lemma 3 we have
n—1 _ n—1
Proof of Theorem 1 Z (g'tl‘got) _ O( Z Oét)+0( at(stHSOtH )
From (29), we have t=0 =0 t=0
n—1 —1 ¢t ‘ O(log r,) + O( max {(5t'rtdt} logr;) =
> YeallP =002 X o nl?) = Osts
t=0 =0 i= O(réd, logr,) = O(n°"logr,). (48)
n—1
o> [17:11?)- (43)  Take € small enough that € + § < 1, it is easy to know
=0 that
Under Condition A1), it is easy to know!™! that 1l 2
V- TS casy - X (@Te)" = o(1).
w?, , =0(n). 44
t;o s ( ) “44) Next, we prove that for any action u’lt € R,

Moreover, from (25)-(26)(43)—(44), Lemmas 1 and 3,
we have

n—1 9
2 Ve ll® =
t=0

n—1

O(Y (D(2)8¢)) +

t=0

n—1

O( X lImel*) =
t=0

n—1

O(S a) +0(E adllpl?) + O(m) =

O(max {d,r;d;}logr,) +O(n) =

0<ikn
O(ryd,) +O(n). (45)
By the definition of Y;,;, we have

n—1

$ 420 = 0rid,) +0(n).
From this and Condition A2), we have from (33)

n—1
> uf =0(rid,) +0(n), i=1,---,r

t=0
Therefore,
r qr—1
Z HSOtHQ (Z yt it Z Z uk(t z))
(Tndn) + O(n). (46)

Then, by (46) and (6) we have for any € > 0,

n—1
ru =14 % il = 0(rid,) +0(n) =
t=
2
O(rin’) +0(n), V6 € (= 1). (47)

Take ¢ small enough that € + § < 1. We have

Ju[Uss - U :Tl)‘Fu;nefRJlt[U{t o Upel.

From (14) and (16), we have
Jlt[U{t U,,t] =
o’ + (GT% + biuy, + bagug + -
Yiern)? + Aut; =
b
(A1 + b1 (W + +—

+ brlurt_

(etT(,Ot + b21U2t + -4

)\1 + b%l
bt — Yi g1y T 0, 1))? + min =
blléT(Pt .
A+ b2 (uh, — —LTr)? 49
(A1 +07y) (uy, U1t+)\1+b%1) =+ min, (49)
A1

where min = (0T s 4borugs +- -+ bpyties —

N )\1 + b%l
yik(t-i-l) + HtT(Pt)Q + 0.
From this, it is obvious that
min Jy,[U7,
uf, €ER
Then, the adaptive strategy profile can make the first
player’s one-step-ahead payoff function satisfy

- U4) = min.

Jlt[Ult Urt] =
b3, (0]

o(1) + mln Jlf[U o Uyl (50)
Similarly, we can also prove that foranyz = 1,--- |7,
for its any action u,,

JulUre -+ U] =
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o1) + min Ju[Us -+ U, - U]
uf, €

3

The proof is complete. QED.

4 Concluding remarks

Dynamic game theory has been investigated exten-
sively over the past several decades from various aspect-
s, and also has been widely used in the study of many
practical systems. However, less research attention has
been paid in theory to the case where the mathematical
model contains parametric or nonparametric uncertain-
ties. This paper is a continuation and extension of the
authors’ research on adaptive game theory. Due to the
theoretical difficulties for analysing complicated non-
linear stochastic dynamical systems resulted from gen-
eral adaptive game problems, there are still a number
of problems remain to be investigated in the future, for
examples, it would be interesting to extend the result-
s of the paper to the case of general multi-input and
multi-output linear stochastic systems, the case of time-
varying unknown parameters and nonlinear uncertain
systems, and to the situations of other type of payoff
functions, etc.
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