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Abstract: This paper proposes an adaptive robust control strategy for dielectric elastomer actuators (DEAs) utilized in
soft robots to achieve their tracking control. The dynamic model of the DEA is developed based on the principle of virtual
work, whose elastic energy is described by the Gent model. Since the model parameters of the DEA are difficult to obtain,
two approximators based on the radial basis function neural networks (RBFNNs) are employed to estimate the unknown
items of the dynamic model. Meanwhile, due to the fact that the rate of the stretch of the DEA is difficult to measure, the
state observer is designed to estimate the system states. Based on the approximation results and the observed states, the
sliding mode controller (SMC) is designed to realize the trajectory tracking control of the DEA. Finally, the simulation
results demonstrate the effectiveness of the proposed control strategy.
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1 Introduction faces!?l.

Due to the capability of large deformation and
shape changes, the dielectric elastomer actuator (DEA)
shows promising applications in the field of soft
robotics!!!. The DEA consists of a soft membrane sand-
wiched between two compliant electrodes on two sur-
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When a voltage is applied to the electrodes,
the dielectric elastomer membrane reduces in thick-
ness and expands in areal®’. Because the DEA has the
advantages of high-strain response, high energy den-
sity and fast response time!*!, the soft robots driven
by the DEA are widely used in various application-
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s, such as artificial muscles?!, bionic robots!®, micro-
electromechanical systems (MEMS)!"! and so on.

The mathematical modeling of the DEA is the ba-
sis for understanding its characteristics, and is also the
premise to design the model based controller. In gen-
eral, the mathematical modeling methods of the DEA
are divided into two categories: the physical-based
modeling approach and the phenomenological model-
ing approach. The physical-based modelling approach
is mainly based on the physical principles. The mathe-
matical model is obtained by analyzing the energy con-
version mechanism during the deformation process of
the DEA. This modeling technique has the advantages
of explicitness and preciseness. Based on the contin-
uum mechanics theory and the thermodynamic theo-
ry, [8] explains the physical-based modeling approach
of the DEA in detail. On the other hand, unlike the
physical-based approach, the phenomenological model-
ing approach is mainly based on the experimental phe-
nomenons. By analyzing the experimental data, one can
use the combination of physical components (such as,
resistor, capacitor, spring and dashpot) to represent the
model of the DEA. This technique has the advantages
of simplicity and efficiency. [9] employs capacitors and
resistors to describe the electrical model of the DEA,
and employs springs and dashpots to describe the me-
chanical model of the DEA. These two models can be
connected through the Maxwell force, together to pro-
vide a mathematical model of the DEA.

Currently, the complete understanding of the non-
linear dynamic behaviors of the DEA with a general
model is still an open challenge. Researches on the
DEA mainly focus on materials and physics, while few
efforts are made from the control point of view. How-
ever, [10] proposes a feedforward control strategy for
the DEA. [11] designs the PID controller for the DEA.
In general, the model of the DEA usually contains un-
measurable parameters (or parameter perturbations) and
external disturbances, so it is meaningful to invistigate
the adaptive robust control of the DEA. Meantime, in
actual control, some states of the DEA are difficult to
obtain, so an effective state observer is required for the
actual control of the DEA. In this respect, it is an urgent
demand to develop an implementable controller for the
DEA, which can take the dynamic of the DEA into the
consideration, tolerate the parameter uncertainties, and
also work with limited measurable states.

In this paper, we propose an adaptive robust control
strategy for the DEA to realize its trajectory tracking
control objective. According to the principle of virtual
work, the elastic energy of the DEA is described by the
Gent model, and then the dynamic model of the DEA is
developed. Since the model parameters of the DEA are
difficult to obtain, we use two approximators based on
the radial basis function neural networks (RBFNNs) to

estimate the unknown items of the model. Meantime,
since the rate of the stretch of the DEA is difficult to
measure, we design a state observer to estimate the sys-
tem states only according to the measured value of the
stretch. According to the approximation results and the
observed states, we design the sliding mode controller
(SMC) to realize the trajectory tracking control of the
DEA. Finally, the simulation results demonstrate the ef-
fectiveness of the proposed control strategy.

2 Dynamic model
In this section, the dynamic model of the DEA is
developed based on the principle of virtual work.
Figure 1 shows the actuation mechanism of the

DEAU!2! where Fig. 1(a) shows the un-deformed state
of the DEA and Fig. 1(b) shows the deformed state of
the DEA. In the Fig. 1, L, Ly and L3 are dimensions
corresponding to the un-deformed state; [,, [, and [5 are
dimensions corresponding to the deformed state; P; and
P, are tensile forces; @ is the voltage; Q is the charge.

Dielectric elastomer

L,

X Ll
Yy

(a) The un-deformed state of the DEA

Compliant electrodes

P,

/ oL

(b) The deformed state of the DEA
Fig. 1 Model of DEA

We define )\1 = ll/Ll, )\2 = lg/LQ and )\3 = l3/L3.
Since the DEA is incompressible,

The relationship between the charge ) and the volt-
age @ is'®!
Q _ ¢€(>\1, )\27 T)
L3/(L1 Lg)
where T is the environment temperature; €(Ay, Ay, T)
is the permittivity of the DEA, which is a nonlinear
function of Ay, Ay and T
When there are minor changes of dimensions of
the DEA (dA; and d)\,), the works done by the tensile
forces are P, L0\, and P, Lod)\,, and the work done

AIAS, )
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by the voltage is 6Q). Thus, the variation of the charge
is

6Q =
E()\l,)\g,T) 212 E()\l,AQ,T) 9
———— AP+ 20— A M50
Lol(InLy) 200 T Ly 0N T
1 88(A1 )\2 T)
@ A2\2 D)
Lg/(LlLQ) 172 a)\1 ' *
1 88(A1 )\2 T)
@ A2\2 D)
Lg/(LlLQ) 172 a)\Q ? *
e(A1, A, T
ML(?,/l(LfLQ))AQ)‘?d)‘Q' 3)
The inertia forces in each material element along
d?\
the z-direction and y-direction are pLoL3x?*( dt;)
2
and leLg,yQ(dd:;2 ), respectively!'¥l. p is the density

of the DEA. The damping forces in each material ele-

d
ment along the z-direction and y-direction are cx(d—tl)

dX;
and cy(—— g” %),

of the DEA!. Thus, the works done by the inertial
force and the damping force are

respectively. c is the damping coefficient

L?pLngz dzAl

pLoLs del S\ f rde =IO,
oLy L deQ 5A2f y2dy —Lgpgl%d;f o,
6%5)\1 LLI zdxr = L%;)\l %a
0%5/\2 Lh ydy = CL%;)\Q %

“)

According to the thermodynamics theory and the

principle of virtual work, the variation of the free en-

ergy (W) of the DEA is equal to the works done by

the voltage, the tensile forces, the inertia forces, and the
damping forces. So,

L1L2L35W: @5@ + PlLl(S)\l + PQLQ(S)\Q -

L?,OLQLg d2)\1 S\ CL 5)\1 % B
3 Az 7t 2 dt
LgpL1L3 d2)\2 5o — CL%é)\Q %
3 A P 2 dt

&)
Moreover, W is consisted of the elastic energy
(We1o) and the electric energy (We)!'3], that is

W = Wela + Wele =

T XA AN -
p( 2)Jm1n(1_ 1t 2+J1 2 3)+
()‘17)‘% ) 212

2 (Lg) )\ >\27 (6)

where (T is the shear modulus of the DEA, which

depends on the environment temperature 1'; J,,, is the
deformation limit.

Remark 1 According to the superelastic material the-
ory, the Gent model is chosen to describe the elastic energy in
this paper[lsl. However, one can choose the other model, such
as, Neo-Hookean model, Mooney-Rivlin model, Ogden model,
Arruda-Boyce model, and so on.

Submitting (3) into (5), we obtain
L1L2L35W ==

6()‘17)‘27T) 212
—— = ANN0P + P, Li6A
LS/(LILQ) 1\2 + 1&1 1+

E’(Al,)\Q,T)

L3/(LyLy)
AL, A T) (96()\1 )\2 T

@26( 1y N2, )\2)\2 ) 9

Ls/(LyLy) 1772 0\

8()\1,)\2,T) 9 268()\1,)\2,T

)\1)\2
Ly/(L1 L) s

6()\1,)\2,T) 2

VD A2 T A AZEN, —

Ls/(L1 L) 2A10A

L:{)pLgL?, d2)\1 CL 5)\1 % _
3 dez Y 2 dt

L3pL,Ls d*\ L26\; dA
oL Lig 25 Ay — C 2 A2 %
3 dt? 2 dt
By solving (7), the partial differentials of the free
energy are given by

ow P P
=92 2
aAl E()\17 )\2? )( ) )\ )\ L2L3

b3
20? AMAZON, + PoLadds +

)(5)\1—1—

? )5)\2 +

2¢?

L%[)dQAl o 1 CL1 d)\l
3 dt? 2 LoLs dt
D 288()\1,)\27T) 212
— ) —————=A7A

(Lg) a)\l 172

oW b , P
TAQ = 25()\17)\2,T)( ) )\2)\ L L3

®)

Lipd®X\, 1 CLQ dX,
3 A2 2L,Ls dt
D ,0e(A1, A2, T) 5 s
(fd) T)‘l)‘?
Submitting (6) into (8), the dynamic model of the
DE is derived as
L2p d2)\
3u(T) de?

o A — AN N

CAFEAN AN -3
JIH

] 25()\1,)\2,T) 2

— )\ +

Ly w(T) 12

3)286()\17)‘271—‘) )‘%)\g _

Ly 20\ w(T)

Locl v, P

2 /.,L(T)LQLg dt M(T)L2L37

—
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L%p d2)\2__
3u(T) dt2

Ay — Ay 3A?
- PYIED LA P P |
Im
b Le(A, N\, T)
L) N
(g)Qaa(/\l,)\g,T) DYDY _
L 20, u(T)
1 cLy dX; P,
i,u(T)Lng dt u(T)Li Ly
9)
We assume that [,y = Ly = Land P, = P, = P.

Meantime, we also assume that the DEA is isotropic.
S0, Ay = Ay = A, and (9) is reduced to

_|_

(

Lp v 1 ¢ B

3u(T) 2 p(T)Ls

@ 2€(>‘7T) 3

= g +

) Nt i,

(PRONT) N AT

Ly 200 uT) | _2¥+A'-3
I

(10)
Letx = [X; Xo]* = [\ AT, then the state-space
model of the DEA is

Xl = X2) (11)

where
f(z) =
P _ 1 CX2 . Xl — X;s
WM LLs  2p(T)Ls | 2XP+ X" -3
Jm
L?p ’
3u(T)
(12)
e(Xy,T) 3 0e(X,,T) X
LiL?p ’
3u(T)
u=d?, (14)

di| < dg.
3 Approximators and observer design

When (11) is obtained, we can design the controller
that is based on the model parameters and all system
states to realize the control of the DEA. However, in ac-
tual control, the model parameters of the DEA (i.e. p,
p(T), .2, 7), 0T

though A can be measured by using the laser displace-
ment sensor, A is not measurable. As a result, f(x),

and d; is the external disturbance,

and J,,) are unknown. Al-

g(x) and \ are unknown.

In order to meet the demand of the actual con-
trol, the approximators should be constructed to esti-
mate f(x) and g(x), and the state observer should be

designed to acquire A Considering that the RBFNN

can approximate any nonlinear function with any pre-

cision!% and it has the advantages of fast convergence

speed and avoiding the local minimum problem, we pre-
fer to choose the RBFNN to construct the approximator.
Since both f(x) and g(z) are unknown, a simple way is
to design two RBFNN-based approximators to approx-
imate f(z) and g(z), respectively. Moreover, when
the number of the hidden layer nodes is sufficient, the
approximation error of the three-layer RBFNN (input-
layer, hidden-layer and output layer) for any nonlinear
function is small enough!!”!. So, we use the RBFNN
with such simple topologies for convenience.

It is noted that there exist other effective parameter
estimation methods (such as [18-20] and so on), which
can be employed to construct the approximator. How-
ever, the purpose of this paper is to present a feasible
tracking control strategy for the DEA utilized in soft
robots. So, next we will only show the construct proce-
dure of the RBFNN-based approximator in detail. In-
terested readers may solve such open problem by em-
ploying other parameter estimation methods.

(11) can be rewritten as

&= Az +b[f(z) + g(x)u + di],
{y =C",
where A=[0 1;0 0],b=1[0 1]Tand C = [1 0]%;
1 is the output of the system.

15)

The state observer is designed to be

{:é = A%+ b[f(&) + §(&)u—v] + K(y — CT#),
Z) =

(16)
where Z is the observed value of x; f(Z) and (&) are
the estimated values of f(z) and g(x), respectively;
K = [k; ky]T; v is the robustifying item;

FE) — T ’
J&) = Wi o (17)
g(fL‘) = W2 02,

&1 = [611 (312 6-1N1]T7
Gy = [021 020 6'2N2]T7
IS o (18)
Wi=[Wy, Wiy Winh,
Wo=[Wa W W2N2}T7
6ij ==
R 2
exp(w)(i —1,2andj=1,2,--- ,N)),

21p;
(19)
W1 and W2 are the actual weight vectors of two

RBFNNS, respectively; 61 and 65 are the actual output
vectors of Gauss functions of two RBFNNS, respective-
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ly; N7 and N, are the node numbers of the hidden layer

of two RBFNNG, respectively; x;;=[x;, xj;|" are con-
stant vectors; 1; are constants.
Moreover, it is known that

{f(w) = Wio1 +ei,

g(x) = Wyos +e3,

where W and W, are the ideal weight vectors of two

RBFNN:Ss, respectively; oy and o5 are the ideal output

vectors of Gauss functions of two RBFNNS, respective-

ly; €] and € are approximation errors of two RBFNNS,

respectively; W, Ws, €] and €} are bounded, that is

WAl < Wi, [[Wal| < W,
€1 < el €3 < Eaps
Wim >0, Way > 0,
el > 0, €5y > 0.
Using (15) minus (16) yields
i=(A—KCY)i+ bW, 4+ wi+
81 + (%1 + (W2 0'2+
wa + e3)u+ d; + 9],
y=C'z,
where T = x — I; Wl =W
v =v14v2; wy = Wi oy — 61),wp =

(20)

21

(22)

- Wl, WQ =W, - W2§
Wy [oa — 6

wy and wy are bounded, that is

Jwrll < 81, B >0,
23
{nwz\ < o B> 0. @y
According to (22),
= H(s)L(s)A, (24)

y

where H(s) = C"(sI — A)~'b; s denotes the dif-
d

ferential operator a; L7'(s) is a transfer function

with stable poles and L(s) is chosen to ensure that
H(s)L(s) is strictly positive realness (SPR);

A=6,40y + W, + WEGou+

(Wy + E)u + @y + & + di + Ty + Vo,
(s )[WT 1] = WL (s)[61],
— WL~ (s)[62]u,
s)[01], 72 = L7'(s)[62],

g = L)t 2 = L (s)es,
v = L7Y(s)[vi], v = L1(s)[va],
7t = L_I(S)[it )
(25)
01 and 95 are bounded, that is
{H51|| < ClHVE/lHF, c >0, 6)
|02 < cal|Wallr, ca >0,

and ||© || is Frobenius norm of O;.
Letting H(s)L(s) = CX(sI — A.)"'b. and § =
C;r Z, then (24) can be rewritten as

= A2+ beA,
{ : Tz;-i— @7
y=0C:z.
Since H(s)L(s) is SPR, there exists P = P > 0,

which makes
AP+ PA. = —-Q, (28)
where Q = QT > 0.

The Lyapunov function is constructed as

1 1

V= §~TP2 + §tr(W1TF1‘1W1) +
1 - -
5tr(WQT Fy'Wy), (29)
where £y = F' > 0, F, = Ff > 0; tr(6,) is the
trace of Os.
The derivative of V' is
. 1
V= §ZTPz+ TPi 4 tr(WIFIW,) +

tr(WIE W ,) =

1[Acz + b AT Pz + %2TP[A62 + b A] +
tr(W,LF; 1VVl) + tr(WLFy 1W2)
%ZT(ACTP + PA)Z 4 2" Pb.A +
s (WEFTIWL) + te (WL E W) =
—%ZTQé +gA + tr(WEF;lﬁ/l) +
tr(WLF; 1WQ) (30)

To ensure the convergences of the state observer
and the approximators, by employing the trial and er-
ror method, we design the update laws to be

{Wl :F1(£T1Z]—/€1F1‘ﬂ|W17 31)
Wy = F232QU - /‘62F2\?3|W2,
where k1 > 0, kg > 0.
Submitting (31) into (30) yields
V= tr(WF(_élﬂ + /‘61’@|W1)) +

tr(W5" (—020u + Kao|g|Wa)) —

1

ngQz + gA. (32)

The robustifying item in (16) is designed to be
—(D1 + D2)sgny, (33)
where -Dl 2/810-M7 D2 2520Mud7 oM :Umax[L71 (S)]7

Omax|©3] is the maximum singular value of Os; |u| <

V=01 + Uy =

ug; sgn(-) is the symbol function.
According to (23) and (33), we obtain
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Jwr + 1) = gL (s)wr — Dulf] < ﬁl(”W1||F_lal)2_1K/1a?+
|91B1om — Dy <0, (34) 2 ) 4
. _ ~ 1 1
J(@o + ) = gL (s)wou — Dslj| < Fa([Wellp — 502) — maad). (42)
9| Baonua — Da|g| < 0 _ . .
. When A\, (@) < 0, the requirement for V' < 0 is
Using the property of the trace of the matrix, one 1
has o o Z)\min(Q)’g‘ —om(el +da) — Z"floé? >0,
tr(Wi'o1g) = gWio, 35) . .
tr(WlGau) = gW oau. Z)‘min(Q)’?j‘ — OMERUQ — 1"12a§ > 0.
Moreover, the following inequation always holds. That is (43)
ZTQZ = A Q)12 36) |yl =
where \,in (Q) is smallest eigenvalues of Q. max{ doy (et +dg) + k12 doyesug + ﬁgag}

Submitting (34)—(36) into (32) yields
V=

1 o .
—izTQz +gA — gWle, — gW, aou +
tr(W1T"51|ZﬂW1) +tr(W2T"¢2’ZﬂW2) <
19](81 + Eou+ dy + ¢4 | Wi ||y + col|[Wallg) —

1 - .
§Amm(Q)II2II2 + K |glte (W (Wy — Wh)) +
K| gtr (W3 (W — Wh)). 37)

>
_)\min(Q) < )\min(Q)|g‘2‘ (38)
Since tr(01605) = ||Os|?

tion always holds.

i, the following inequa-

{tr(WlT(Wl — Wh)) < Win|[Wallr — WA I3,
tr(W5 (Wa — Wa)) < W[ Wal|r — || W23
(39
Submitting (38) and (39) into (37) yields
V<
1 ~ ~ * *
_5)\min(Q)|y’2 + [glom (el + e3ua + da) +

K Gl (Wit [Willp = [WlIR) + [dled | le +
Fo| G| (Woan[[Wallp — [[Wall7) + [gleal|Wallp =

1 ~ . .
— 1915 Amin (@)|F] — om(e] + e5ua + da) —

2
wi(ar = [[Wil[p) [Whle —
Ko — [[Wal[p) [[Wallg], (40)
where av; = Wiy + ¢i/k1 and oy = Wopr + colko.

Moreover, we know that

- - 1 1
(al—HWﬂlp)HWlHF:Za? (Wl — e ar)?,

- - 1, ~ 1
(az—”W2||F)||W2HF:1a1—(HW2||F 2a2)-

41)

Submitting (41) into (40) leads to

il . .
V< —Iy\[§Amin(Q)ly| —om(el + ug +dg) +

Amin (Q) P Y ()

(44)
When A, (@) > 0, the requirement for V <0is

k(Wi — = —k1a; 20,

Oé1)2 — O'M(ET + dd) — 1
~ 1 5 1 )
”92(”W2||F - 5062) — 1%2052 > 0.

(45)

UMESUd —

That is

—_

om(el + da) n Oﬁ)uz

Willp > =
Wille ay + ( o 1

)

(46)

N

* 2
OMEQUd | Q519
—a —=)\1Z
2 ( Ko 4 )
Lemma 12" Given 2 € R™ and a nonlinear func-
tion h(x,t): R® — R x R", the differential equation

T = h(il?,t) to t fL'(to) = Xy, (47)

has a differential solution z(t) if h(x,t) is continuous
in () and t. The solution z(t) is said to be uniformly
ultimately bounded (UUB) if there exists a compact set
U € R™ such that, for all z(tg) = x¢ € U, there exist
a d > 0 and a number T'(, o) such that z(¢) < ¢ for
allt >ty + T.
According to the above analyses and Lemma I,

IIZIl, [|W1]|¢ and ||Ws]||g are UUB.

~ Next, we will show thg boundedness of 7. Let A =
WEe+wy +ei+u+(Woy + wy + &5)utdy +vs,
(22) can be rewritten as

Wl >

= (A-KCYi+bA. (48)
The solution of = (A — KC™)i is
#(t) = #(0)elo A=K (49)

Further, the solution of (48) is
I(t) =
el (A-KCT)dt Jot bA(T)e™ I (A=KCTdr g o

:%(O)efﬂt (A—KCT)dt _

B(t,0)7 +j &(t, )b A(T)dr, (50)
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where
{% 0) = el (ke

@(t, 7') = efot (A-KCT)dt— [ (A*KCT)dq—. (&2))

Since
efot (A—KCT)dt— [T (A—KCT)dr A(tf‘r)efKCT(tfr)j
(52)
the state transition matrix @(¢,7) is bounded by
moe~ =7 where my = e**~") and @ = KC7 are
positive constants.
Letting v = wy + &5 + v1 + (wo + €5)u + dy + v,
then
1Al < [IWi 6115 + Wy Gaulls + 94, (53)

where [|7[|5 < 7.
t
Since ||G]|5 = \/fo e MO (1)06(1)d(T)

and ||AGg||2 < ||Allr]|O6|2, one has

W65 < W6 l5l1641l5 =

=¢e

~ t
Wl lolly/ [, emeend(r) =

[WE[&]61]1VI = et/y/a. (54)

Similarly,
W3 eaulls < WS ||E]162]luav/T — eot/y/a. (55)
Lemma 222! Consider the linear time-invariant

system in state-space representation
#(t) = Az(t) + Bu(t), (0) = zo (56)
with z(t) € R™, u(t) € R™, B € R"*™. Then, every
solution z(t) of (56) satisfies
()] < 1+ kallu(®)]l3, (57)
where k, decays exponentially to zero, k5 is a positive
constant that depends on the eigenvalues of A.
Let v5=||01]|(1—€™") and v =||F2|| (1 — € ) ugq.
According to Lemma 2 and (53), we can get
|2 < K+ ke[ W |E75/v/a + ks +
ko[ W [136/Va =
7+ Ve + AW Ve +
%6l /v, (58)
where v; = ki, 74 = kavav/a, 75 = kavs, Y6 = k26
-5 decays exponentially to zero; v}, ~v; and 7 are pos-
itive constants.
Thus, ||Z(t)]| is bounded by |W.'||r and ||W||¢,
which have been verified to be bounded.
4 Controller design

In this section, we design the SMC based on the
above approximators and the state observer to realize
the trajectory tracking control of the DEA. In fact, there

are other control methods that can be regarded as the
candidates to achieve this control objective (such as,
PID control method, fuzzy control method, backstep-
ping control method and so on). However, the sliding
mode control method itself has strong robust perfor-
mance, and can effectively overcome the influence of
the parameter uncertainty and the external disturbance
on the system control!?}). Since the external disturbance
is considered in the model of the DEA, we may as well
design the SMC directly.
The sliding mode surface is chosen to be

S =ce+é, (59

wheree = &1 — Mg, € = 9%2 — }\d; Aq and )\d are target
values of the stretch of the DEA and the target rate of
the stretch.

The Lyapunov function is constructed as
Vi=-5% (60)
According to (16), the derivative of V; is
Vi = Sley(d + Ky (21 — 1) — Aa) + f(2) +
f](:i‘)u + dt — v+ KQ(Zfl — i’l) — )\d]

(61)
The controller is designed to be
u=
1 . . : N
@[—cs(azg + Ki(xy — 1) — \a) — f(2) +
v — Ky(zy — &1) + Ag — nsgn s], (62)

where ;\d is the target accelerated velocity of the stretch,
n > dgq > 0. f(Z) and §() are given in (17).
Submitting (62) into (61) yields

Vi =d,S—n|S|<0. (63)

When V1 =0, S = 0. So, according to LaSalle’s
invariance theorem, we know that e — O and é — 0
as t — o00. Since the convergence and boundedness
of Z have been verified in the previous section, the tra-
jectory tracking control of the DEA can be achieved by
employing the above SMC (62) with the approximators
(17) and the state observer (16). The structural diagram
of the closed-loop control system is shown in Fig. 2.

— l Update law A
A A =~
+
RBFNNs
fig@ |
Dy Aoy I )
— u A
Controller DEA [
L| Observer | ; 3 T
A A

Fig. 2 Structural diagram of closed-loop control system
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5 Simulations Aa = —0.5cost + 2,

In order to verify the effectiveness of the proposed Aq = 0.5sint, (68)
control strategy, a simulation is carried out by using Mg = 0.5 cost.
MATLAB tool. The model parameters of the DEA are . .

. [24] The external disturbance is
shown in Table 1'“*.
d; = 10sin(2t). (69)
Table 1 Model parameters of DEA The parameters of two RBFNNs are:

Parameter Value Parameter Value
L 0.02m Jm 70
L3 0.001 m w(T) 0.097 MPa
p 960 kg/m? ¢ 1.2

According to experimental results in [25],
e\, T) =egpe,(N\,T) =

£0(Eo + %)[1 +a,(2X\7F —2) +

bo(2A7F —2)% 4 ¢, (2072 —2)%],  (64)

where £p = 8.85 x 107'?(F/m) is the permittivity of
vacuum;

eoo = 2.1, T = 300, ay, = —0.1658,
by, = 0.04086, ¢, = —0.003027;
and
e(A\,T) =egoe,(\,T) =
€o(€co + %)[1 +a,(2\7F —2) +

be(2A72 —2)2 4 ¢, (2072 —2)%.  (65)
The initial states of the DEA are chosen to be
Xo = 1.5, Ao = 0. (66)
So, the tensile forces are
pLLs (Ao — A”)

P = . A3 = 2.7205. (67)
Im
The target trajectory is
2.500
_ 2498 |/
-——= 2.496

9.30 9.40 9.50

24+ j!
22+ if’\
20+ f

1.8F i!

1.6—]

2 Ay

(a) Deformation tracking

Ny =Ny =7,
Xi; =Xy =—4+j,i=12andj=1,2,---,7,
i =6(i =1,2),
the initial values of the weights are Wl% =0.10:=1,2
and j = 1,2,---,7). The parameters of the observ-

erare k; = 4 x 10°, ky, = 8 x 107. So, H(s) =
1/(s? 4 4s + 2200). Since
Re[H (jw)] =
(8 x 107 — w?)/((w® — 8 x 107)° +
w?16 x 10'°)
may less than 0, H (s) is not SPR. We choose L™!(s) =
1/(s + 3 x 10°) to ensure that H(s)L(s) is SPR. The
parameters of the controller (62) are
cs =7 x10% n=15.
In (31),
Ky = 0.1, Ky = 0.001, F, = 500, F, = 0.05.
In(33), Dy = Dy =1.2.
The simulation results are shown in Figs. 3-6. Ac-

cording to Figs. 3(a) and 3(b), A and \ track Ag and )'\d,
respectively. The tracking error curves are shown in
Fig. 4. Meanwhile, according to Figs. 3(c) and 3(d), the
maximum observation error is about 1.76%. So, the de-
signed approximators, state observer and SMC are ef-
fective. Moreover, according to Figs.5(a) and 5(b),

f(#) and §(2) do not converge to f(z) and g(z), re-
spectively. It is because the input signal does not satisfy

persistent excitation condition!2%.
0.5000
. 0.4996 | :
-——= 04992/ .
7.80 7.84 7.88
/\\ |

5

\ /oy
10 1

t/s
(b) Velocity tracking
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Fig. 3 Tracking results and observed results

(a) Deformation tracking error

(b) Velocity tracking error

Fig. 4 Tracking error

10 F@x107
- == f@x10°
0 N '4' ’4 "“ ’4‘
. ¢ P X &
- r . , “ ,
-10 - \»‘ * | ‘J‘. ﬁ, T“ 4 -
0 5 10 15
t/s

(a) Approximation results of f(x)

X 15H 5
G g(@)>107
> 3
104 === g@x10°
9 » ~ -
» 5| ’r N '4‘ . ’, Q‘ i
@ ’i + / ‘\ ;’ A3
) b ¢ “u"' Yaw? *u
O 1 1 1
0 5 10 15
t/s

(b) Approximation results of g(z)

Fig. 5 Approximation results

ux10°/V

Fig. 6 Control input

6 Conclusions

This paper proposes an adaptive robust control
strategy for the DEA. Based on the RBFNNSs, two ap-
proximators are used to estimate the unknown items of
the DEA’s model. Meantime, the state observer is de-
signed to estimate the system states. Based on the ap-
proximation results and the observed states, the SMC is
designed to realize the tracking control of the DEA.

The proposed control strategy only requires the
stretch of the DEA, but does not require the the model
parameters and the rate of the stretch. Thus, the pro-
posed control strategy has adaptivity and robustness.
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Moreover, the dynamic model (9) does not consider
the creep and the hysteresis characteristics of the DEA.
In the future, we will develop a more complex and more
realistic mathematical model of the DEA to take the
creep and the hysteresis into consideration. Further-
more, the control strategy proposed in this paper should
be appropriately extended to meet the new model.
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