控制方向未知的高次不确定非线性系统低复杂度预定性能控制

丁 超^{1,2}, 石 超^{1,2}, 董新民^{1†}, 陈 勇¹, 刘棕成¹

(1. 空军工程大学 航空工程学院,陕西西安 710038; 2. 空军工程大学 研究生院,陕西西安 710051)

摘要:本文研究了控制方向未知的高次不确定非线性系统预定性能控制问题.基于有理分式函数类型的误差转换,通过设计具有切换形式的控制器,提出了一种低复杂度的控制方法,并利用Lyapunov理论和反证法证明了闭环系统稳定性.与现有其他方法相比,该方法具有适用范围广、跟踪精度高、容错能力强、控制器简单等优点.仿真结果验证了本文结论.

关键词: 非线性系统; 控制系数; 低复杂度; 预定性能; 执行器故障

引用格式:丁超,石超,董新民,等.控制方向未知的高次不确定非线性系统低复杂度预定性能控制.控制理论与应用,2019,36(10):1622-1630

DOI: 10.7641/CTA.2019.80278

Low-complexity prescribed performance control of high-order uncertain nonlinear system with unknown control directions

DING Chao^{1,2}, SHI Chao^{1,2}, DONG Xin-min^{1†}, CHEN Yong¹, LIU Zhong-cheng¹

(1. Aeronautics Engineering College, Air Force Engineering University, Xi'an Shaannxi 710038, China;

2. Graduate College, Air Force Engineering University, Xi'an Shaannxi 710051, China)

Abstract: This paper investigates the prescribed performance control problem of high-order uncertain nonlinear system with unknown control directions. Based on the error transformations in rational fraction forms, a low-complexity control scheme is proposed by designing a switching controller. The stability of the closed loop system is proved by Lyapunov theorem and contradiction. Compared with the existing methods, the proposed method possesses many advantages such as the wide application range, high tracking precision, strong fault-tolerant ability, and low-complexity controller, etc. Conclusions in this paper are demonstrated by a simulation.

Key words: nonlinear system; control coefficients; low-complexity; prescribed performance; actuator failures

Citation: DING Chao, SHI Chao, DONG Xinmin, et al. Low-complexity prescribed performance control of high-order uncertain nonlinear system with unknown control directions. *Control Theory & Applications*, 2019, 36(10): 1622 – 1630

1 引言

近些年来,高次不确定非线性系统的控制设计问题得到了广泛的关注.一方面,即使是对于某些不可反馈线性化的仿射系统,也可以通过坐标变换与状态反馈转化为高次非线性系统的形式^[1];另一方面,高次非线性系统是已经得到大量研究的严格反馈非线性系统的更一般形式,相比于后者,高次非线性系统 在原点的雅克比线性化是不可控的,控制难度较大^[2].因此,研究该类系统的控制问题具有较高的理论价值.

对于不确定非线性系统的控制常基于神经网络对 未知非线性函数的逼近能力,采用自适应控制方法来 实现,如文献[3-5]. 然而,采用神经网络控制方法通常只能实现闭环系统半全局一致终结有界,系统误差最终收敛到一个未知的残集内,不能完全保证所需要的稳态性能;此外,即使对于已知的非线性系统,对其暂态性能也没有系统的分析方法.因此,文献[6]提出了预定性能控制(prescribed performance control)的概念,并将一种误差转换的方法与神经网络控制相结合,解决了多输入多输出(multiple input multiple output, MIMO)可反馈线性化系统的预定性能控制(prescribed performance control, PPC)问题,即跟踪误差指数收敛到预先设定的任意小的残集之内,其收敛率/超调量分

收稿日期: 2018-04-18; 录用日期: 2019-02-27.

[†]通信作者. E-mail: dongxinmin@139.com; Tel.: +86 18092358511.

本文责任编委:段志生.

国家自然科学基金项目(61473307, 61603411, 61304120), 中国博士后科学基金项目(2016M592966, 2017M613417)资助.

Supported by the National Natural Science Foundation of China (61473307, 61603411, 61304120) and the China Postdoctotal Science Foundation (2016M592966, 2017M613417).

别不小于/不大于预先设定的常数,此后,文献[7-8]使 用类似的方法相继解决了严格反馈非线性系统, MIMO 仿射非线性系统的PPC问题; 文献[9-10]进一步研究 了严格反馈非线性系统基于神经网络的PPC问题,使 其鲁棒性得到了进一步的拓展. 然而, 神经网络的使 用增大了控制器的复杂程度,有可能导致参数计算更 新的实时程度无法得到有效保障.基于此,文献[11] 针对多输入多输出MIMO可反馈线性化系统的预定 性能控制PPC问题,提出了一种只使用单个神经网络 的控制器,但是神经网络的固有问题仍然存在,如计 算复杂度高,可控性丧失以及模型时变导致的鲁棒性 降级.因此,文献[12]首次提出了一种强鲁棒性的低 复杂度(low-complexity)控制方法,未使用任何逼近 器,如神经网络和模糊逻辑系统等,解决了不确定非 线性级联系统的PPC问题.此后,文献[13]使用这种低 复杂度方法解决了控制方向已知的,存在执行器死区 非线性的严格反馈不确定非线性系统的PPC问题; 文 献[14-15]研究了控制方向未知的严格反馈不确定非 线性系统的低复杂度PPC问题; 文献[16-17]分别针对 控制方向已知的机器人系统和纯反馈非线性系统提 出了低复杂度预定性能控制方法.

对于高次不确定非线性系统,其控制问题不能用 传统的反馈线性化方法或者反推方法解决. 自从文 献[18]提出增加幂次积分方法以来,大量文献使用这 种控制方法针对高次不确定非线性系统进行了深入 研究,如文献[19-21].然而,使用增加幂次积分方法, 一般都需系统严格满足所谓的增长条件,这对系统提 出了较高要求. 文献[22]利用神经网络, 将该条件弱 化为局部Lipschitz连续,但需要知道控制系数(control coefficient)的上下界.此外,由于高幂次的存在,系统 的非线性程度较高,跟踪性能往往相对较差.因此,文 献[23]结合神经网络,针对高次不确定非线性系统提 出了一种误差补偿方法,对跟踪滞后与误差峰值进行 了有效的削减,但是该方法是一种定性方法,无法对 跟踪误差进行定量的限制.为了定量改善跟踪性能, 文献[24]将低复杂度的控制方法应用于高次不确定非 线性系统,解决了该系统的PPC问题,但是所有非线性 项必须连续可导并且所有控制系数的符号需要已知.

本文研究了控制方向未知的高次不确定非线性系统的PPC问题,基于有理分式函数类型的误差转换提出了一种低复杂度的控制方法,利用反证法证明了本 文控制器能够实现预定性能跟踪控制,并保证所有闭 环信号有界.本文的主要贡献归纳如下:

 本文首次实现了控制方向未知的高次不确定 非线性系统低复杂度预定性能控制.相比于文献[18-24], 本文未知非线性项可以不连续,其增长条件被放宽为 存在连续的上下界函数;且在控制方向未知的情况下 仍能定量改善暂态和稳态跟踪性能. 2) 引理4证明了奇数次幂函数满足一定的可分离 特性,从而避免了使用传统的放缩方法^[18-24],增大控 制律设计复杂程度的问题,为解决高次非线性系统的 控制设计问题提供了一种可行的新思路.

3)相比于文献[12-24]将虚拟控制律设计为统一的形式,本文基于跟踪误差采用了切换的形式,既保证了误差较大时控制量适宜,又避免了高次非线性系统虚拟控制律在误差零点对时间导数趋于无穷,导致稳定性分析受阻的缺陷.

4) 与文献[18-24]相比,本文控制方法能克服一 大类执行器故障的不良影响,具备一定容错能力.

2 问题描述

考虑如下的SISO高次不确定非线性系统:

$$\begin{cases} \dot{x}_i = f_i(\bar{x}_i, t) + g_i(\bar{x}_i, t) x_{i+1}^{p_i}, \\ \dot{x}_n = f_n(\bar{x}_n, t) + g_n(\bar{x}_n, t) u^{p_n}, \\ y = x_1, \ i = 1, \cdots, n-1, \end{cases}$$
(1)

其中: 幂次 p_i 为任意正奇数, 且至少存在一个 $p_i > 1$; $\bar{x}_i = [x_1 \ x_2 \ \cdots \ x_i]^{\mathrm{T}} \in \mathbb{R}^i$; $\bar{x}_n \pi y \beta$ 别代表状态向量 与输出; $u \in \mathbb{R}$ 为带执行器故障的系统输入; $f_i(\bar{x}_i, t)$ $\in \mathbb{R}$ 为未知非线性函数, $g_i(\bar{x}_i, t) \in \mathbb{R}$ 为符号不变的未 知非线性函数, 它们代表着系统的控制方向, 在本文 中, $g_i(\bar{x}_i, t)$ 的符号未知, $i = 1, \cdots, n$.

执行器故障建模表示如下:

$$u = \tau(t)v + \theta(t), \tag{2}$$

其中: v代表控制信号, $\tau(t)$ 和 $\theta(t)$ 分别代表乘性故障 和加性故障.

控制目标归纳如下: 1) 对目标信号的跟踪误差保 持在一个随时间指数收敛的残集之内. 如果定义系统 输出误差 $z_1(t) = y(t) - y_d(t)$,并规定输出误差边界

$$\rho_1(t) = (\rho_{10} - \rho_{1\infty}) \mathrm{e}^{-\mu_1 t} + \rho_{1\infty},$$

其中 $\rho_{10} > \rho_{1\infty} > 0$,即可实现 $|z_1(t)| < \rho_1(t), \forall t \ge 0$; 2)闭环系统所有信号有界.为实现控制目标,系统需 要满足如下假设^[15,25]:

假设1 期望跟踪轨迹 y_{d} 及其导数 \dot{y}_{d} 有界,且每一时刻,只有该时刻的 y_{d} 己知.

假设 2 存在未知常数 $\tau_{\rm L} > 0$ 和 $\bar{\theta} > 0$ 使得不等 式 $\tau_{\rm L} < \tau(t) < 1$ 和 $|\theta| < \bar{\theta}$ 成立.

假设3 $g_i(\bar{x}_i, t)$ 的符号未知, $i = 1, \dots, n$, 但 存在未知连续的正函数 $\bar{f}_i(\bar{x}_i), \underline{g}_i(\bar{x}_i)$ 以及 $\bar{g}_i(\bar{x}_i)$, 使 得 $\forall \bar{x}_i \in \mathbb{R}^i$ 和 $t \ge 0$

$$\begin{cases} |f_i(\bar{x}_i, t)| \leqslant \bar{f}_i(\bar{x}_i), \ i = 1, \cdots, n-1, \\ \underline{g}_i(\bar{x}_i) \leqslant |g_i(\bar{x}_i, t)| \leqslant \bar{g}_i(\bar{x}_i). \end{cases}$$
(3)

特别地,如果 $\Omega_i \subset \mathbb{R}^i$ 为紧集, $i = 1, \cdots, n$,那么式(3)表明存在未知正常数 \overline{f}_i, g_i 以及 \overline{g}_i 使得

$$|f_i(\bar{x}_i, t)| \leqslant f_i, \ \underline{g}_i \leqslant |g_i(\bar{x}_i, t)| \leqslant \overline{g}_i, \forall \bar{x}_i \in \Omega_i.$$
(4)

$$\begin{cases} \lim_{s \to \infty} \sup \frac{1}{s} \int_0^s N(\xi) d\xi = +\infty, \\ \lim_{s \to \infty} \inf \frac{1}{s} \int_0^s N(\xi) d\xi = -\infty, \end{cases}$$
(5)

则称 $N(\xi)$ 为Nussbaum函数.

引理1 选取Nussbaum函数 $N(\xi) = \xi^2 \cos(\frac{\pi}{2}\xi),$ *p*为任意正奇数, 则 $N^p(\xi)$ 也是Nussbaum函数.

证 参见附录A.1.

引理 2 已知 $\xi(\cdot)$ 和 $V(\cdot)$ 是 $[0, t_s)$ 上的光滑函数, 且 $V(\cdot) \ge 0, t_s \in [0, \infty], N(\xi)$ 是Nussbaum偶函数, 如 果 $\forall t \in [0, t_s),$ 下述不等式成立^[26]:

 $V(t) \leqslant m_0 + e^{-m_1 t} \int_0^t (g(\tau) N(\xi) + 1) \dot{\xi} e^{m_1 \tau} d\tau,$ (6)

式中: m_0, m_1 是正常数, g(t)是满足 $g(t) \in [l_1, l_2]$ 的任 意函数, 其中 $0 \notin [l_1, l_2]$, 那么必有V(t)和 $\xi(t)$ 在 $[0, t_s)$ 上保持有界.

引理3 给定正常数m, n,对任意的 $x, y \in \mathbb{R}$, $a, b \in \mathbb{R}$, 如下不等式成立^[27]:

$$|ax^{m}y^{n}| \leq c|x|^{m+n} + \frac{n}{m+n} \left(\frac{m}{c(m+n)}\right)^{\frac{m}{n}} |a|^{\frac{m+n}{n}} |y|^{m+n},$$

其中c > 0是任意事先给定的常数.

引理4 若 $x, y \in \mathbb{R}$, p是正奇数, 则 $\forall \varepsilon \in (0, 1)$, 存在函数a(x, y), b(x, y)以及与x, y无关的正常数M, 使得 $(x + y)^p = a(x, y)x^p + b(x, y)y^p$, 其中:

$$1 - \varepsilon \leq a(x, y) \leq \max\{1 + \varepsilon, 2^{p-1}\}, \ |b(x, y)| \leq M.$$

证 参见附录A.2.

3 控制器设计

为了实现无估计(approximation-free)的控制方法 对不确定高次非线性系统的跟踪控制,首先进行如下 误差转换:

$$R_{i} = \frac{r_{i}(t) \left(1 + r_{i}^{2}(t)\right)}{\left(1 - r_{i}^{2}(t)\right)^{3}},$$
(7)

式中: $r_i(t) = \frac{z_i(t)}{\rho_i(t)}$, 状态误差 $z_i(t) = x_i(t) - x_{i,d}(t)$, 定义误差外层边界函数如下:

 $\rho_i(t) = (\rho_{i0} - \rho_{i\infty})e^{-\mu_i t} + \rho_{i\infty}, i = 1, \cdots, n, (8)$ 其中 $\rho_{i0} > \rho_{i\infty} > 0, \mu_i > 0.$ 虚拟和实际控制律设计
为如下切换形式:

$$\begin{cases} x_{i+1,\mathbf{d}}(t) = \begin{cases} \lambda_i N(\xi_i) R_i(t), & |z_i(t)| < \alpha \rho_i(t), \\ \lambda_i N(\xi_i) R_i^{\frac{1}{p_i}}(t), & |z_i(t)| \ge \alpha \rho_i(t), \end{cases} \\ v = x_{n+1,\mathbf{d}}, \end{cases}$$

式中: $\lambda_i > 0$ 表示常数控制增益,常数 α 为方程 $r(1+r^2)$ = $(1-r^2)^3$ 在(0,1)区间内的实根,通过计算,近似值 为0.4398, $N(\xi_i)$ 和 $N^{p_i}(\xi_i)$ 均为光滑的Nussbaum函数, $i=1, \cdots, n$,受到文献[15]的启发,满足

$$\dot{\xi}_{i} = \begin{cases} 0, & |z_{i}(t)| < \delta_{i}(t), \\ R_{i}^{2}(t), & |z_{i}(t)| \ge \delta_{i}(t), \end{cases}$$
(10)

其中误差内层边界函数 $\delta_i(t)$ 定义为

$$\delta_i(t) = (\delta_{i0} - \rho_{i\infty}) e^{-\mu_i t} + \rho_{i\infty}, \ i = 1, \cdots, n, \ (11)$$

満足 $\alpha \rho_{i0} + (1 - \alpha) \rho_{i\infty} \leq \delta_{i0} < \rho_{i0}$. 根据内外层边 界函数的定义式(8)(11),下述关系成立:

$$0 < \delta_i(t) < \rho_i(t), \quad \lim_{t \to +\infty} \delta_i(t) = \lim_{t \to +\infty} \rho_i(t). \quad (12)$$

简明起见,将式(7)-(11)中的参数选择归纳如下:

- 1) $\rho_{i\infty} > 0, \ \mu_i > 0, \ \lambda_i > 0, \ \alpha = 0.4398;$
- 2) $\rho_{i0} > \delta_{i0} \ge \alpha \rho_{i0} + (1-\alpha)\rho_{i\infty};$
- 3) $\rho_{i0} > |z_i(0)|, \ i = 1, \cdots, n.$

注1 式(7)中的误差转换不是唯一的,事实上,可以证 明很多具有对数函数、三角函数或其它有理分式函数形式的 误差转换也能满足要求. 式(9)采用了切换控制, 这主要是考 虑到:1)误差较大时,控制律设计为误差转换函数的低幂次 项,避免经过每层的高幂次积分器导致控制量过大从而发散; 2) 误差较小时, 控制律设计为误差转换函数的一次项, 避免 设计为低幂次项在误差零点导致xi+1.d(t)趋于无穷.选择切 换控制参数 α 为方程 $r(1+r^2) = (1-r^2)^3 \pm (0,1)$ 区间内的实 根,可以保证 $|z_i(t)| = \alpha \rho_i(t)$ 时, $R_i(t) = 1$,从而虚拟切换控制 律(9)是连续的, $i = 1, \dots, n$. 式(11)中 δ_{i0} 满足不等式 $\alpha \rho_{i0}$ + $(1-\alpha)\rho_{i\infty} \leq \delta_{i0} < \rho_{i0}$ 时, $\delta_i(t) \geq \alpha \rho_i(t)$ 成立, 从而在控制 方向自适应过程当中,即满足 $|z_i(t)| \ge \delta_i(t)$ 时, $x_{i+1,d}(t) =$ $\lambda_i N(\xi_i) R_i^{\frac{1}{p_i}}(t), i = 1, \cdots, n,$ 这一定程度上抵消了高次非线 性系统中正奇数次幂的作用,使得控制量适宜,防止系统发 散.注意到控制器(7)-(11)中未使用任何微分运算,有效避免 了反推方法的"微分爆炸"问题.

4 稳定性分析

在本文中,取Nussbaum函数:

$$N(\xi_i) = \xi_i^2 \cos(\frac{\pi}{2}\xi_i), \ i = 1, \cdots, n.$$
 (13)

下面两个引理被反复地应用于稳定性的递推分析 中. 由于引理5的结论是显然的, 证明略去; 引理6则给 出了从 $\dot{x}_{i,d} \in L^{\infty}$ 到 $\dot{x}_{i+1,d} \in L^{\infty}$ 的递推条件.

引理 5 定义
$$V_i(t) = \frac{z_i^2(t)}{2\rho_i^2(t)(1-\frac{z_i^2(t)}{\rho_i^2(t)})^2},$$
如果

 $|z_i(t)| < \rho_i(t), V_i(t) \in L^{\infty}, i = 1, \dots, n,$ 那么存在一个 正常数 $\rho_i < \rho_{i\infty}$ 使得

$$|z_i(t)| \leq \rho_i(t) - \rho_i < \rho_i(t). \tag{14}$$

第10期

引理6 如果 $\dot{x}_{i,d} \in L^{\infty}, \bar{x}_i \in L^{\infty}, z_{i+1} \in L^{\infty}, \xi_i \in L^{\infty},$ 且不等式(14)成立,则 $\dot{x}_{i+1,d} \in L^{\infty}$.

证 对式(9)求导可得

$$\begin{split} \dot{x}_{i+1,d}(t) &= \\ \begin{cases} \lambda_{i}(\dot{N}(\xi_{i})R_{i}(t) + N(\xi_{i})\dot{R}_{i}(t)), & |r_{i}(t)| < \alpha, \\ \frac{\lambda_{i}}{p_{i}}R_{i}^{\frac{1-p_{i}}{p_{i}}}(t)(p_{i}\dot{N}(\xi_{i})R_{i}(t) + N(\xi_{i})\dot{R}_{i}(t)), & (15) \\ & |r_{i}(t)| \ge \alpha. \end{split}$$

根据式(7)和式(13),

$$\begin{cases} \dot{N}(\xi_i) = (2\xi_i \cos(\frac{\pi}{2}\xi_i) - \frac{\pi}{2}\xi_i^2 \sin(\frac{\pi}{2}\xi_i))\dot{\xi}_i, \\ \dot{R}_i(t) = \\ \frac{3r_i^4(t) + 8r_i^2(t) + 1}{(1 - r_i^2(t))^4} \cdot \frac{\dot{z}_i(t)\rho_i(t) - z_i(t)\dot{\rho}_i(t)}{\rho_i^2(t)}, \end{cases}$$
(16)

其中根据z_i(t)定义,其导数可表示如下:

$$\dot{z}_{i}(t) = f_{i}(\bar{x}_{i}, t) + g_{i}(\bar{x}_{i}, t) x_{i+1}^{p_{i}} - \dot{x}_{i,d} = f_{i}(\bar{x}_{i}, t) - \dot{x}_{i,d} + g_{i}(\bar{x}_{i}, t) (x_{i+1,d} + z_{i+1})^{p_{i}}.$$
(17)

根据 $\xi_i \in L^{\infty}$ 以及不等式(14),可分别得到 $N(\xi_i)$ $\in L^{\infty}, R_i(t) \in L^{\infty}$.由于 $\dot{x}_{i,d} \in L^{\infty}, \bar{x}_i \in L^{\infty}, z_{i+1} \in$ L^{∞} ,再结合式(4)(9)和式(17)可以推得 $\dot{z}_i(t) \in L^{\infty}$.从 而,根据式(8)(14)和式(16), $\dot{R}_i(t) \in L^{\infty}$ 成立.由于 $\dot{\xi}_i$ $\leq R_i^2(t) \in L^{\infty},$ 结合 $\xi_i \in L^{\infty}$ 可以推出 $\dot{N}(\xi_i) \in L^{\infty}$. 又因为 $|z_i(t)| \ge \alpha \rho_i(t) > \alpha \rho_{i\infty}$ 时, $R_i^{\frac{1-p_i}{p_i}}(t) \in L^{\infty}$. 成立,进而 $\dot{x}_{i+1,d} \in L^{\infty}$.

本文的主要结论总结如下:

定理1 对于存在执行器故障(2)的未知高次非 线性系统(1),在满足假设1–3的条件下,若设定误差外 层边界函数的初始值 $\rho_i(0)$ 使得 $|z_i(0)| < \rho_i(0)$ 成立, $i = 1, \dots, n$,则控制律(7)–(11)能够保证:

1) 输出误差始终保持在预先设定的外层边界函 数之内, 即 $|z_1(t)| < \rho_1(t), \forall t \ge 0;$

2) 闭环控制系统所有信号保持有界.

证 考虑 $|z_i(t)| \ge \alpha \rho_i(t)$ 的情况,将式(9)代入式 (17)并应用引理4整理列写如下:

$$\dot{z}_{i}(t) = f_{i}(\bar{x}_{i},t) - \dot{x}_{i,d} + g_{i}(\bar{x}_{i},t)b_{i}(x_{i+1,d},z_{i+1})z_{i+1}^{p_{i}} + \lambda_{i}^{p_{i}}g_{i}(\bar{x}_{i},t)a_{i}(x_{i+1,d},z_{i+1})N^{p_{i}}(\xi_{i})R_{i}(t) = F_{i}(t) + \lambda_{i}^{p_{i}}g_{i}(\bar{x}_{i},t)a_{i}(x_{i+1,d},z_{i+1}) \times N^{p_{i}}(\xi_{i})R_{i}(t),$$

$$(18)$$

$$\dot{z}_{n}(t) = F_{n}(t) + \lambda_{n}^{p_{n}} \tau^{p_{n}}(t) g_{n}(\bar{x}_{n}, t) \times a_{n}(\tau(t)v, \theta) N^{p_{n}}(\xi_{n}) R_{n}(t),$$
(19)

其中:

$$\begin{cases} F_{i}(t) = f_{i}(\bar{x}_{i}, t) + g_{i}(\bar{x}_{i}, t)b_{i}(x_{i+1,d}, z_{i+1})z_{i+1}^{p_{i}} - \dot{x}_{i,d}, \\ F_{n}(t) = f_{n}(\bar{x}_{n}, t) + g_{n}(\bar{x}_{n}, t)b_{n}(\tau(t)v, \theta)\theta^{p_{n}}(t) - \dot{x}_{n,d}, \end{cases}$$
(20)

且1 − $\varepsilon_i \leq a_i(x, y) \leq \max\{1 + \varepsilon_i, 2^{p_i - 1}\}, |b_i(x, y)| \leq M_i, 其中 \varepsilon_i \in (0, 1), M_i$ 为与x, y无关的常数.

下面通过反证法证明

$$|z_i(t)| < \rho_i(t), \ i = 1, \cdots, n, \ \forall t \ge 0.$$
(21)

假设存在状态误差z_i使得

$$|z_j(t_j)| \ge \rho_j(t_j), \ j \in \{1, \cdots, n\}.$$
(22)

令 $t_s = \min\{t_j\}$ 表示式(21)不成立的最初时刻, 因此,根据 $z_i(t)$ 的连续性以及初始条件 $|z_i(0)| < \rho_i(0), i = 1, \dots, n, 必有$

$$|z_i(t)| < \rho_i(t), \ i = 1, \cdots, n, \ \forall t < t_s.$$
 (23)

同时,至少存在一个状态误差z_s(t)满足

$$\lim_{t \to t_s^-} |z_s(t)| = \lim_{t \to t_s^-} \rho_s(t), \ s \in \{1, \cdots, n\},$$
(24)

其中 t_s^- 代表 t_s 的左极限.

以下的讨论分析全部在时间区间[0,t_s)上进行.

1) 首先分析[0, *t_s*)上的输出误差 *z*₁(*t*),根据式(4) (23)以及假设1,可知 *x*₁, *z*₂, *ẋ*_{1,d}, *f*₁(*x*₁, *t*)和*g*₁(*x*₁, *t*) 有界,比较内外层边界函数的定义(8)和(11),有

$$\delta_{i}(t) = \rho_{i}(t) - (\rho_{i0} - \delta_{i0})e^{-\mu_{i}t} \leqslant \rho_{i}(t) - (\rho_{i0} - \delta_{i0})e^{-\mu_{i}t_{s}}, \qquad (25)$$

其中 $i = 1, \cdots, n$.

当 $|z_1(t)| < \delta_1(t)$ 时,根据式(10)和式(25),可知 $\xi_1 \in L^{\infty}$,并且

 $|z_1(t)| < \delta_1(t) \leq \rho_1(t) - (\rho_{10} - \delta_{10}) e^{-\mu_1 t_s}$, (26) 满足不等式(14), 因此, 引理6的条件全部成立, 根据引 理6可知 $\dot{x}_{2,d} \in L^{\infty}$.

当 $|z_1(t)| \ge \delta_1(t)$ 时,选择李雅普诺夫函数 $V_1(t)$ 如下所示:

$$V_1(t) = \frac{z_1^2(t)}{2\rho_1^2(t)(1 - \frac{z_1^2(t)}{\rho_1^2(t)})^2}, \ \forall t \in [0, t_s).$$
(27)

由于 $\delta_1(t) \ge \alpha \rho_1(t)$,式(27)两边对t求导,并将式(7)和式(18)代入其中,可得

$$\dot{V}_{1}(t) = R_{1}(t)\rho_{1}^{-2}(t)(\dot{z}_{1}(t)\rho_{1}(t) - z_{1}(t)\dot{\rho}_{1}(t)) = F_{1f}(t)R_{1}(t) + g_{1f}(t)N^{p_{1}}(\xi_{1})R_{1}^{2}(t), \quad (28)$$

其中:

$$\begin{cases} F_{1f}(t) = \rho_1^{-2}(t)(\rho_1(t)F_1(t) - z_1(t)\dot{\rho}_1(t)),\\ g_{1f}(t) = \lambda_1^{p_1}(t)\rho_1^{-1}(t)g_1(x_1,t)a_1(x_{2,d},z_2). \end{cases}$$
(29)

注意到

$$F_{1f}(t)R_1(t) \leqslant \frac{1}{2}R_1^2(t) + \frac{1}{2}F_{1f}^2(t).$$
(30)

根据式(4)(20)以及z₂, *x*_{1,d}, *b*₁(*x*_{2,d}, *z*₂)的有界性

可知
$$F_1(t) \in L^{\infty}$$
,结合式(8)(23)(29)以及
 $1 - \varepsilon_1 \leq a_1(x_{2,d}, z_2) \leq \max\{1 + \varepsilon_1, 2^{p_1 - 1}\}$
可知存在正常数 \bar{F}_1, l_{11} 和 l_{12} ,其中 $l_{11} < l_{12}$,使得
 $\frac{1}{2}F^2(t) \leq \bar{F}_1 |a_1(t)| \in [l_{11}, l_{12}]$ (3)

 $\frac{1}{2}F_{1f}^{2}(t) \leqslant F_{1}, |g_{1f}(t)| \in [l_{11}, l_{12}]. \quad (31)$ $\Re \vec{x}(30) - (31) \Re \lambda \vec{x}(28) \mathring{H} \Re \dddot{H} \dddot{H} \dddot{H} |r_{1}(t)| =$ $|\frac{z_{1}(t)}{\rho_{1}(t)}| \ge \alpha \vec{\eta} \not{\Re}$ $\dot{V}_{1}(t) \leqslant$ $-\frac{1}{2}R_{1}^{2}(t) + \bar{F}_{1} + (g_{1f}(t)N^{p_{1}}(\xi_{1}) + 1)R_{1}^{2}(t) =$ $-\frac{(1 + r_{1}^{2}(t))^{2}V_{1}(t)}{(1 - r_{1}^{2}(t))^{4}} + \bar{F}_{1} + (g_{1f}(t)N^{p_{1}}(\xi_{1}) + 1)\dot{\xi}_{1} \leqslant$ $-\frac{(1 + \alpha^{2})^{2}V_{1}(t)}{(1 - \alpha^{2})^{4}} + \bar{F}_{1} + (g_{1f}(t)N^{p_{1}}(\xi_{1}) + 1)\dot{\xi}_{1}. \quad (32)$

进而有

$$V_{1}(t) \leqslant e^{-\frac{(1+\alpha^{2})^{2}t}{(1-\alpha^{2})^{4}}} V_{1}(0) + \int_{0}^{t} e^{-\frac{(1+\alpha^{2})^{2}(t-\tau)}{(1-\alpha^{2})^{4}}} \bar{F}_{1} d\tau + \int_{0}^{t} e^{-\frac{(1+\alpha^{2})^{2}(t-\tau)}{(1-\alpha^{2})^{4}}} (g_{1f}(t)N^{p_{1}}(\xi_{1}) + 1)\dot{\xi}_{1} d\tau \leqslant V_{1}(0) + \bar{F}_{1} + e^{-\frac{(1+\alpha^{2})^{2}t}{(1-\alpha^{2})^{4}}} \times \int_{0}^{t} (g_{1f}(t)N^{p_{1}}(\xi_{1}) + 1)\dot{\xi}_{1} e^{\frac{(1+\alpha^{2})^{2}\tau}{(1-\alpha^{2})^{4}}} d\tau.$$
(33)

根据引理1和引理2, $\xi_1 \in L^{\infty}$, $N^{p_1}(\xi_1) \in L^{\infty}$ 以及 $V_1(t) \in L^{\infty}$ 成立, 应用引理5可知存在一个正常数 ρ_1 , 使得

$$|z_1(t)| \leq \rho_1(t) - \rho_1 < \rho_1(t),$$
 (34)

满足不等式(14),因此,引理6的条件全部成立,根据引 理6可知 $\dot{x}_{2,d} \in L^{\infty}$.

综上所述, 当
$$t \in [0, t_s)$$
时, x_2 和 $\dot{x}_{2,d}$ 有界, 并且

$$|z_1(t)| \leq \rho_1(t) - \rho_{1,m} < \rho_1(t),$$
 (35)

 $\begin{tabular}{l} \begin{tabular}{ll} \beg$

i) $(i = 2, \dots, n-1.)$ 在前i-1步中,已经证明了 \bar{x}_i 和 $\dot{x}_{i,d}$ 在 $t \in [0, t_s)$ 上有界,结合式(23)可知式(18)中 的 $F_i(t)$ 和 $g_i(\bar{x}_i, t)$ 保持有界.

当 $|z_i(t)| < \delta_i(t)$ 时,根据式(10)和式(25),可知 $\xi_i \in L^{\infty}$,并且

$$|z_i(t)| < \delta_i(t) \le \rho_i(t) - (\rho_{i0} - \delta_{i0}) e^{-\mu_i t_s},$$
 (36)

从而 $N(\xi_i) \in L^{\infty}, R_i(t) \in L^{\infty}, x_{i+1,d} \in L^{\infty}$,同时,根 据式(23),有 $z_{i+1}(t) \in L^{\infty}, x_{i+1} \in L^{\infty}$.因此,引理6的 条件全部成立,根据引理6可知 $\dot{x}_{i+1,d} \in L^{\infty}$.

当 $|z_1(t)| \ge \delta_1(t)$ 时,选择李雅普诺夫函数 $V_i(t)$ 如

下所示:

$$V_{i}(t) = \frac{z_{i}^{2}(t)}{2\rho_{i}^{2}(t)(1 - \frac{z_{i}^{2}(t)}{\rho_{i}^{2}(t)})^{2}}, \forall t \in [0, t_{s}).$$
(37)

由于 $\delta_i(t) \ge \alpha \rho_i(t)$,式(37)两边对t求导,并将式(7)(16)(18)代入其中,可得

$$\dot{V}_{i}(t) = R_{i}(t)\rho_{i}^{-2}(t)(\dot{z}_{i}(t)\rho_{i}(t) - z_{i}(t)\dot{\rho}_{i}(t)) = F_{if}(t)R_{i}(t) + g_{if}(t)N^{p_{i}}(\xi_{i})R_{i}^{2}(t), \quad (38)$$

其中:

$$\begin{cases} F_{if}(t) = \rho_i^{-2}(t)(\rho_i(t)F_i(t) + z_i(t)\dot{\rho}_i(t)), \\ g_{if}(t) = \lambda_i^{p_i}\rho_i^{-1}(t)g_i(\bar{x}_i, t)a_i(x_{i+1,d}, z_{i+1}). \end{cases}$$
(39)
注意到

$$F_{if}(t)R_i(t) \leqslant \frac{1}{2}R_i^2(t) + \frac{1}{2}F_{if}^2(t).$$
 (40)

根据式(4)(20)以及 z_{i+1} , $\dot{x}_{i,d}$, $b_i(x_{i+1,d}, z_{i+1})$ 的有 界性可知 $F_i(t) \in L^{\infty}$, 进而结合式(8)(23)(39)以及

$$\frac{1}{2}F_{if}^{2}(t) \leqslant \bar{F}_{i}, \ |g_{if}(t)| \in [l_{i1}, l_{i2}].$$
(41)

将式(40)和式(41)代入式(38)并根据此时 $|r_i(t)| = |\frac{z_i(t)}{\rho_i(t)}| \ge \alpha$ 可得

$$\dot{V}_{i}(t) \leq -\frac{1}{2}R_{i}^{2}(t) + \bar{F}_{i} + (g_{if}(t)N^{p_{i}}(\xi_{i}) + 1)R_{i}^{2}(t) = -\frac{(1 + r_{i}^{2}(t))^{2}V_{i}(t)}{(1 - r_{i}^{2}(t))^{4}} + \bar{F}_{i} + (g_{if}(t)N^{p_{i}}(\xi_{i}) + 1)\dot{\xi}_{i} \leq -\frac{(1 + \alpha^{2})^{2}V_{i}(t)}{(1 - \alpha^{2})^{4}} + \bar{F}_{i} + (g_{if}(t)N^{p_{i}}(\xi_{i}) + 1)\dot{\xi}_{i}.$$
(42)

进而有

$$V_{i}(t) \leq e^{-\frac{(1+\alpha^{2})^{2}_{i}}{(1-\alpha^{2})^{4}}} V_{i}(0) + \int_{0}^{t} e^{-\frac{(1+\alpha^{2})^{2}(t-\tau)}{(1-\alpha^{2})^{4}}} \bar{F}_{i} d\tau + \int_{0}^{t} e^{-\frac{(1+\alpha^{2})^{2}(t-\tau)}{(1-\alpha^{2})^{4}}} (g_{if}(t)N^{p_{i}}(\xi_{i})+1)\dot{\xi}_{i} d\tau \leq V_{i}(0) + \bar{F}_{i} + e^{-\frac{(1+\alpha^{2})^{2}_{t}}{(1-\alpha^{2})^{4}}} \times \int_{0}^{t} (g_{if}(t)N^{p_{i}}(\xi_{i})+1)\dot{\xi}_{i} e^{\frac{(1+\alpha^{2})^{2}_{\tau}}{(1-\alpha^{2})^{4}}} d\tau.$$
(43)

根据引理1和引理2, $\xi_i \in L^{\infty}$, $N^{p_i}(\xi_i) \in L^{\infty}$ 以及 $V_i(t) \in L^{\infty}$ 成立, 应用引理5可知存在一个正常数 ρ_i , 使得

$$|z_i(t)| \leqslant \rho_i(t) - \rho_i < \rho_i(t), \tag{44}$$

从而 $N(\xi_i) \in L^{\infty}, R_i(t) \in L^{\infty}, x_{i+1,d} \in L^{\infty}$,同时,根 据式(23),有 $z_{i+1}(t) \in L^{\infty}, x_{i+1} \in L^{\infty}$.因此,引理6的 条件全部成立,根据引理6可知 $\dot{x}_{i+1,d} \in L^{\infty}$. 综上所述,当 $t \in [0, t_s)$ 时, x_{i+1} 和 $\dot{x}_{i+1,d}$ 有界,且

$$|z_i(t)| \leq \rho_i(t) - \rho_{i,\mathrm{m}} < \rho_i(t), \qquad (45)$$

 $\mathrm{\sharp}\mathrm{th}\mathrm{p}_{\underline{\rho}_{i,\mathrm{m}}} = \min\{\underline{\rho}_{i}, (\rho_{i0} - \delta_{i0})\mathrm{e}^{-\mu_{i}t_{s}}\}.$

n) 在前n-1步中, 已证明 \bar{x}_n 和 $\dot{x}_{n,d}$ 在 $t \in [0, t_s)$ 上有界, 结合假设2可知, 式(19)中的 $F_n(t)$ 和 $g_n(\bar{x}_n, t)$ 保持有界.

当 $|z_n(t)| < \delta_n(t)$ 时,根据式(10)和式(25),可知 $\xi_n \in L^{\infty}$,并且

 $|z_n(t)| < \delta_n(t) \leq \rho_n(t) - (\rho_{n0} - \delta_{n0}) e^{-\mu_n t_s}, \quad (46)$ $\mathcal{M} \overline{m} N(\xi_n) \in L^{\infty}, R_n(t) \in L^{\infty}, v = x_{n+1,d} \in L^{\infty}, \exists t, \forall t \in \mathbb{R}, \forall t \in$

当
$$|z_n(t)| \ge \delta_n(t)$$
时,选择李雅普诺夫函数如下:

$$V_n(t) = \frac{z_n^2(t)}{2\rho_n^2(t)(1 - \frac{z_n^2(t)}{\rho_n^2(t)})^2}, \forall t \in [0, t_s).$$
(47)

由于 $\delta_n(t) \ge \alpha \rho_n(t)$,式(47)两边对t求导,并将式(7)(16)和(19)代入其中,可得

$$\dot{V}_{n}(t) = R_{n}(t)\rho_{n}^{-2}(t)(\dot{z}_{n}(t)\rho_{n}(t) - z_{n}(t)\dot{\rho}_{n}(t)) =$$

$$F_{nf}(t)R_{n}(t) + g_{nf}(t)N^{p_{n}}(\xi_{n})R_{n}^{2}(t),$$
(48)

其中:

$$\begin{cases} F_{nf}(t) = \rho_n^{-2}(t)(\rho_n(t)F_n(t) + z_n(t)\dot{\rho}_n(t)), \\ g_{nf}(t) = \lambda_n^{p_n}\rho_n^{-1}(t)\tau^{p_n}(t)g_n(\bar{x}_n, t)a_n(\tau(t)v, \theta). \end{cases}$$
(49)

注意到

$$F_{nf}(t)R_n(t) \leq \frac{1}{2}R_n^2(t) + \frac{1}{2}F_{nf}^2(t).$$
 (50)

根据式(4)(20)以及 θ , $\dot{x}_{n,d}$, $b_n(\tau(t)v, \theta)$ 的有界性可知 $F_n(t) \in L^{\infty}$, 结合式(8)(23)(49)以及

$$1 - \varepsilon_n \leqslant a_n(\tau(t)v, \theta) \leqslant \max\{1 + \varepsilon_n, 2^{p_n - 1}\}$$
可知存在正常数 $\bar{F}_n, l_{n1} \approx n_{n2}, 其 + l_{n1} < l_{n2}, 使得$

$$\frac{1}{2}F_{nf}^{2}(t) \leqslant \bar{F}_{n}, \ |g_{nf}(t)| \in [l_{n1}, l_{n2}].$$
(51)

将式(50)和式(51)代入式(48)并根据此时 $|r_n(t)| =$ $|\frac{z_n(t)}{\rho_n(t)}| \ge \alpha \overline{\eta}$ $\dot{V}_n(t) \le$ $-\frac{1}{2}R_n^2(t) + \bar{F}_n + (g_{nf}(t)N^{p_n}(\xi_n) + 1)R_n^2(t) =$ $-\frac{(1+r_n^2(t))^2V_n(t)}{(1-r_n^2(t))^4} + \bar{F}_n + (g_{nf}(t)N^{p_n}(\xi_n) + 1)\dot{\xi}_n \le$

$$-\frac{(1+\alpha^2)^2 V_n(t)}{(1-\alpha^2)^4} + \bar{F}_n + (g_{nf}(t)N^{p_n}(\xi_n) + 1)\dot{\xi}_n,$$
(52)

进而有

$$V_{n}(t) \leqslant e^{-\frac{(1+\alpha^{2})^{2}t}{(1-\alpha^{2})^{4}}} V_{n}(0) + \int_{0}^{t} e^{-\frac{(1+\alpha^{2})^{2}(t-\tau)}{(1-\alpha^{2})^{4}}} \bar{F}_{n} d\tau + \int_{0}^{t} e^{-\frac{(1+\alpha^{2})^{2}(t-\tau)}{(1-\alpha^{2})^{4}}} (g_{nf}(t)N^{p_{n}}(\xi_{n}) + 1)\dot{\xi}_{n} d\tau \leqslant V_{n}(0) + \bar{F}_{n} + e^{-\frac{(1+\alpha^{2})^{2}t}{(1-\alpha^{2})^{4}}} \times \int_{0}^{t} (g_{nf}(t)N^{p_{n}}(\xi_{n}) + 1)\dot{\xi}_{n} e^{\frac{(1+\alpha^{2})^{2}\tau}{(1-\alpha^{2})^{4}}} d\tau.$$
(53)

根据引理1和引理2, $\xi_n \in L^{\infty}$, $N^{p_n}(\xi_n) \in L^{\infty}$ 以及 $V_n(t) \in L^{\infty}$ 成立, 应用引理5可知存在一个正常数 ρ_n , 使得

$$|z_n(t)| \leq \rho_n(t) - \underline{\rho}_n < \rho_n(t), \tag{54}$$

从而 $N(\xi_n) \in L^{\infty}, R_n(t) \in L^{\infty}, v = x_{n+1,d} \in L^{\infty}, 同$ 时,根据假设2,有 $\tau(t) \in (\tau_L, 1), \theta(t) \in L^{\infty}, 因此, u \in L^{\infty}.$

综上所述, 当 $t \in [0, t_s)$ 时,

$$|z_n(t)| \leqslant \rho_n(t) - \underline{\rho}_{n,m} < \rho_n(t), \qquad (55)$$

 $\ddagger \psi \rho_{n,m} = \min\{\rho_n, (\rho_{n0} - \delta_{n0}) e^{-\mu_n t_s}\}.$

然而式(35)(45)(55)与式(24)相矛盾,故反证法假 设式(22)不成立,因此存在正常数ρ使得

$$|z_i(t)| \leq \rho_i(t) - \rho < \rho_i(t), \ i = 1, \cdots, n, \ \forall t \geq 0.$$
 (56)

特别地,相对于参考轨迹的跟踪误差保持在预先给定 的范围之内,即

$$z_{1}(t)| = |y(t) - y_{d}(t)| < \rho_{1}(t) = (\rho_{10} - \rho_{1\infty})e^{-\mu_{1}t} + \rho_{1\infty}.$$
 (57)

进一步,由式(7)可知 $R_i(t) \in L^{\infty}$,根据式(10)和 (12)可知 $\xi_i \in L^{\infty}$, $N(\xi_i) \in L^{\infty}$,从而根据式(9)(56)可知 $x_{i+1,d} \in L^{\infty}$, $x_i \in L^{\infty}$, $i=1, \cdots, n$.最后,结合 $x_{n+1,d} \in L^{\infty}$,式(2)(9)和假设2可知 $u \in L^{\infty}$.因此,闭环系统 所有信号保持有界,定理1得证.

注 2 根据式(9)以及 $\alpha = 0.4398$ 可知 $x_{i+1,d}(t)$ 连续, 从而 $V_{i+1}(t)$ 也连续. 然而在切换时刻, $x_{i+1,d}(t)$ 左右导数不 一定相等, 但无论其切换时刻导数取左导数还是右导数, 都满 足

$$\int_{t_1}^{t_2} \dot{V}_{i+1}(t) \mathrm{d}t = V_{i+1}(t_2) - V_{i+1}(t_1),$$

 $\forall t_1, t_2 > 0, i = 1, \dots, n - 1,$ 不影响上述证明过程.此外,在 上述证明过程中,未对 $f_i(\bar{x}_i, t)$ 和 $g_i(\bar{x}_i, t)$ 进行任何的微分运 算,因此,这种控制方法不需要 $f_i(\bar{x}_i, t)$ 和 $g_i(\bar{x}_i, t)$ 是连续的, 只要满足假设3即可.

5 仿真验证

为了验证本文低复杂度PPC方法的有效性,考虑如

下未知高次非线性系统的跟踪控制问题:

$$\begin{cases} \dot{x}_1 = (x_1 + \cos x_1)\eta(t) + 2x_2^3, \\ \dot{x}_2 = (x_1x_2 + \sin x_2)\eta(t) + (1 + \sin^2 x_1)u^5, \\ y = x_1, \end{cases}$$
(58)

其中不连续函数η(t)表达式如下:

$$\eta(t) = \begin{cases} 1, & t < 10, \\ \sin(10t), & t \ge 10. \end{cases}$$
(59)

鉴于文献[22]的神经网络控制(neural network control, NNC)方法未考虑执行器故障,为了对比,式(58) 中执行器故障建模如下:

$$u = \begin{cases} v, & t < 20, \\ 0.5v + 4, & t \ge 20. \end{cases}$$
(60)

上式表示系统在t=20 s时发生了故障, 0.5代表控制 效能损失, 4代表控制量正偏移.

当t < 10 s时,系统满足本文与文献[22]的所有条件,将本文控制效果与文献[22]控制效果进行比较; 当 $10 s \le t < 20$ s时,观察系统时变是否会导致两种控制方法鲁棒性降级;当 $t \ge 20$ s时,进一步观察执行器故障对二者的影响.

期望跟踪轨迹定义如下: $y_d = 2\sin t + 2\sin(0.5t)$.

初始条件设为 $x_i(0) = \xi_i(0) = 0, i = 1, 2,$ 跟踪控制 目标为

$$\begin{split} |y(t)-y_{\rm d}(t)| &< \rho_1 \,{=}\, (2\!-\!0.1) {\rm e}^{-0.5t} {+}\, 0.1, \\ |x_2(t)-x_{\rm 2d}(t)| &< \rho_2 \,{=}\, (10\!-\!1) {\rm e}^{-0.5t} {+}\, 1, \end{split}$$

即 $\rho_{10}=2$, $\rho_{1\infty}=0.1$, $\rho_{20}=10$, $\rho_{2\infty}=1$, $\mu_1=\mu_2=0.5$, $\alpha=0.4398$; 其余的控制参数选为 $\lambda_i=1$, $\delta_{i0}=0.5(\rho_{i0}+\rho_{i\infty})$, i=1,2.

仿真步长取为0.0001 s, 结果如图1-3所示.

图 1 期望跟踪轨迹 y_d 与两种控制方法下的输出y

Fig. 1 Desired tracking trajectory y_d and outputs y by two control schemes

图1-2分别展示了本文PPC方法和文献[22]NNC 方法在不同情况下的输出和输入曲线,可以看出,当*t* <10 s时,两种控制方法都实现了较为平滑的跟踪,但 本文跟踪精度更高,且不存在严重的跟踪滞后;当10 s ≤*t*<20 s时,NNC方法鲁棒性降级,输出曲线出现无 规律的高频振荡,但PPC方法仍然保持着高精度的跟 踪;当t≥20 s时, NNC方法控制输入发散, 但PPC方法能够克服这种程度的执行器故障, 实现稳定跟踪.

Fig. 2 Control inputs v by two control schemes

图3展示了本文PPC方法下各误差和自适应参数 的响应状况,可以看出,误差 $z_1(t)$ 和 $z_2(t)$ 始终保持在 预先设定的随时间指数收敛的边界函数内,能够保证 暂态与稳态误差满足预定要求; Nussbaum 函数参数 ξ_1 和 ξ_2 经过不到1 s的时间即实现了对未知控制方向的 自适应.

图 3 PPC方法下误差 z_1, z_2 与自适应参数 ξ_1, ξ_2

Fig. 3 Errors z_1 , z_2 and adaptive parameters ξ_1 , ξ_2 by PPC scheme

6 结论

本文研究了控制方向未知的高次不确定非线性系统的PPC问题,提出了一种低复杂度的控制方法,相 比于神经网络控制方法,有如下优点:1)控制器形式 简单;2)允许模型时变;3)未知非线性函数可以不连 续.仿真结果表明,本文控制方法在系统时变以及存 在执行器故障的情况下仍然具有较强的鲁棒性,能够 实现暂态和稳态跟踪性能的定量改善.注意到本文所 研究的高次不确定非线性系统,幂次为奇整数,下一 步可研究控制方向未知且幂次为奇整数之比的不确 定非线性系统的PPC问题.

参考文献:

- CHENG D Z, LIN W. On p-normal forms of nonlinear systems. *IEEE Transactions on Automatic Control*, 2003, 48(7): 1242 1248.
- [2] SUN Z Y, YUN M M, LI T. A new approach to fast global finitetime stabilization of high-order nonlinear system. *Automatica*, 2017, 81(5): 455 – 463.
- [3] WANG C, HILL D J, GE S S, et al. An ISS-modular approach for adaptive neural control of pure-feedback systems. *Automatica*, 2006, 42(5): 723 – 731.
- [4] SUN Guofa, TIAN Yu, WANG Suzhen. Adaptive neural output feedback control for strict feedback nonlinear system. *Control Theory & Applications*, 2017, 34(3): 375 382.
 (孙国法, 田宇, 王素珍. 严格反馈非线性系统的自适应神经网络输出反馈控制. 控制理论与应用, 2017, 34(3): 375 382.)
- [5] SHI C, DONG X M, XUE J P, et al. Robust adaptive neural control for a class of non-affine nonlinear systems. *Neurocomputing*, 2017, 223(5): 118 – 128.
- [6] BECHLIOULIS C P, ROVITHAKIS G A. Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance. *IEEE Transactions on Automatic Control*, 2008, 53(9): 2090 – 2099.
- [7] BECHLIOULIS C P, ROVITHAKIS G A. Adaptive control with guaranteed transient and steady state tracking error bounds for strict feedback systems. *Automatica*, 2009, 45(2): 532 – 538.
- [8] BECHLIOULIS C P, ROVITHAKIS G A. Prescribed performance adaptive control for MIMO affine in the control nonlinear systems. *IEEE Transactions on Automatic Control*, 2010, 55(5): 1220 – 1226.
- [9] KOSTARIGKA A K, ROVITHAKIS G A. Prescribed performance output feedback adaptive control of uncertain strict feedback nonlin-

ear systems. *Proceedings of the 18th World Congress*. Milano, Italy: IFAC, 2011: 2650 – 2655.

- [10] BECHLIOULIS C P, ROVITHAKIS G A. A priori guaranteed evolution within the neural network approximation set and robustness expansion via prescribed performance control. *IEEE Transactions on Neural Networks and Learning Systems*, 2012, 23(4): 669 – 675.
- [11] THEODORAKOPOULOS A, ROVITHAKIS G A. A simplified adaptive neural network prescribed performance controller for uncertain MIMO feedback linearizable systems. *IEEE Transactions on Neural Networks and Learning Systems*, 2015, 26(3): 589 – 600.
- [12] BECHLIOULIS C P, ROVITHAKIS G A. Robust partial-state feedback prescribed performance control of cascade systems with unknown nonlinearities. *IEEE Transactions on Automatic Control*, 2011, 56(9): 2224 – 2230.
- [13] THEODORAKOPOULOS A, ROVITHAKIS G A. Guaranteeing preselected tracking quality for uncertain strict-feedback systems with deadzone input nonlinearity and disturbances via low-complexity control. *Automatica*, 2015, 54(2): 135 – 145.
- [14] BECHLIOULIS C P, ROVITHAKIS G A. Approximation-free prescribed performance control. *Proceedings of the 18th World Con*gress. Milano, Italy: IFAC, 2011: 126 – 131.
- [15] ZHANG J X, YANG G H. Prescribed performance fault-tolerant control of uncertain nonlinear systems with unknown control directions. *IEEE Transactions on Automatic Control*, 2017, 62(12): 6529 – 6535.
- [16] BECHLIOULIS C P, DOULGERI Z, ROVITHAKIS G A. Guaranteeing prescribed performance and contact maintenance via an approximation free robot force/position controller. *Automatica*, 2012, 48(1): 360 – 365.
- [17] BECHLIOULIS C P, ROVITHAKIS G A. A low-complexity global approximation-free control scheme with prescribed performance for unknown pure feedback systems. *Automatica*, 2014, 50(4): 1217 – 1226.
- [18] LIN W, QIAN C J. Robust regulation of a chain of power integrators perturbed by a lower-triangular vector field. *International Journal of Robust Nonlinear Control*, 2000, 10(5): 397 – 421.
- [19] QIAN C J, LIN W. Practical output tracking of noninear systems with uncontrollable unstable linearization. *IEEE Transactions on Automatic Control*, 2002, 47(1): 21 – 36.
- [20] SUN Cheng, SUN Hexu, DIAO Xinwei. Adaptive control design for a class of high order nonlinear nonhomogeneous uncertain systems. *Control Theory & Applications*, 2016, 33(6): 816 – 824.
 (孙丞, 孙鹤旭, 刁心薇. 一类非齐次高阶非线性系统的自适应控制 设计. 控制理论与应用, 2016, 33(6): 816 – 824.)
- [21] SUN Z Y, LIU Y G. Adaptive state-feedback stabilization for a class of high-order nonlinear uncertain systems. *Automatica*, 2007, 43(10): 1772 – 1783.
- [22] ZHAO X D, SHI P, ZHENG X L, et al. Intelligent tracking control for a class of uncertain high-order nonlinear systems. *IEEE Transactions on Neural Networks and Learning Systems*, 2016, 27(9): 1976 – 1982.
- [23] SHI C, LIU Z C, DONG X M, et al. A novel error-compensation control for a class of high-order nonlinear systems with input delay. *IEEE Transactions on Neural Networks and Learning Systems*, 2018, 29(9): 4077 – 4087.
- [24] YOO S J. A robust low-complexity tracker design with preassigned performance for uncertain high-order nonlinear systems with unknown time-varying delays and high powers. *Journal of the Franklin Institute*, 2018, 355(2): 675 – 692.
- [25] WANG W, WEN C. Adaptive compensation for infinite number of actuator failures or faults. *Automatica*, 2011, 47(12): 2197 2210.
- [26] GE S S, HONG F, LEE T H. Adaptive neural control of nonlinear time-delay systems with unknown virtual control coefficients. *IEEE*

Transactions on Systems, Man and Cybernetics-Part B: Cybernetics, 2004, 34(1): 499 – 516.

[27] YANG B, LIN W. Homogenous observers, iterative design, and global stabilization of high- order nonlinear systems by smooth output feedback. *IEEE Transactions on Automatic Control*, 2004, 49(7): 1069 – 1080.

附录 引理证明

A.1. 引理1证明

证 当p为正奇数时,考虑到 $\frac{1}{s}\int_{0}^{s} N^{p}(\xi) d\xi$ 是关于s的偶函数,故只需对 $s \to +\infty$ 的情况进行证明.

$$\diamondsuit s = 4k + 1, k \in \mathbb{Z}_+,$$

$$I_p = \int_0^1 \cos^p(\frac{\pi}{2}\xi) d\xi = \frac{2}{\pi} \frac{(p-1)!!}{p!!},$$

则

$$\int_{0}^{s} N^{p}(\xi) d\xi = \int_{0}^{4k+1} \xi^{2p} \cos^{p}(\frac{\pi}{2}\xi) d\xi =$$
$$\int_{0}^{1} + \int_{1}^{2} + \dots + \int_{4k}^{4k+1} \xi^{2p} \cos^{p}(\frac{\pi}{2}\xi) d\xi = \sum_{i=1}^{4k+1} T_{i}, \quad (A1)$$

其中: 根据积分中值定理有 $T_i = (-1)^{\left[\frac{i}{2}\right]} \zeta_i^{2p} I_p, [\cdot]$ 为高斯取 整函数, $\zeta_i \in [i-1,i]$.

$$\sum_{i=1}^{4k+1} T_i = T_1 + (T_2 + T_3 + T_4 + T_5) + \dots + (T_{4k-2} + T_{4k-1} + T_{4k} + T_{4k+1}) \ge (4^{2p} - 2^{2p})I_p + \dots + ((4k)^{2p} - (4k-2)^{2p})I_p \ge 4I_p \sum_{l=1}^{k} (4l-2)^p.$$
(A2)

因为

$$\lim_{k \to +\infty} \frac{4I_p \sum_{l=1}^{\infty} (4l-2)^p}{4k+1} = +\infty,$$
 (A3)

所以 $\lim_{k \to +\infty} \sup \frac{1}{s} \int_0^s N^p(\xi) d\xi = +\infty.$ 同理可证

k

$$\lim_{k \to +\infty} \inf \frac{1}{s} \int_0^s N^p(\xi) d\xi = -\infty.$$

A.2. 引理4证明

证 考虑到x, y的任意性,首先分4种情况讨论如下: 1) $\forall x, y \in \mathbb{R},$ 将 $(x + y)^p$ 二项式展开,并利用引理3有

$$(x+y)^{p} = x^{p} + y^{p} + \sum_{k=1}^{p-1} C_{p}^{k} x^{k} y^{p-k} \leqslant$$
$$x^{p} + y^{p} + \sum_{k=1}^{p-1} \varepsilon_{k} |x|^{p} + \sum_{k=1}^{p-1} m_{k} |y|^{p}, \quad (A4)$$

$$\underbrace{ \hspace{0.1cm} \hspace{0} \hspace{0.1cm} \hspace{0} \hspace{0} \hspace{0} \hspace{0}$$

$$(x+y)^p \leqslant (1+\varepsilon \operatorname{sgn} x)x^p + (1+m \operatorname{sgn} y)y^p.$$
(A5)

2) ∀x ≥ 0, y ∈ ℝ, 将(x + y)^p 与(x - y)^p相加得

$$(x + y)^{p} + (x - y)^{p} =$$

$$2x^{p} + 2\sum_{k=1}^{\frac{(p-1)}{2}} C_{p}^{2k-1} x^{2k-1} y^{p-2k+1} ≥ 2x^{p}.$$
(A6)

将式(A4)应用于
$$(x - y)^p$$
可得
 $(x + y)^p \ge (1 - \varepsilon \operatorname{sgn} x)x^p + (1 - m \operatorname{sgn} y)y^p.$ (A7)
3) $\forall x < 0, x + y \ge 0, 有$
 $(x + y)^p \ge 0 > x^p.$ (A8)

4)
$$\forall x < 0, x + y < 0, 有$$

$$\begin{aligned} x^{p} + y^{p} &= \\ (\frac{x+y}{2} + \frac{x-y}{2})^{p} + (\frac{x+y}{2} - \frac{x-y}{2})^{p} &= \\ 2(\frac{x+y}{2})^{p} + 2\sum_{k=1}^{\frac{(p-1)}{2}} C_{p}^{2k-1} (\frac{x+y}{2})^{2k-1} (\frac{x-y}{2})^{p-2k+1} \leqslant \\ 2(\frac{x+y}{2})^{p} &= 2^{1-p} (x+y)^{p}. \end{aligned}$$
(A9)

即

$$(x+y)^p \ge 2^{p-1}(x^p+y^p).$$
 (A10)

下面根据式(A5)(A7)–(A8)和(A10)讨论如下: 1) ∀*x* ≥ 0, *y* ∈ ℝ, 结合式(A5)(A7)可知

$$(1 - \varepsilon \operatorname{sgn} x)x^{p} + (1 - m \operatorname{sgn} y)y^{p} \leqslant (x + y)^{p} \leqslant (1 + \varepsilon \operatorname{sgn} x)x^{p} + (1 + m \operatorname{sgn} y)y^{p}.$$
(A11)

根据平面 $h(t,s) = x^p t + y^p s$ 的连续性可知, $\exists a_1(x,y) \in [1-\varepsilon, 1+\varepsilon], b_1(x,y) \in [1-m, 1+m]$ 使得

$$(x+y)^{p} = a_{1}(x,y)x^{p} + b_{1}(x,y)y^{p}.$$
 (A12)

2) $\forall x < 0, x+y \ge 0$, 结合式(A5)(A8), 同理可得, $\exists a_2(x, y) \in [1-\varepsilon, 1], b_2(x, y) \in [0, 1+m]$ 使得

$$(x+y)^{p} = a_{2}(x,y)x^{p} + b_{2}(x,y)y^{p}.$$
 (A13)

3) $\forall x < 0, x + y < 0,$ 结合式(A5)和式(A10),同理可得, $\exists a_3(x,y) \in [1 - \varepsilon, 2^{p-1}]$ 以及 $b_3(x,y) \in [\min\{1 + m, 2^{p-1}\}, \max\{1 + m, 2^{p-1}\}]$ 使得

$$(x+y)^p = a_3(x,y)x^p + b_3(x,y)y^p.$$
 (A14)

归纳式(A12)–(A14), 取 $M = \max\{1 + m, 2^{p-1}\},$ 可知 $\forall x, y \in \mathbb{R}, \bar{n}$

$$(x+y)^{p} = a(x,y)x^{p} + b(x,y)y^{p},$$
 (A15)

作者简介:

丁 超 硕士研究生,目前研究方向为多智能体系统协调控制与 高次非线性系统控制, E-mail: dingchao529@163.com;

石 超 博士研究生,目前研究方向为非线性系统控制,E-mail: shichao0311@sina.com;

董新民 教授,博士生导师,目前研究方向为飞行器导航、制导与控制,E-mail: dongxinmin@139.com;

陈 勇 讲师,博士,目前研究方向为飞行控制理论及应用,E-mail: cheny_043@163.com;

刘棕成 讲师,博士,目前研究方向为非线性系统控制,E-mail: liu434853780@163.com.