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李 会, 刘允刚†, 黄亚欣
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摘要:本文研究了一类不确定非线性系统的动态事件触发输出反馈镇定问题.显著不同的是系统具有依赖于不
可测状态的增长且增长率为输出的未知多项式. 尽管已有一些连续自适应控制器,但需要巧妙融合非线性状态观
测器、系统未知性的动态补偿以及非线性的抵御,因此这些控制器具有一定的脆弱性,不能平凡地拓展到不连续情
形(采样误差导致).为此,首先通过引入动态高增益和基于高增益的观测器来分别抵御未知增长率和重构系统不可
测状态. 进而,意识到静态事件触发机制的无效性,通过引入动态事件触发机制,成功设计出了事件触发输出反馈
控制器,确保了系统状态的全局有界性和收敛性. 数值仿真验证了所设计控制器的有效性.
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Adaptive stabilization via dynamic event-triggered output feedback
for uncertain nonlinear systems
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Abstract: This paper is devoted to the global adaptive stabilization via dynamic event-triggered output feedback for a
class of uncertain nonlinear systems. Remarkably, the systems admit unmeasured states dependent growth with the rate
of unknown polynomial-of-output. Although some continuous adaptive controllers have been proposed, they cannot be
trivially extended to the discontinuous (caused by sampled error) context since their fragility stemmed from the skillful
integration of nonlinear observer to unmeasured states, dynamic compensation to system unknowns and domination to
nonlinearities. To solve the problem, a dynamic high gain and a high-gain-based observer are first introduced to counteract
the unknown growth rate and reconstruct the unmeasured system states, respectively. Then noting the ineffectiveness of
static event-triggering mechanisms, an event-triggered output-feedback controller is successfully designed by introducing a
dynamic event-triggering mechanism to achieve the global boundedness and convergence of the system states. A numerical
example is provided to illustrate the validity of the designed controller.
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1 Introduction
Adaptive and observer-based feedback for some

uncertain nonlinear systems have been extensively in-
vestigated over the past decades[1–4]. With the pop-
ularity of networked control systems, event-triggered
feedback control has received increasing interest dur-
ing the past decade due to its advantage in saving
communication/computation resources while guaran-
teeing desired system performance[5–18]. And various
of event-triggering mechanisms have appeared which,
in terms of the thresholds therein, can be classified in-
to: absolute, relative, time-varying and dynamic types.

However, it is rather challenging for systems admitting
unmeasured states dependent growth with the rate of
unknown polynomial-of-output to achieve global sta-
bilization via event-triggered output-feedback scheme.
Although the systems in [13] admit large uncertain-
ties, the absolute/relative threshold schemes proposed
merely guarantee the boundedness rather than the con-
vergence. In addition, the time-varying event-triggered
schemes in [15–16] achieved output regulation or sta-
bilization, but the system in [16] is the strict output
feedback type and doesn’t allow large uncertainties. In
[17–18], dynamic event-triggered schemes were pro-

Received 25 June 2019; accepted 13 November 2019.
†Corresponding author. E-mail: lygfr@sdu.edu.cn; Tel.: +86 531-88392535.
Recommended by Associate Editor: LIU Shu-jun.
Supported by the National Natural Science Foundation of China (61873146, 61821004).



1872 Control Theory & Applications Vol. 36

posed to achieve global stabilization, but the systems
therein exclude any large uncertainties. When large un-
certainties are allowed in nonlinear systems, the global
stabilization via dynamic event-triggered output feed-
back becomes much more challenging: An effective
compensation mechanism needs not only suitably in-
troducing to counteract the large uncertainties but also
delicately integrating with a dynamic event-triggering
mechanism to handle the sampling error and to achieve
the desired system performance.

This paper is concerned with the global stabiliza-
tion via dynamic event-triggered output feedback for
a class of uncertain nonlinear systems. Because of
the unmeasured states dependent growth with the rate
of unknown polynomial-of-output, the existing event-
triggered schemes fail to guarantee the desired sys-
tem performance. In fact, the existing (static) ab-
solute threshold schemes merely guarantee the glob-
al boundedness rather than the convergence[13]. Al-
though the (static) relative threshold schemes can en-
hance the control objective from boundedness to con-
vergence, the large uncertainties are not allowed[7–8].
Inspired by works[16–18], for the possibility of further
saving of computation/communication resources, a dy-
namic event-triggered output-feedback control scheme
is proposed to achieve the global stabilization of the
uncertain nonlinear systems. Detailedly, an observer
with dynamic high gain is first introduced to recon-
struct the unmeasured system states, and meanwhile the
unknown growth rate is counteracted by the dynam-
ic high gain. Then, noting the ineffectiveness of stat-
ic event-triggering mechanisms, we propose a dynam-
ic event-triggering mechanism. By flexibly integrating
these compensation and dynamic strategies, an adaptive
event-triggered output-feedback controller is success-
fully designed to achieve the global boundedness and
convergence of the system states.

The remainder of this paper is organized as follows.
Section 2 formulates the system model and control ob-
jective. A dynamic event-triggered controller is pro-
posed in Section 3 to achieve global output-feedback
stabilization. Section 4 presents some useful implica-
tions and summarizes the main results of this paper.
Section 5 provides a simulation example and Section
6 gives some concluding remarks.
2 Problem formulation

Consider the global stabilization via event-triggered
output feedback for the following uncertain nonlinear
system:

ẋi = xi+1 + fi(x, u, t), i = 1, · · · , n− 1,

ẋn = u+ fn(x, u, t),

y = x1,

(1)

where x = [x1 · · · xn]
T ∈ Rn is the system state

vector with the initial value x(0) = x0, u ∈ R and

y ∈ R are the control input and system output, respec-
tively; unknown functions fi : Rn×R×[0,+∞) → R,
i = 1, · · · , n, called the system nonlinearities, are lo-
cally Lipschitz in the first argument and continuous in
the rest ones.

Assumption 1 There exist a known positive
constant p and an unknown positive constant θ such that

|fi(t, x, u)| 6 θ(1 + |x1|p)
i∑

j=1

|xj|, i = 1, · · · , n.

Remarkably, Assumption 1 makes system (1) ad-
mit unmeasured states dependent growth with the rate
of unknown polynomial-of-output (the large uncertain-
ties are reflected by the unknown θ), which is essentially
different from the related works[13, 16–18]. Specifically,
the works[13, 16] have the nonlinearities merely lying on
the system output while the systems in [16–18] allow-
ing not any uncertainties or merely weak uncertainties.

Detailedly, the global stabilization to be established
is that for system (1) under Assumption 1, an event-
triggered output-feedback controller with dynamic
event-triggering mechanism will be designed such that
all the signals of the closed-loop system are globally
bounded while the system states converge to zero.

3 Event-triggered output-feedback control-
ler
We first suitably choose positive parameters ai and

bi, i = 1, · · · , n such that there exist symmetric posi-
tive definite matrices P and Q satisfying{

c1I 6 CP + PC 6 c2I, B
TP + PB 6 −2I,

c3I 6 CQ+QC 6 c4I, A
TQ+QA 6 −I,

(2)

where ci’s are positive constants, both A = [−a [In−1

0n−1]
T] and B = [[0n−1 In−1]

T − b]T are Hurwitz
with In−1 being (n − 1)-dimensional identity matrix
and 0n−1 being (n−1)-dimensional column vector with
all elements 0, a = [a1 · · · an]

T, b = [b1 · · · bn]
T,

C = diag{σ, 1 + σ, · · · , n − 1 + σ} with constant σ

satisfying 0 < σ 6 1

4p
.

For system (1), we construct the following observ-
er (O) and dynamic high gain (G) with γ1(0) > 1 and
γ2(0) > 1:

O:


˙̂xi = x̂i+1 + γiai(x1 − x̂1),

i = 1, · · · , n− 1,

˙̂xn = u+ γnan(x1 − x̂1),

G:


γ = γ(t) = γ1(t)γ2(t),

γ̇1 = m1(1 + |x1|p)2 −m2(γ1 − 1),

γ̇2 = γ1−2σ
1

(x1 − x̂1

γσ
2

)2
,

(3)

where m1 and m2 are positive constants satisfying

m1 > max{ 1

c1
,
1

c3
} and m2 6 min{ 1

2c2
,
1

2c4
}, re-
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spectively. By (G), we know that γ2(t) is nondecreas-
ing and γ1(t) > 1, γ2(t) > 1, ∀t > 0.

We then design the following event-triggered con-
troller:u(t) = ω((γ(tk), x̂(tk)), t ∈ [tk, tk+1),

ω(γ, x̂) = −
n∑

i=1

γn−i+1bix̂i,
(4)

and particularly the following dynamic event-triggering
mechanism (to generate the execution times tk’s):

tk+1 = inf{t > tk|ϖ(t) > χ(t)},

ϖ(u, γ, x̂)=
2∥PEn∥2(u− ω)2

γ2n−1+2σ
− ∥x̂∥2

4γ2n−3+2σ
,

χ̇ = −d1ϖ(t)− d2χ, χ(0) > 0,

(5)

where ϖ(t) denotes ϖ(u(t), γ(t), x̂(t)) for brevity and
ϖ(0) 6 χ(0), En = [0 · · · 0 1]T ∈ Rn, constants
d1 and d2 satisfy 0 < d1 < 1 and d2 > 1− d1, respec-
tively.

From (5) and noting ϖ(0) 6 χ(0), we have ϖ(t)
6 χ(t), ∀t > 0 and hence χ̇ > −(d1 + d2)χ, which
implies χ(t) > χ(0)e−(d1+d2)t > 0, ∀t > 0.

4 Main results
Since fi(·)’s are locally Lipschitz, the right-hand

sides of the entire dynamical system (1) and (3) are con-
tinuous in (t, u) and locally Lipschitz in (x, x̂, γ1, γ2).
The existence and uniqueness theorem and continua-
tion theorem, (see e.g., Theorem 3.1 on Page 18 and
Theorem 2.1 on Page 17 of [19], respectively), to-
gether with the piecewise continuation in [11], suggest
that for any given initial value (x0, x̂0, γ1(0), γ2(0)),
the resulting closed-loop system has a unique solution
(x(t), x̂(t), γ1(t), γ2(t)) on the maximum existence in-
terval [0, Tm), where 0 < Tm 6 +∞. The case
“Tm < +∞”, as in [11], implies that

lim
t→Tm

(∥x(t)∥+ ∥x̂(t)∥+ γ1(t) + γ2(t)) = +∞

or that Zeno occurs, i.e., lim
k→+∞

tk = Tm.

For further development, we introduce the scaled
coordinate transformation to (x, x̂):

zi =
x̂i

γi−1+σ
, εi =

xi − x̂i

γi−1+σ
, i = 1, · · · , n.

Then by (1) and (3), there are
ż = − γ̇

γ
Cz + γBz + γaε1 +

En(u− ω)

γn−1+σ
,

ε̇ = − γ̇

γ
Cε+ γAε+ f̃ ,

(6)

where z = [z1 · · · zn]
T, ε = [ε1 · · · εn]

T, and

f̃ = [
f1
γσ

f2
γ1+σ

· · · fn
γn−1+σ

]T.

Remark that, once γ(t) is bounded on [0, +∞), the
stability of system (6) implies that of the original system

(x, x̂), and vice versa. Nevertheless, system (6) makes
the stable mode explicit, which is more advantageous to
the stability analysis.

We have the following propositions:

Proposition 1 Choose V = zTPz+āεTQε+χ
with ā = 4∥Pa∥2 + 1. Then along the trajectories of
(6) and the dynamics χ in (5), there holds

D+V 6 (−γ2
4

+Θ)γ1(∥z∥2 + ∥ε∥2)− d̄χ, (7)

where D+V denotes the upper right-hand derivative of
V , and Θ and d̄ are unknown positive and known non-
negative constants, respectively.

Proof Along the dynamics χ in (5) and the trajec-
tories of (6), there holds

D+V =− γ̇

γ
zT(CP + PC)z+γzT(BTP + PB)z +

2γε1z
TPa+ 2

u− ω

γn−1+σ
zTPEn −

ā
γ̇

γ
εT(CQ+QC)ε+āγεT(ATQ+QA)ε+

2āεTQf̃ − d1ϖ − d2χ.

Then by (2) and the dynamics γ1 in (3), and noting that
γ̇2 > 0, γ2 > 1, we have

D+V 6− γ̇1
γ1

zT(CP + PC)z − 2γ∥z∥2+

2γ∥Pa∥ · ∥z∥ · |ε1|+ 2
∥PEn∥
γn−1+σ

|u− ω|·

∥z∥ − ā
γ̇1
γ1

εT(CQ+QC)ε− āγ∥ε∥2+

2ā∥Q∥ · ∥ε∥ · ∥f̃∥ − d1ϖ − d2χ 6

−c1m1

γ1
(1 + |x1|p)2∥z∥2 + c2m2∥z∥2 −

c1m2

γ1
∥z∥2 − 2γ∥z∥2 + 2γ∥Pa∥ · ∥z∥ ·

|ε1|+ 2
∥PEn∥
γn−1+σ

|u− ω| · ∥z∥ − āc3m1

γ1
·

(1 + |x1|p)2 · ∥ε∥2 + āc4m2∥ε∥2 −
āc3m2

γ1
∥ε∥2−āγ∥ε∥2+2ā∥Q∥ · ∥ε∥ · ∥f̃∥ −

d1ϖ − d2χ.

The positivity of c1, c3, m2 and ā and γ1 > 1 imply

D+V 6(c2m2 − 2γ)∥z∥2− c1m1

γ1
(1 + |x1|p)2∥z∥2 +

2γ∥Pa∥·∥z∥·|ε1|+
2∥PEn∥
γn+σ−1

|u−ω| · ∥z∥+

(āc4m2 − āγ)∥ε∥2 − āc3m1

γ1
(1 + |x1|p)2 ·

∥ε∥2+2ā∥Q∥ · ∥ε∥ · ∥f̃∥−d1ϖ − d2χ. (8)

By Assumption 1 and the completing squares tech-
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nique, the following three terms satisfy:

2γ∥Pa∥ · ∥z∥ · |ε1| 6
γ

2
∥z∥2 + 2γ∥Pa∥2ε21,

2∥PEn∥
γn−1+σ

|u− ω| · ∥z∥ 6
γ

2
∥z∥2 + 2∥PEn∥2

γ2n−1+2σ
(u− ω)2,

2ā∥Q∥ · ∥ε∥ · ∥f̃∥6
(1+|x1|p)2

γ1
(∥z∥2+∥ε∥2)+γ1(ānθ∥Q∥)2∥ε∥2.

(9)

Substituting this into (8), and noting the positivity of c2,
c4, m2 and ā and γ > 1, we have

D+V 6 (c2m2 − 1)γ∥z∥2 + γ1
(
āc4m2γ2 − āγ2 +

2∥Pa∥2γ2 + 2(ānθ∥Q∥)2
)
∥ε∥2 +

1− c1m1

γ1
(1 + |x1|p)2∥z∥2 +

1− āc3m1

γ1
(1 + |x1|p)2∥ε∥2 +

2∥PEn∥2

γ2n−1+2σ
(u− ω)2 − d1ϖ − d2χ.

The choice of m2, m1 and ā, together with γ1 > 1 and
the expression of ϖ, implies that

D+V 6−γ

2
∥z∥2 − γ1

2
(γ2 − 4(ānθ∥Q∥)2)∥ε∥2 +

2∥PEn∥2

γ2n−1+2σ
(u− ω)2 − d1ϖ − d2χ 6

−γ

4
∥z∥2 − γ1

2
(γ2 − 4(ānθ∥Q∥)2)∥ε∥2 +

(1− d1)ϖ − d2χ.

From the event-triggering mechanism (5), it follows
that ϖ 6 χ(t). Then we have

D+V 6 (−γ2
4

+ 2(ānθ∥Q∥)2)γ1(∥z∥2 + ∥ε∥2) +

(1− d1 − d2)χ. (10)

Since d2 > 1 − d1, we immediately derive (7) with
Θ = 2(ānθ∥Q∥)2 and d̄ = d1 + d2 − 1 > 0.

In what follows, we denote V (z(t), ε(t), χ(t)) by
V (t) (or directly V ) for convenience.

Proposition 2 If γ2(t) is bounded on [0, Tm),
then z(t) and ε(t) are bounded on [0, Tm), and more-
over,

lim
t→Tm

w t

0
(γ1(τ)∥z(τ)∥2 + ∥ε(τ)∥2)dτ < +∞.

Proof We first show the boundedness and square
integrability of z(t) on [0, Tm). On the one hand,
choose the Lyapunov function candidate Vz = zTPz+
χ. Along the dynamics χ and z in (5) and (6), and not-
ing (2) and γ̇2 > 0, γ2 > 1, there holds

D+Vz=− γ̇

γ
zT(CP+PC)z+γzT(BTP + PB)z+

2γε1z
TPa+ 2

u− ω

γn−1+σ
zTPEn−

d1ϖ − d2χ 6

− γ̇1
γ1

zT(CP + PC)z − 2γ∥z∥2 + 2γ∥Pa∥·

∥z∥ · |ε1|+ 2γ
∥PEn∥
γn+σ

|u− ω| · ∥z∥−
d1ϖ − d2χ.

Then by (2) and the dynamics of γ1 in (3), and noting
the positivity of c1, c2, m1, m2, γ1 and the first two
inequalities in (9), we have

D+Vz 6−c1m1

γ1
(1 + |x1|p)2∥z∥2 −

c1m2

γ1
∥z∥2 +

c2m2∥z∥2 − γ∥z∥2 + 2γ∥Pa∥2ε21 +
2∥PEn∥2

γ2n−1+2σ
(u− ω)2 − d1ϖ − d2χ 6

(c2m2 − 1)γ∥z∥2 + 2γ∥Pa∥2ε21 +
2∥PEn∥2

γ2n−1+2σ
(u− ω)2 − d1ϖ − d2χ 6

−γ

2
∥z∥2 + 2γ∥Pa∥2ε21 +

2∥PEn∥2

γ2n−1+2σ
(u− ω)2 − d1ϖ − d2χ.

By the dynamics of γ2 in (3) and similar to the deriva-
tion of (10), we get

D+Vz 6−γ

4
∥z∥2 + 2∥Pa∥2γ2γ̇2 +

(1− d1 − d2)χ. (11)

Since γ2(t) is bounded and nondecreasing on [0, Tm),
we know that there exists a positive constant γ̄2 such
that γ̄2 = lim

t→Tm

γ2(t). Denote

λ1 := min{ 1

4lmax(P )
, d2 − d1 − 1}.

Then we have

D+Vz 6−λ1Vz + 2∥Pa∥2γ̄2γ̇2,
from which it follows

D+(eλ1tVz) 6 2∥Pa∥2γ̄2eλ1tγ̇2.

Integrating the above inequality from 0 to t, it holds

Vz 6
Vz(0)

eλ1t
+ 2∥Pa∥2γ̄2

w t

0
eλ1(τ−t)dγ2(τ) 6

Vz(0) + 2∥Pa∥2γ̄2
2 ,

which means the boundedness of z(t) on [0, Tm).
On the other hand, integrating (11) from 0 to t, we

can derive

Vz(t)− Vz(0)6−1

4

w t

0
γ1(τ)∥z(τ)∥2dτ +
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2∥Pa∥2γ̄2
w t

0
γ̇2(τ)dτ +

(1− d1 − d2)
w t

0
χ(τ)dτ.

Then by 0 < d1 6 1 and d2 > 1− d1, we have
1

4

w t

0
γ1(τ)∥z(τ)∥2dτ 6 Vz(0) + 2∥Pa∥2γ̄2

2 ,

which implies that
w t

0
γ1(τ)∥z(τ)∥2dτ < +∞.

We next show the boundedness and square integra-
bility of ε(t) on [0, Tm). For this, we introduce the fol-
lowing scaling transformation:

ηi =
xi − x̂i

(γ1γ∗
2)

i−1+σ
, (12)

where γ∗
2 is a constant satisfying γ∗

2 > max{γ̄2, 8n2×
θ2∥Q∥2 + 1}. Then by (1) and (3), we have

η̇=− γ̇1
γ1

Cη+γ1γ
∗
2Aη+γ1γ

∗
2aη1−γΓaη1+f̃∗, (13)

where

Γ = diag{1, γ2
γ∗
2

, · · · ,
(γ2
γ∗
2

)n−1}

and f̃∗ = [
f1

(γ1γ∗
2)

σ
· · · fn

(γ1γ∗
2)

n−1+σ
]T.

On one hand, choose the Lyapunov function candi-
date Vη = ηTQη. Then by (2) and the dynamics γ1 in
(3) and along the trajectories of (13), there holds

D+Vη =− γ̇1
γ1

ηT(CQ+QC)η + γ1γ
∗
2η

T(ATQ+

QA)η + 2γ1γ
∗
2η1η

TQa− 2γη1η
TQΓa+

2ηTQf̃∗ 6

−c3m1(1 + |x1|p)2

γ1
∥η∥2 + c4m2∥η∥2 −

c3m2

γ1
∥η∥2 − γ1γ

∗
2∥η∥2 + 2γ1γ

∗
2 |η1| · ∥η∥ ·

∥Qa∥+ 2γ|η1| · ∥η∥ · ∥QΓa∥+

2∥η∥ · ∥Q∥ · ∥f̃∗∥. (14)

By Assumption 1 and the method of completing
squares, the last three terms satisfy

2γ1γ
∗
2 |η1| · ∥η∥ · ∥Qa∥ 6

γ1γ
∗
2

8
∥η∥2 + γ1γ

∗
2∥Qa∥2η2

1,

2γ|η1| · ∥η∥ · ∥QΓa∥ 6 γ

8
∥η∥2 + 8γ∥QΓa∥2η2

1,

2∥η∥ · ∥Q∥ · ∥f̃∗∥ 6
(1 + |x1|p)2

γ1
∥η∥2+2n2θ2∥Q∥2γ1(∥z∥2+∥η∥2).

Substituting the above inequalities into (14) and noting
that c3m1 > 1 and c3 < c4, we have

D+Vη 6−(c3m1 − 1)(1 + |x1|p)2

γ1
∥η∥2 +

c4m2∥η∥2 −
c3m2

γ1
∥η∥2 − 3γ1γ

∗
2

4
∥η∥2 +

8γ1γ
∗
2∥Qa∥2η2

1 + 8γ∥QΓa∥2η2
1 +

2n2θ2∥Q∥2γ1(∥z∥2 + ∥η∥2) 6

−γ1
4
(γ∗

2 − 8n2θ2∥Q∥2)∥η∥2 +

8γ1γ
∗
2∥Qa∥2η2

1 + 8γ∥QΓa∥2η2
1 +

2n2θ2∥Q∥2γ1∥z∥2.
By γ∗

2 > max{γ̄2, 8n2θ2∥Q∥2 + 1} and γ1 > 1, we
have

η2
1 = (

x1 − x̂1

(γ1γ∗
2)

σ
)2 = (

x1 − x̂1

γσ
)2(

γ2
γ∗
2

)2σ 6 ε21.

Then

D+Vη6−γ1
4
∥η∥2 + (8γ∗

2∥Qa∥2 + 8γ̄2∥QΓa∥2) ·

γ1ε
2
1 + 2n2θ2∥Q∥2γ1∥z∥2 6

−λ2Vη + (8γ∗
2∥Qa∥2+8γ̄2∥QΓa∥2)γ1ε21 +

2n2θ2∥Q∥2γ1∥z∥2, (15)

where λ2 =
1

4lmax(Q)
. This can immediately derive

D+(eλ2tVη)6 (8γ∗
2∥Qa∥2 + 8γ̄2∥QΓa∥2)eλ2tγ1ε

2
1 +

2n2θ2∥Q∥2eλ2tγ1∥z∥2,
from which it follows

Vη 6
Vη(0)

eλ2t
+

w t

0
(8γ∗

2∥Qa∥2+8γ̄2∥QΓa∥2)eλ2(τ−t)×

γ1(τ)ε
2
1(τ)dτ+

w t

0
2n2θ2∥Q∥2eλ2(τ−t)γ1(τ)×

∥z(τ)∥2dτ 6

Vη(0)+(8γ∗
2∥Qa∥2+8γ̄2∥QΓa∥2)

w t

0
γ1(τ)×

ε21(τ)dτ+2n2θ2∥Q∥2
w t

0
γ1(τ)∥z(τ)∥2dτ.

By (3) and the hypothesis, we know

γ2(t)− γ2(0) =
w t

0
γ̇2(τ)dτ =w t

0
γ1(τ)ε

2
1(τ)dτ < +∞, (16)

which, together with
w t

0
γ1(τ)∥z(τ)∥2dτ < +∞, im-

plies that η(t) is bounded on [0, Tm).
On the other hand, integrating the first inequality in

(15) from 0 to t, we immediately have
1

4

w t

0
γ1(τ)∥η(τ)∥2dτ 6

Vη(0)+(8γ∗
2∥Qa∥2+8γ̄2∥QΓa∥2)

w t

0
γ1(τ)ε

2
1(τ)dτ+

2n2θ2∥Q∥2
w t

0
γ1(τ)∥z(τ)∥2dτ.

Noting (16) and
w t

0
γ1(τ)∥z(τ)∥2dτ < +∞, we can

derive
w t

0
γ1(τ)∥η(τ)∥2dτ < +∞. Then by (12)
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and noting that γ2 > 1 and γ1 > 1, we know thatw t

0
∥ε(τ)∥2dτ < +∞. QED.

Proposition 3 If all the signals of the result-
ing closed-loop system are bounded on [0, Tm), then
Tm = +∞ and Zeno doesn’t occur, and moreover,
lim

t→+∞
(x(t), x̂(t), u(t)) = 0.

Proof Noting that the internal dynamic variable
χ(t) satisfies χ(t) > χ(0)e−(d1+d2)t > 0, ∀t > 0,
and γ > 1, the dynamic event-triggering mechanism
(5) in this paper can be degenerated to the following
time-varying one:

tk+1 = inf{t > tk | 2∥PEn∥2(u− ω)2 >
χ(0)e−(d1+d2)t}. (17)

By using the existing analysis of eliminating Zeno phe-
nomenon under time-varying event-triggered scheme
(e.g. [15]) and integrating the compensation mechanis-
m in this paper, a time-varying event-triggered scheme
can be designed to achieve the global boundedness and
ultimately convergence of system (1) under Assumption
1 while no Zeno occurs. The detailed derivation of the
effectiveness of time-varying event-triggered scheme is
omitted here due to the page limitation.

For a given system state, denote tdk+1 and ttk+1 be
the next execution time of a dynamic event-triggering
mechanism and time-varying event-triggering mecha-
nism, respectively. We show that tdk+1 > ttk+1. In fact,
suppose that tdk+1 < ttk+1. Then by (17), we have

2∥PEn∥2(u(tdk+1)− ω(tdk+1))
2 <

χ(0)e−(d1+d2)t
d
k+1 . (18)

On the other hand, from the event-triggering mechanis-
m (5), it follows that ϖ(tdk+1) = χ(tdk+1). By this and
γ(t) > 1, we immediately derive

2∥PEn∥2(u(tdk+1)− ω(tdk+1))
2 > χ(tdk+1) >

χ(0)e−(d1+d2)t
d
k+1 ,

which is a contradiction with (18). Thus we have
tdk+1 > ttk+1, which means that the minimum inter-
execution time of the dynamic event-triggering mech-
anism cannot be smaller than that of a time-varying
one. Then the fact that no Zeno occurs for time-varying
event-triggering mechanism (just analysed) implies that
no Zeno occurs for a dynamic one in (5).

Now suppose that Tm < +∞, then by the bound-
edness of all the signals of the resulting closed-loop sys-
tem, there must exist Zeno phenomenon. Similar to the
proof of Lemma 4.1 in [15], we know that, for any finite
T , there holds inf{ttk+1 − ttk|[ttk, ttk+1) ⊂ [0, T )} >

0. Since tdk+1 > ttk+1 (just proved), we know that
lim

k→+∞
tdk = +∞, which results in a contradiction. Thus

Tm = +∞ and no Zeno occurs.

We next prove the convergence of the system s-
tates. In fact, by the hypothesis and (6), both ż(t) and
ε̇(t) are bounded on [0,+∞). In addition, Proposi-

tion 2 indicates that lim
t→Tm

w t

0
∥z(τ)∥2dτ < +∞, and

lim
t→Tm

w t

0
∥ε(τ)∥2dτ < +∞. Then by Barbălat Lemma

in [20], we have

lim
t→+∞

z(t) = 0, lim
t→+∞

ε(t) = 0.

Then by coordinate transformations zi =
x̂i

γi−1+σ
and

εi =
xi − x̂i

γi−1+σ
, i = 1, · · · , n and noting the bounded-

ness of γ, we have

lim
t→+∞

x(t) = 0, lim
t→+∞

x̂(t) = 0.

Proposition 3 is thus proved. QED.

Theorem 1 Consider system (1) under Assump-
tion 1. The event-triggered output-feedback con-
troller (4) with dynamic event-triggering mechanis-
m (5), based on the observer (O) and dynamic high
gain (G), guarantees that, for any given initial value
(x0, x̂0, γ1(0), γ2(0)), all the resulting closed-loop sys-
tem signals are well-defined and bounded on [0,+∞),
and furthermore, lim

t→+∞
(x(t), x̂(t), u(t)) = 0 while no

Zeno occurs.

Proof As discussed earlier, for any given initial
value (x0, x̂0, γ1(0), γ2(0)), the resulting closed-loop
system (consisting of (1), (3) and (4) together with
(5) has a unique solution (x(t), x̂(t), γ1(t), γ2(t)) on
[0, Tm).

In view of Propositions 2 and 3, it suffices to prove
the boundedness of γ1(t) and γ2(t) on [0, Tm). In fact,
from the boundedness of γ1(t) and γ2(t) and Propo-
sition 2, it follows that all the signals of the result-
ing closed-loop system are bounded, which satisfies
the hypothesis of Proposition 3. We first prove that
γ2(t) is bounded. Suppose for contradiction that it
is unbounded on [0, Tm). The nondecreasing proper-
ty of γ2(t) implies that lim

t→Tm

γ2(t) = +∞, i.e., there

is a T0 ∈ [0, Tm) such that, for any t ∈ [T0, Tm),
γ2(t) > 4Θ+2. This, together with (7), γ1(t) > 1 and

χ(t) > 0, implies that D+V 6 −γ1
2
∥ε∥2. Then by

integrating over [T0, t) for any t ∈ [T0, Tm), we have

lim
t→Tm

1

2

w t

T0

γ1(τ)∥ε(τ)∥2dτ 6 V (T0).

By this and the dynamics of γ2 in (3), we get

+∞ =

lim
t→Tm

γ2(t)− γ2(T0) = lim
t→Tm

w t

T0

γ̇2(τ)dτ 6

lim
t→Tm

w t

T0

γ1(τ)∥ε(τ)∥2dτ 6 2V (T0) < +∞,
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a contradiction. Thus, γ2(t) is bounded on [0, Tm).
We next prove that γ1(t) is bounded on [0, Tm). For

this, we claim that |x1|/γσ
1 is bounded. In fact,

|x1|
γσ
1

6 γσ
2 (

|x̂1|
γσ

+
|x1 − x̂1|

γσ
) = γσ

2 (|z1|+ |ε1|),

which together with the boundedness of γ2(t) and
Proposition 2, indicates that there is a positive constant
b̄ such that |x1| 6 b̄γσ

1 . Then noting the dynamics of γ1

in (3) and 0 < σ <
1

4p
, we have

γ̇1 =m1(1 + |x1|p)2 −m2(γ1 − 1) 6
2m1 + 2m1b̄

2pγ2σp
1 −m2γ1 +m2 6

−m2

2
γ1 +

2m2
1b̄

4p

m2

+ 2m1 +m2.

This implies that γ1(t) is bounded on [0, Tm). The
proof is thus completed. QED.

Remark 1 The dynamic event-triggering mechanis-
m proposed in this paper could possibly achieve further saving
of computation/communication resources than a time-varying
one. This can be seen from the proof of Proposition 3, which
indicates that the minimum inter-execution time of the dynam-
ic event-triggering mechanism cannot be smaller than that of a
time-varying one.

5 A simulation example
In this section, a simulation example will be giv-

en to illustrate the effectiveness of the proposed event-
triggered output-feedback controller of the following
second-order controlled pendulum system:

mlξ̈ + klξ̇ +mg sin ξ = u, (19)

where ξ is the angle between the pendulum and the ver-
tical direction, m and l are the mass of the bob and the
length of the rod, respectively, k, which represents the
friction coefficient, is an unknown constant and g is the
acceleration of gravity.

Let x1 = mlξ and x2 = mlξ̇. Then system (19)
becomes

ẋ1 = x2,

ẋ2 = u−mg sin
x1

ml
− k

m
x2,

y = x1.

(20)

Choose a1 = 2, a2 = 4 and γ1 ≡ 4. Then the observer
is designed as{

˙̂x1 = x̂2 + 8γ2(x1 − x̂1),
˙̂x2 = u+ 64γ2

2(x1 − x̂1),

where γ̇2 =
2(x1 − x̂2)

2

γ
1
2
2

.

We can verify that system (20) satisfies Assumption

(1) by setting θ = max{g
l
,
k

m
}. Then by the previous

design procedure, we design the event-triggered con-

troller in (4) as (t ∈ [tk, tk+1)):

u(t) = −6.4γ2
2(tk)x̂1(tk)− 1.6γ2(tk)x̂2(tk)

with b1 = 0.4 and b2 = 0.4, and introduce the follow-
ing event-triggering mechanism and the inter-dynamic

variable (with σ =
1

4
):

tk+1 = inf{t > tk |
2∥PEn∥2(u− ω)2

γ
7
2
2

−

∥x̂∥2

4γ
3
2
2

> χ},

χ̇ =
∥x̂∥2

4γ
3
2
2

− 2∥PEn∥2(u− ω)2

γ
7
2
2

− 5χ

with χ(0) = 4. The globally stabilization of system
(19) can be achieved by the designed event-triggered
output-feedback controller. Notably, owning to the un-
known k, the event-triggered schemes in [7–8, 16–18]
are not valid any more. In addition, the convergence of
the system states can not be guaranteed by the event-
triggered strategies proposed in [13].

Let m = 0.25, l = 4, k = 0.25 and g = 10 and
the initial value is selected as [ξ(0), ξ̇(0), x̂1(0), x̂2(0),

χ(0)]T = [−2, 2,−1.5, 3, 1]T. Then Figs. 1–4 are ob-
tained to exhibit the trajectories of the resulting closed-
loop system. From the figure we can see that (ξ, ξ̇, x̂1,
x̂2, γ2, χ, u) are globally bounded, and furthermore, (ξ,
ξ̇, x̂1, x̂2, u) ultimately converge to zero.

Fig. 1 The trajectories of ξ and ξ̇
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Fig. 2 The trajectories of x̂1 and x̂2

Fig. 3 The trajectories of γ2 and χ

Fig. 4 The trajectory of u

6 Conclusions
In this paper, a dynamic event-triggered output-

feedback scheme has been proposed for uncertain non-
linear systems. Detailedly, an observer with dynamic
high gain is introduced to reconstruct the unmeasured
system states, and meanwhile the unknown growth rate
is counteracted by the dynamic high gain. Then, an
event-triggered output-feedback controller with a dy-
namic event-triggering mechanism rather than a stat-
ic one is successfully designed to achieve the global
boundedness and convergence of the system states. It
is worth pointing out that the dynamic event-triggered
scheme could possibly possess more potential abili-
ty of further saving of computation/communication re-
sources than a time-varying one.
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