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Abstract: This paper is devoted to a study of decay properties for a class of wave equations with Cauchy-Ventcel
boundary conditions and a local internal damping. Based on an estimate on the resolvent operator, solutions of the wave
equations under consideration are proved to decay logarithmically without any geometric control condition. The proof of
the decay result relies on the interpolation inequalities for an elliptic equation with Cauchy-Ventcel boundary conditions
and the estimate of the resolvent operator for that equation. The main tool to derive the desired interpolation inequality is

global Carleman estimate.
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1 Introduction

Let 2 C R™ (n € N) be a bounded domain with
boundary I" of class C?, and I'} and I, be two open
subsets of I, suchthat I’ = I U Ty and I, N [ = @.
Set R* = [0, 00). Denote by ¢ the complex conjugate
of a complex number ¢ € € and by ¢ the imaginary unit.

Consider the following wave equation with an in-
ternal damping:

uy — Au+d(x)uy =0, RT x 2,

ou
5+p($)U—ATU:07 R* XFl, (1)
UIO, R+XFQ,

uw(0) = u’, u;(0) =ut, £,
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where p € CH(I;RY), d € L>™(2;R"), Ar de-
notes the Laplace-Beltrami operator on I and v =
(v1,- -+, v,) denotes the outward unit normal vector of
0.

The wave equation (1) possesses a Ventcel bound-
ary condition on /7. Such boundary condition was first
introduced by Ventcel in [1] for second-order elliptic e-
quations. The associated equation may model the heat
exchange between a solid {2 and its environment, when
the boundary I} is covered with a thin layer of material
with high conductibility (see [2]), or model the behav-
ior of an elastic body covered by a thin shell of high
rigidity (see [3-4]).

As far as we know, there are numerous works on de-
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cay properties of wave equations. For example, Bardos-
Lebeau-Rauch (see [5]) showed that under suitable con-
ditions, the energy of solutions for wave equations de-
cays exponentially, if and only if the effective damp-
ing domain satisfies the geometric control conditions.
We refer to [6—7] and rich references therein for some
known exponential decay results for the wave equa-
tions with Dirichlet or Neumann boundary conditions.
In [9-10], the polynomial decay for wave equations
with Dirichlet boundary conditions under some special
geometric conditions was studied. When the geometric
control condition fails, the logarithmic decay of wave
equations was first considered by Lebeau in [11]. Lat-
er, [12] was devoted to a system with a Neumann dis-
sipative term on the boundary. In [13], Bellassoued de-
rived the logarithmic decay result for an elastic wave
equation with Neumann dissipative term on the bound-
ary and an internal damping, respectively. Cornilleau-
Robbiano'*! considered the logarithmic decay for wave
equations with Zaremba boundary conditions.

There are also many known works on the longtime
behavior of evolution equations with Ventcel boundary
conditions. For example, in [3], the boundary stabi-
lization of a linear elastodynamic system with dynam-
ic Ventcel boundary conditions was studied. Not on-
ly an exponential stabilization result was obtained by
choosing a suitable boundary feedback, but also a neg-
ative result was shown for the wave equation with s-
tationary Ventcel boundary conditions, even if a linear
frictional damping was applied to the whole boundary.
In [15], the uniform energy decay result for wave e-
quations with internal damping and stationary Ventcel
boundary conditions were derived. Later, this result was
improved in [16] by relaxing the geometric conditions
on damping. Recently, in [17], the stabilization for
damped wave equations with Ventcel boundary condi-
tions on a smooth Riemannian manifold was studied.
Furthermore, we refer to [18—19] for some known poly-
nomial decay results. However, as far as we know, there
is not any known logarithmic decay result for damped
wave equation with Cauchy-Ventcel boundary condi-
tions. In this paper, the decay property of the equation
(1) is proved by establishing an estimate for the resol-
vent operator.

As one of important methods, the decay property
of solutions to evolution equations may be reduced to
a suitable resolvent estimate for the associated semi-
group generator (see [8]). In this respect, we refer
to [20-21] for some known results on the exponential
decay, [22-23] on the polynomial decay and [11-12,14]
on the logarithmic decay, respectively. In [24] and ref-
erences therein, there are some characterization of de-
cay rates on solutions of abstract evolution equations.
Based on this method, the key of proving the logarith-
mic decay result of this paper is to establish the asso-

ciated resolvent estimate. For this purpose, a global
Carleman estimate for elliptic equations with Ventcel
boundary conditions is derived.

The rest of this paper is organized as follows. Sec-
tion 2 is devoted to stating the main result of this paper.
In Section 3, a global Carleman estimates for elliptic
equations with Ventcel boundary conditions is proved,
based on which an interpolation inequality for elliptic
equations is established in Section 4. Section 5 is de-
voted to the proof of the main result.

2 Main results

In this section, we present the logarithmic decay
result for the damped wave equation (1) with Cauchy-
Ventcel boundary conditions. To this aim, introduce the
following assumptions on the damping coefficient:

A) There exist a nonempty open subset w* of {2
and ¢y > 0, such that d(:c) > cg, fora.e. x € w*.

Also, set the Hilbert space

V={ue H(2)|u|lr, =0, ulr, € H' ()},
endowed with the topology

2 _ 2 2
lulfy = [, IVulde+ [ |Veuldl, @

where V1 denotes the tangential derivative along I7.
Put H = V x L?(§2) and define an unbounded opera-
tor A: D(A) C H— H by
D(A)={U € H|AU € H,
(O 4 pu— Agu)lr, = 0)

withU = (u,v) and AU = (v, Au—d(z)v). Itis easy
to check that A generates a Cp-semigroup {e'};cgr+
on H. Without causing confusion, we use the same no-
tation for real valued and complex valued function s-
paces. Moreover, for the equation (1), define its energy
as follows:

1
B(t)=3 JQ(Wu\z g |?)dz +

1 2 2
5 ) Bl + [Vru)dr
Recall the surface divergence theorem (see e.g. [25]):
j Aruvdl = —f Vru - Vyodrl
Fl Fl
Yu € H*(Iy), v € H'(I}). 3)
By (2)—(3), for any t5 > t; > 0, it follows that

E(ts) — E(t)) = — jf [ @)l Pazar < 0.

Therefore, by LaSalle’s invariance principle ([26, p.
18]), the energy of solutions to (1) decays to zero, with-
out any geometric control condition.
The main result of this paper is stated as follows:
Theorem 1  Assume that (A) holds. Then there

exists a positive constant C, such that for any (u’, u') €
D(A), the associated solution (u, u;) = e (u’, ul) €



No. 11

FU Xiaoyu et al: Logarithmic decay of wave equations with Cauchy-Ventcel boundary conditions 1881

C(RT;D(A)) N C*(RT; H) of the equation (1) satis-
fies

4wl < a0 oy )

p H X 1n(2—|—t) ) D(A)-

Throughout this paper, C' denotes a generic positive
constant, which may be different from line to line. Re-
call that the resolvent estimates for abstract evolution
equations indeed imply the decay properties for solu-
tions of the equations.

Lemma 1?*  Let H be a Hilbert space. Assume
that A generates a bounded Cy-semigroup on H. If
M (€) < Ce®* for a positive constant C and any € > 0
then for any k£ > 1, there is a C}, > 0, such that

C
my(t) < kik,
In*(2 +¢)
where
my,(t) = sup [e* (I — A)~"||
s>t
and

M(€) = sup [|(ir] — A)~1.
ITI<€
Denote by p(A) the resolvent set of A. Then by Lemma
1, in order to derive the desired decay rate in Theorem
1, it suffices to prove the following estimate for the re-
solvent operator.

Theorem 2  Under the assumption of Theorem 1,
iR C p(A), and there exists a positive constant C, such
that

(A —iBD) ey < CePlLVBER.  (5)

3 Global Carleman estimate for elliptic equ-
ations with Ventcel boundary conditions
Set@ = (—2,2)x 2, ¥ =(-2,2)x["and X; =

(—2,2) x I}, for j = 1, 2. Consider the following el-

liptic equation:

Zss + Az 4+ id(z) 25 = 20, Q,

0z
B +p(x)z — Arz =0, Xy, (6)
Z = 07 227

where zy € L*(Q).
Before giving weight functions, we first recall the
following known result.

Lemma 27! Let wy be any given subdomain of
{2 satisfying iy C w*. Then there exists a function

€ C*(£2), such that
¢ >0in 2, ) =0on and |[V¢)| > 0in 2\ wp.
(7)

Since V’L[J = VTQZ) + a—wy on I, 1& in

Remark 1 B

Lemma 2 satisfies

Vi =0, VY| —|

for a negative constant c. Furthermore deﬁne two constants

/ ln 2—|—e \/b2 1+el‘)’

where 1 > In2 is sufﬁmently large, such that 1<bp<b<g2
For parameters A, x > 1, define the weight functions 6 and ¢
as follows:

<c<O0onl

0=c', L=2p, p=e,
P(s x):ﬂ-i-bz—s? ®
[l oo (2

Then we have the following Carleman estimate for (6).

Theorem 3  Assume that z € H?(Q) is a so-
lution to (6) with z(£b, ) = z(%b,-) = 0in 2. If
the condition (A) holds, there is a constant py > 0,
such that for any p > g, one can find two constants
C = C(p) > 0and \g = A\o(p) so that for any A >
Ao, the following estimate holds:

b
Au® f_b fn OOV 2 + |2 + A2 p° 9% |2 *)dzds +
b
2, 2 2,2 2
A J_b jrl 0°¢*|Vrz|?dIds <

b
OllIbz0lacq) +™ [, [ I¢l*dads]. ©)
Remark 2

point-wise weighted estimate, which will be given later. On the

The proof of Theorem 3 is based on a

other hand, note however that we need to consider the prob-
lem with nonhomogeneous Cauchy-Ventcel boundary. Hence,
the treatment on the corresponding boundary terms become
much more complicated than the usual case with homogeneous
Dirichlet boundary condition.

Now, we recall the following weighted inequality
for elliptic operators, which can be obtained immedi-
ately from [28, Theorem 3.1].

Lemma 3  Assume that z € H'((—b,b) x )
satisfies that z;, + Az = f (in the sense of distribution)
with f € L*((=b,b) x 2) and 2(+b, -) = 2,(£b,-) =
0 in f2. Then there is a constant p; > 0, such that for
any (o > pi1, one can find two constants C' = C'(u) > 0
and \; = A;(p) so that for any A > Ay, it holds that

2 b 2 2 2 2
M2 [ 0OV + |V +
N p?¢? | V[ ) dads <
b
2 2
C[f_b jge | f|?dads +
b n X d d
j—bffglv * Vg I S +

b
2 2 2 2 2 ,2(, 2
Mo [ 001z + (V22 4 N2pa262 |2 dads)],
(10)

where
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A=0+ L0+ |V + AL v =0z,

VF = [20,(Vy, Us + Vg, 05)+
2(lss + AL) (3,0 + Ty, 0)— (11)
20y, |vs|? + 2AL,, |v|*+

23 g%‘ (vrj Uzt Vs Ve, ) —24,, |VU|2]-
j=1

Now, we give a proof of Theorem 3.
Proof

Step 1 In order to deal with estimates on bound-

ary terms, we choose another two weight functions 6
and ¢:

The whole proof is divided into four parts.

b=c' [=2p, §=e
- 12
wz_if’/}(x) +0? — s (12)
]l
It is easy to check that
b<Y, 0<P< o, 0<O<0. (13)

Now, we apply Lemma 3 to (6). By (13) and z(+b, z)
= zs(£b, x) = 0, there is a constant y; > 0, such that
forall 1 > py, one can find A\; = A; (1) so that for any

)\ > )\1’
2 b 2 2 9 9
w1 [ G0l + V2 +
A2 2% | V[ 2| dads <
b n _
C[HHZOH%:)(Q)+J‘—bJ‘sz_:l(vk+Vk)'yded8+

b
2 2 2

Auj_b jﬂe d(|2]? + V2 +

N2 ¢?|z)?)dads], (14)
where V* has the same form with V', only in which, £
is replaced by £.

Step 2 imate = [* [ S2(VE 4 7
tep We estimate fib fp kgl( + VFy .

deFdS”.

By (7)—(8) and (12), the following equalities hold
on /"

=0, =1, 0=0,
by = Augps = Audips = £y, (15)
Za(gwj +ng)yj = Ao zjl(wt] + &xj)yj =0.

j=

j=
Noting that z = 0 on I'». Then by (15), it is easy to first
show that

f L 2 (VE+V*) v, deds = 0. (16)
2 =

In the following, we give an estimate on
f jp z; (VF + V) - pdlds.
1 k=
To this aim, denote by HJ’c and FI]’“ (j =1,2,---,6)
six terms in the right side 0f~V’C and V*, respectively.
Noting that v = 6z and © = 6z on the boundary I}, we

have that
(HY + Hf) vy =
2l (Vy, s + g, V5) 4 by (D, 05 + T, 0s)] - Vi =

46%(, (gz Z + gz ) + 49262(82 + 0z

o~ v
4020, (Arzz, + Arzz,) — 4(p(x)0%4,)2)?)s +
40?02 (Arzz + Arzz) + 4p(2)0% Ly 2|,
Further,
(H} + HY) - v + (Hf + H) - vy +
(Hff =+ Hf) Vg =
2[(lss + AL) (04,0 + Uy, ) +
(lss + AL) (D0, © 4 0, D)] - e —
2y, [0s)? + Oy, |Ts|* — (A — A)0%C,, |2]%] - vy, =

z) =

2(20 + AL+ Az)eQ(gZ 7+ 2’2,2) +
662\ d’(M-M)W.

Noting that ¢ = 0 on the boundary, we have that
(Hg + H) - vy + (Hg + Hg) - v =

[2 Z ng (,ijﬁka + 'Dz]‘vmz«) - 2£$k|vv|2] Vgt
j=1

2 ETL:ELJ( .LJ a,k +U»LJ Tk ) 2€Ik‘vv‘ ]
j=1
46°|V () (%H gzz)

40%|V1)? (ATZZ + Arzz) — 8p(x)0%| V)| 2]
Therefore, it follows that

b n ~
k kY .
f_b Ll S (VE V) mdlds <

i _bb [, 14626, Arzz, + Avzz) +
2E0*(Arzz + Arzz) + FO?|z2]dlds, (17)
where
E =202 + 2|VI|? + (2 + AL+ AD),
F = 4p(x)lss — Ap(z) (2 + AL+ AD+ (13
6Au¢gif(u — A0) — 8p(z)| VL]

Noting that Vwﬁ = O on [ in Remark 1 and using the
surface divergence theorem, we have

b
2 = = _
4 j,b frl 0%l (Arzzs + Arzz)dIlds =
b
—4f j 020,(Vrz - ViZ+VrZ - Viz)dlds=

4]]92

Similarly,
b

2 - 5 _

2 Jﬁb frl EO*(Arzz + Arzz)dI'ds =

J|Vrz2dlds. (19)
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b
—4 j_b Ll E0*|Vrz|2dIds —
b
2 ) - -
P Lb Ll 0°V1E - (Vypzz + Vizz)dlds <
b
—4 j_b Ll E0|Vrz|2dlds +

b
Lb L A2220%(e|Vpz|? + C.|2[?)dIds.

(20)
Noting that gﬁj < ¢ < 0, we obtain
b
4 j—b frl [(624s)s — E6%)|Vrz[?dlds <
b
A f—b frl 0° N1 9% |Vpz|*dIds @21)

for some ¢; > 0.
Now, combining (17)—(21) with (14) and taking €
small enough in (20), we have that

ne [ oVl + V2 +
—bvJo s
NP ¢? [V [*|2|*)dzds +
2 2 b 2 12 2
A2y j_b Ll 02¢2|V12|2dds <
b
Cllz0lliz@) + [, J,, 0N T ds +
b
2 2 2
Mo [ 001z + V2P +
N2 ¢?|z|?)dads]. (22)
b
. wy2 2 2,2 2
Step 3 Let us estimate “\°p f_b fn 0% 9% |z|

dI'ds”. For this purpose, we integrate Au@0>z - (6) +
Auph?z - (6) on (—b, b) x 2. Noting that z(—b, x) =
z(b,x) = 0, by (8) and integration by parts, we get that

b
f_b fg )‘/‘91)92(530 + zZo)dxds +
b
2 oo B
j_b fg At d(z)[i(z2s — 2%)|dzds =
b
An j—b Lz[_292¢’Z5’2 + (6°9)ss|2|*]dxds +
A fb f [—20%¢|V 2| + A(6%¢)|2|*]dzds +
N
b . )
Au J;b frl 0°¢(zArz + zArz)dds +

)
' 0ol 00 2o+ o)~
2p()]|z|*dds. (23)

Further,

b
At Lb fn 02p(2Arz + 2Apz)dds =
b
—2Au f_b fn 02|V rz|2dIds.

0
Noting that a—w < c < 0on . Hence,
v

b
2 2 242 2
A2y j_b jple ¢?|2[2dIds <
b
Cll1020]122gy + At Lb fn 02|V r22dlds +

b
Mo ] 020z + |2 +
N2 ¢?|z|*)dads).
By (22) and the above estimate,
M [ [ POIVUP (1l + X6 VP +
IV2[?)dads + A2p2 jb [ 6207 VrzPdrds <
—bJI

b
Cllbzoll3zg)+ Mt |, [ 626(12 +
V2 + X% |2]?)]. (24)
Moreover, recalling (7) in Lemma 2, we find that

“The first term in the left hand side of (24)” >
et [ [, ol
2 —b J 2\wo s
Vz?+ X ° ¢ |2[*)dzds —

b

O [ | 06(1a Va4 X267 2] dads,
for some positive constant co. Hence, it follows that
b

Ap” f_,, f992¢(|V2|2+\zs\2+A2u2¢2|z|2)dxds+

b
A f_bfp 6¢*|Vr2|*dl'ds <

C H 2 2 b 92 2
[100l132) + M [, | 0°0(1V=P +
|26> + N p2¢?|2|?)dxds]. (25)

b
Step 4  Let us estimate “/\,u,zf f 02¢|V z|?
—-b wo
dzds”.

Now, choose a cut-off function ¢ € C§°(w*; [0, 1])
satisfying that {(z) = 1 on wy. Integrating [(Ap26%pZ-
(6) + CAu?6?pz - (6)] on (—b, b) X £2, and noting that
z(=b,z) = z(b,z) = 0, we get that

A2 fb j 026(|V2|* + |2?)dads <
T S X

b
CllOz0ll3zgy+¢ | [ I217dwds]

Finally, combining (25) with the above estimate, we ob-
tain the desired estimate (9) immediately. QED.
4 Interpolation inequalities for elliptic equa-
tions with Ventcel boundary conditions
In this section, by means of the global Carleman
estimate derived in the last section, we present an inter-
polation inequality for the elliptic equation (6). First,
set

Y=(-1L1)x02, Z"=(-2,2) x I'",
X' =(=2,2) x w.
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We have the following interpolation inequality.
Theorem4  Under the assumption in Theorem 1,

there exists a constant C' > 0, such that for any € > 0,
the solution z of the equation (6) satisfies

12l vy + [[Vr2llez-1,0)xm) <
Ce™ ([lzoll 2@ + 112l 2 x+)) +Ce™ |2l (@)
(26)
Proof We borrow some ideas from [29]. Note that
there is no boundary condition for z at s = £2. There-

fore, we introduce a cut-off function ¢(-) € C§°(—b,b)
such that

{0 <p(s) <1, Is| < b, o
w(s) =1, |s| < by.
Next, we put w = @z. Then, by (6), it follows that
Wes + Aw + id(x)ws = F1, Q,
(Z—Z) +p(x)w — Arw =0, X, (28)
w =0, 2,

where F| = pgz + 2052 + @20 + ipsd(z)2.
By applying Theorem 3 to the equation (28), we
have

b
2 2 2 2, \2,2,2( |2
An ffbj(ze P(IVwl* 4w+ X717 9% jw]|)dads +
b
2. 2 2,2 2
A j_b fFl 0°¢*|Vrw|*dI'ds <

olf [ eIRPards e [ [ jufrdrds)

Recalling the definition of ¢ in (8), we see that

¢(S7 ) =2 _|_ell’ ‘8‘ < 17
b5, ) <1+, by < |s] <b

Let § = 2 + e*. Then by (27) and (29), we get that
1
206 2 2 2
e f_l jg(\w + |22 + |2[2)dzds +

(29)

1
A2 L jn 0202|Vr2|2dds <
Cecx[fi Lz |20|*dxds + Ji L* |z]2dxds] +

Ce? =1 [ [ (12 + |z]?) dads.
(=b,—bo) U(bo,b) J 2

By the above estimate, one concludes that there exists
an &; > 0, such that for any ¢ € (0, &,], it holds that

12| vy + (| Vrezl Lo —1xm) <
Ce* (20l r2@) + |2l 2 (x-)] +
Ce |2l @),

QED.

5 Proof of a resolvent estimate

which yields the desired result.

In this section, we give a proof of our main result.
Proof of Theorem 2 First, forany 8 € R, F =
(% f) € Hand U = (u°,u') € D(A), itis easy to

show that the equation (A—iSI)U = F is equivalent to

Au® + B2u —ifd(z)u’ =
d(x)f* +iBfo + f1, 2,
ou®
B + p(x)u’ — Aru® =0, I, (30)
u® =0, I3,
ul = fO+iBu’, 0.
Put
v=e "’ (31)

Let f = d(z)f°+iBf°+ f*. Itis easy to check that v
satisfies the following equation:

Vgs + Av + id(z)vg = fe P, R x 12,

0

67’0 + p(z)v — Apv =0, Rx Iy, (32)
v

v = 0, R x FQ.

Now, by (31), we have the following estimates.
[u°][ 10y < Ce“Vl[o]l vy,
[oll @) < OVl m1(ay, (33)
[oll2x-) < CePHu]| 2 r).

Applying Theorem 4 to (32), by (33), we have

<
<

[u’lv <
Ce1 1 £l L2y + 1 22y + 1l 2 er))-
(34)

On the other hand, multiplying (30) by @ and inte-
grating it on {2, it follows that

fﬂ[d(x)fo +iBf° + flu’dr =

B3 20y — fg IV |2de —

[, IV + pla) [ PJAr =i [, dw)udlde.
(35)

Taking the imaginary part in both sides of (35) , we
conclude that

Bl coluPde <
Clldf* +iBf° + iz llu’ ). (36)
Hence, combining (34) and (36), we have
v < CeH (10 2@y + 1 Nl22g2)- BT)
Recalling that u' = f° + i8u°, it follows that
[ut |22y <INz + 1B [l z2ce) <
CeI(| fllcecay + 1 |2 cn)-
(33)

By (37)—(38), we know that A — i1 is injective. There-
fore, A — i1 is bijective from D(A) to H. Moreover,

(A —iBI) |z < CeVPl.
QED.
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