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摘要:本文首先提出了稳定降阶控制器的一个特殊结构,然后给出了两种控制器设计方法: 一种是基于新的松弛变量
的特殊构造,另一种是基于分离李雅普诺夫矩阵和控制器矩阵的两步法. 新的方法可以处理具有不同阶数和不同数目不
稳定极点的几个系统的同时镇定问题,而这个问题是很难用一般的鲁棒控制方法处理的. 本文提出的新方法还可以拓展
到处理H∞、严格正实以及分散控制问题.同时,本文讨论了控制器的范数约束问题.在该方法中,甚至每一个控制器参
数都可以被施加绝对值约束. 本文还讨论了相关的NP难问题,给出了相应的控制器设计算法. 最后,给出了几个例子验
证了所提出的设计方法的有效性,并且对这两种设计方法进行了对比.
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Abstract: In this paper, a special structure is first proposed for stable and reduced-order controllers. Then, two controller
design methods are presented, where one is based on a special construction on the new introduced slack matrix variables, the
other is based on the separation of Lyapunov matrix and control matrix from the two stage algorithms. The new methods can
deal with the simultaneous stabilization problems for several plants with different orders and different numbers of unstable
poles which can not be solved by general robust control methods. The new methods are also generalized to solve H∞, strict
positive real (SPR) and decentralized control problems. Finally, norm constraint problems of controllers are discussed, even
an absolute value constraint can be added to each controller parameter in the proposed methods. Related NP hard problems
have been discussed in this paper, and related controller design algorithms are proposed. Two new methods are compared
with each other in several examples, and the effectiveness of the new methods are illustrated.
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1 Introduction
Strong stabilization, i.e., stabilizing plants by sta-

ble controllers[1], has lasted for a long time and has
been studied by some authors, see [2–3] and references
therein. Strong stabilization is a very challenging prob-
lem, which is not only important in theory, but also very
valuable in engineering applications. Stable controllers
are strongly preferred by engineers in practical applica-
tions, since unstable controllers may lead to problems
with actuator and sensor failure, sensitivity to plant un-
certainties, nonlinearities and implementation[4–5]. On

the other hand, simultaneous stabilization of n plants by
a general controller is equivalent to simultaneous stabi-
lization of n − 1 plants by a stable controller[1]. One
given plant is strongly stabilizable if and only if it satis-
fies the parity interlacing property[1]. Some procedures
are available to design stable stabilizing controllers in-
volving with interpolation constraints, but may result
in very high order controllers[1, 6]. Some interpolation
techniques or numerical methods have also been de-
veloped for multiple input systems about sensitivity re-
duction problems, time delay problems and mixed sen-
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sitivity reduction problems[2, 7–11]. Strong stabilization
of a class of multi-input-multi-output (MIMO) system-
s with restrictions on the zeros in the right-hand com-
plex plane was considered in [2]. A sensitivity reduc-
tion problem by stable stabilizing controller for a linear
time-invariant MIMO distributed parameter system was
investigated in [9]. Stable H∞ controller design for MI-
MO systems with multiple input/output time delays was
studied in [10]. Stable controller design was considered
for two-link underactuated planar robots in [3, 12]. A
method to design stable controllers for mixed sensitiv-
ity reduction for systems that have input/output delays
and infinitely many unstable zeros was proposed in [11].

Because of the essential difficulty for stable con-
troller design, so far the existence of a stable stabiliz-
ing controller for more than two plants is still an open
problem, which is rationally undecidable or NP hard[13],
i.e., the controller cannot be designed by polynomial
time algorithms. Also, some linear control problems
including static output feedback design, decentralized
control and simultaneous stabilization with low-order
controllers are NP hard[14–17]. A nonsmooth H∞ syn-
thesis method without involving Lyapunov matrix was
presented in [18] which can deal with some NP hard de-
sign problems. There were some research results about
simultaneous stabilization for different systems, such
as distributed networked systems, time-varying systems
and time-delay linear systems. The simultaneous H∞
stabilization for distributed networked multimode con-
trol systems with multiple packet dropouts was investi-
gated in [15]. A controller design method was provided
in [16] to simultaneously stabilize a collection of time-
varying linear systems within the framework of nest al-
gebras. The design of simultaneous static output feed-
back controllers for a finite collection of time-delay lin-
ear systems was considered in [17]. There were also
some approaches to deal with the simultaneous stabi-
lization problems. A necessary and sufficient condition
for a static output feedback controller was found by us-
ing the inverse LQ approach[19]. A new approach us-
ing geometric terms[20] was proposed to deal with the
problem of simultaneously strong stabilization. Theo-
ries and developments in the simultaneous stabilization
of linear systems were discussed in [21]. This paper
aims to propose new techniques to simplify bilinear ma-
trix inequalities (BMIs) related to stable controller de-
sign and some related NP hard problems. Low-order
controller design has also been studied by some authors
and effective numerical algorithms were proposed, see
[22–26] and references therein. A decentralized dynam-
ic feedback H∞ control design algorithm was presented
in [27] allowing the design of low-order controllers.

Different from the above mentioned stable con-
troller design method, this paper presents simpler and

more generalized stable controller design methods by
predetermining the controller structure and combining
with the iterative algorithms, which are not limited to
single input or multiple input problems and controller
orders. To the best knowledge of authors, this is the
first time to determine simple and effective structure for
stable controllers. Based on the understanding of con-
troller robustness, a controller structure that has no con-
servativeness is proposed by this paper, and this con-
troller structure plays an important role in stable con-
troller design. By introducing the slack matrices, the
matrix variables are relaxed from the general bilinear
terms, and inequalities are easier to be solved by the it-
erative LMI method. For the problems of simultaneous
stabilization of two plants, the proposed theorem has no
conservativeness, because two plants can have different
Lyapunov matrices. And, this paper proposes new ap-
proaches to simplify bilinear matrix inequalities related
to stable controller design and some related NP hard
problems

The rest of this paper is organized as follows. In
Section 2, a stable controller structure and two design
methods are presented. The methods are extended to
strong stabilization of two plants, and can be used to
deal with the simultaneous stabilization of more plants.
In Section 3, the methods are generalized to H∞ and
SPR control problems. In Section 4, controller con-
straint problems are discussed. The large gain prob-
lem in the general state feedback and full-order dynamic
controller designs can be effective avoided. In Section
5, four examples are given to show that the effective-
ness of the proposed methods. Section 6 concludes the
paper.

Throughout this paper, B and C are supposed to be
matrices of full column rank and full row rank, B⊥ sat-
isfies that B⊥TB = 0 and [B, B⊥] is nonsingular. The
superscript T means transpose for real matrices. R(·)
denotes the column space of the corresponding matrix.
The notation sym{A} = A + AT is used. A star(∗)
indicates symmetric terms in matrix inequalities.

2 Stable and reduced-order controllers
Consider the following linear system{

ẋ = Ax+Bu,
y = Cx,

(1)

and the dynamic output feedback controller{
ẋk = Akxk +Bky,
u = Ckxk +Dky.

(2)

Then, the closed-loop system matrix is

Acl =

[
A+BDkC BCk

BkC Ak

]
= Â+ B̂K̂Ĉ, (3)

where Â=

[
A 0
0 0

]
, B̂ =

[
B 0
0 Ik

]
, K̂ =

[
Dk Ck

Bk Ak

]
,
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Ĉ =

[
C 0
0 Ik

]
. Actually, the dynamic output feedback

control problem can be viewed as a special case of static
output feedback control problems.

If Ak is stable and the order of controller (2) is less
than the order of plant (1), then controller (2) is called
a stable and reduced-order controller. If Dk = 0, it is
also called a strictly proper controller.

Throughout this paper, the following assumption is
required.

Assumption 1 Ak in controller (2) has no Jor-
dan blocks for complex eigenvalues and has at most Jor-
dan blocks of order 2 for real eigenvalues.

Note that Assumption 1 is not so conservative based
on the understanding of controller robustness. If Ak has
higher-order Jordan blocks, such blocks will disappear
after a small perturbation of controller parameters.

Based on Assumption 1, suppose Ak has the fol-
lowing structure,

Ak = diag{Ki}, i = 1, · · · , l, (4)

where Ki = ki < 0 or Ki =

[
0 ki3
ki1 ki2

]
, ki1 <

0, ki2 < 0, ki3 > 0. Obviously, Ak is stable and Ki

in (4) can have a couple of conjugate complex eigen-
values or two real eigenvalues. Of course, Ki can also

be supposed as Ki =

[
0 1
ki1 ki2

]
. For convenience of

assuming linear matrix inequality (LMI) variables, this
paper considers the form of Ki as in (4). When the or-
der of Ak is odd, at least one of Ki is a real scalar.

Motivated by the method in [28], together with the
above controller structure one can get the following the-
orem for stable controller design.

Theorem 1 A stable controller as in (2) and (4)
stabilizes system (1) if and only if there are a symmetric
matrix P > 0, and any matrices G11, G12, G21, G22,
F11, F12, F21 and F22 such that[

−sym{G} GÂ+ P − FT + Φ

∗ sym{FÂ+ Ψ}

]
< 0, (5)

where

Φ = B̂G11B̂
TB̂K̂Ĉ + B̂⊥G21B̂

TB̂K̂Ĉ,

G = [B̂ B̂⊥]

[
G11 G12

G21 G22

]
[B̂ B̂⊥]T,

Ψ = B̂F11B̂
TB̂K̂Ĉ + B̂⊥F21B̂

TB̂K̂Ĉ,

and

F = [B̂ B̂⊥]

[
F11 F12

F21 F22

]
[B̂ B̂⊥]T.

Proof Actually, the inequality (5) is just[
−(G+GT) GAcl + P − FT

∗ FAcl +AT
clF

T

]
< 0,

which is just equivalent to the Lyapunov inequality
PAcl + AT

clP < 0 by the general parameter dependent
Lyapunov function method[29–31]. Obviously by intro-
ducing the matrix B⊥, the matrix variables G12, G22

and F12, G22 are relaxed from the general bilinear

terms GB̂K̂Ĉ and FB̂K̂Ĉ, which makes the inequal-
ity (5) easier to solve by the iterative LMI method.

Let

Âb = [B̂ B̂⊥]TÂ[B̂ B̂⊥]−T =

[
Âb

11 Âb
12

Âb
21 Âb

22

]
. (6)

One can get the following corollary easily.
Corollary 1 If G21 = 0 and F21 = 0, then The-

orem 1 implies[
−(G22 +GT

22) G22Â
b
22 + P22 − FT

22

∗ F22Â
b
22 + ÂbT

22F
T
22

]
< 0, (7)

which is free from the control matrix K̂, where P22 is
the block in P ∗ = [B̂ B̂⊥]−1P [B̂ B̂⊥]−T correspond-
ing to G22. (7) implies Âb

22 = B̂⊥TÂB̂⊥ = B⊥TAB⊥

is stable. QED.

Proof If G21 = 0 and F21 = 0, multiplying
diag([B̂ B̂⊥]−1, [B̂ B̂⊥]−1) and diag([B̂ B̂⊥]−T,

[B̂ B̂⊥]−T) on the left- and right-hand sides of (9)
gives[

−sym{G∗} G∗Âb + P ∗ − F ∗T + Φ∗

∗ sym{F ∗Âb + Ψ∗}

]
< 0, (8)

where G∗ =

[
G11 G12

0 G22

]
, F ∗ =

[
F11 F12

0 F22

]
, Φ∗ =

[I 0]TG11B̂
TB̂K̂Ĉ∗ and Ψ∗ = [I 0]TF11B̂

TB̂K̂Ĉ∗,

Ĉ∗ = Ĉ[B̂ B̂⊥]−T. By this inequality, one can get (7)
easily. QED.

One can also establish the following result for con-
troller design by introducing ĈT⊥.

Corollary 2 A stable controller as given in (2)
and (4) stabilizes system (1) if and only if there are a
symmetric matrix Q > 0, and any matrices H11, H12,
H21, H22, J11, J12, J21 and J22 such that[

−sym{H} ÂTHT +Q− J + ΦT

∗ sym{ÂJ + Ψ}

]
< 0, (9)

where

Φ = B̂K̂ĈĈT[H11 H12][Ĉ
T ĈT⊥],

H = [ĈT ĈT⊥]

[
H11 H12

H21 H22

]
[ĈT ĈT⊥]T,

Ψ = B̂K̂ĈĈT[J11 J12][Ĉ
T ĈT⊥],

and

J = [ĈT ĈT⊥]

[
J11 J12

J21 J22

]
[ĈT ĈT⊥]T.

Actually, Corollary 2 can be viewed as a dual case
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of Theorem 1. Similar to corollary 1, if H12 = 0 and
J12 = 0, one knows that ĈT⊥TÂĈT⊥ = CT⊥TACT⊥

is stable. Based on Theorem 1, one can establish the
following algorithm for stable controller design.

Algorithm 1
Step 1 Take initial matrices G11, G21, F11 and

F21, then design K̂, G12, G22, F12, F22 andP > 0 by
solving the following LMI with a small scalar ϵ1 > 0,[

−(G+GT) GA+ P − FT + Φ
∗ − ϵ1P+sym{FA+Ψ}

]
<0, (10)

where G, F, Φ and Ψ are as given in Theorem 1. If
Acl = Â + B̂K̂Ĉ is stable, then stop the algorithm.
Otherwise, turn to Step 2.

Step 2 With the designed K̂ in Step 1, solve
the following LMI for the matrix variables G, F and
P > 0,[

−(G+GT) GAcl + P − FT

∗ − ϵ2P + FAcl +AT
clF

T

]
< 0,

where 0 6 ϵ2 6 ϵ1.
Step 3 With the matrices G and F obtained in

Step 2, let
[
G11 G12

G21 G22

]
= [B̂ B̂⊥]−1G [B̂ B̂⊥]−T

and
[
F11 F12

F21 F22

]
= [B̂ B̂⊥]−1F [B̂ B̂⊥]−T. Substitute

the matrices G11, G21, F11 and F21 in Step 1. Solve
the inequality in Step 1 for another small ϵ1. Repeat the
above two steps until that Acl is stable.

Remark 1 The inequality (10) in Algorithm 1 is e-
quivalent to PAcl+AT

clP < ϵ1P , which implies the real part of
each eigenvalue of Acl is less than 0.5ϵ1. Because of a special
choice of G11 and G21, and F11 and F21, sometimes solving
inequality (10) can give a stabilizing solution even if ϵ1 > 0,
see the following Example 1. One can also design controllers
to assign eigenvalues of closed-loop system by combining The-
orem 1 with the general LMI method[31–32]. Of course, one can
also give a corresponding dual algorithm based on Corollary
2. Algorithm 1 can also be used to design decentralized con-
trollers.

On the other hand, one can also introduce the
method based on the separation of Lyapunov matrix
and control matrix from the two stage algorithm given
by [33–34].

Lemma 1 A stable controller as given in (2) and
(4) stabilizes system (1) if and only if there are a sym-
metric matrix P > 0, a diagonal matrix X > 0, a state
feedback matrix K0 and a structured matrix K̂ as given
in (3) and (4) such that[

PÂ+ ÂTP PB̂

B̂TP 0

]
−Ω −ΩT < 0, (11)

where Ω =

[
KT

0

−I

]
X[K̂Ĉ − I].

Based on Lemma 1, one can also establish the fol-
lowing algorithm.

Algorithm 2
Step 1 Take an initial state feedback matrix K0

such that Â+ B̂K0 is stable, then design K̂∗, diagonal
matrix X > 0 and P > 0 by solving the following LMI
with a small scalar ϵ1 > 0,[

PÂ+ ÂTP − ϵ1P PB̂
∗ 0

]
−Ω−ΩT < 0, (12)

where Ω =

[
KT

0

−I

]
[K̂∗Ĉ −X] and K̂∗ has the same

structure as K̂. Let K̂ = X−1K̂∗. If Acl = Â+B̂K̂Ĉ
is stable, then stop the algorithm. Otherwise, turn to
Step 2.

Step 2 With the designed K̂∗ and X in Step 1,
solve the inequality (12) again for K0, P > 0 and a
small scalar ϵ2 > 0 with ϵ2 6 ϵ1. Repeat the above two
steps until that Acl is stable.

Remark 2 The inequality (12) in Algorithm 2 implies
PAcl +AT

clP < ϵ1P , which means the real part of each eigen-
value of Acl is smaller than 0.5ϵ1. Also, the inequality (12) in

Algorithm 2 implies P [Â + B̂K0] + [Â + B̂K0]
TP < ϵ1P.

K0 can be viewed as a state feedback matrix and the initial K0

in Step 1 of Algorithm 2 can be taken as stabilizing solution
with some pole assignment requirement. Therefore, Algorithm
2 mainly from [33] searches alternatively between a state feed-
back solution K0 and a structure constrained controller K̂.

Remark 3 Although dynamic output feedback stabi-
lization can be viewed as a special case of static output feed-
back stabilization, dynamic controllers are much harder to de-
sign because the order of closed-loop systems is higher. Both
Algorithms 1 and 2 can be used to design dynamic controllers
with any fixed order and decentralized controllers. The high-
er the order of controllers, the harder the choice of the initial
matrices in Algorithm 1. Because of the introduction of slack
matrices G and F , Algorithm 1 has good robustness against the
choice of initial matrices, and Algorithm 2 also has robustness
against the choice of initial state feedback matrix.

The simultaneous stabilization of several given
plants is a very challenging problem because of the
NP hardness in design algorithms[14, 35]. The method
in the above section can be extended to design common
stable controllers for several plants. For simplicity, this
section mainly considers the simultaneously strong sta-
bilization of two plants, which is equivalent to simulta-
neous stabilization of three plants[1].

Consider the following two plants:{
ẋi = Aixi +Biui,

yi = Cixi, i = 1, 2,
(13)

possibly with different orders, but with the same num-
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ber of inputs and the same number of outputs, and the
common dynamic output feedback controller{

ẋk = Akxk +Bky
i,

ui = Ckxk +Dky
i.

(14)

Then, the two closed-loop matrices are

Ai
cl =

[
Ai +BiDkC

i BiCk

∗ Ak

]
=

Âi + B̂iK̂Ĉi, i = 1, 2, (15)

where Âi =

[
Ai 0
0 0

]
, B̂i =

[
Bi 0
0 Ik

]
, Ĉi =[

Ci 0
0 Ik

]
, and K̂ is as given in (3). The structure of

Ak is as given in (4).
Similar to Theorem 1, the following result can be

presented for simultaneous stabilization problem.

Theorem 2 A stable controller as given in (4)
and (14) simultaneously stabilizes two plants in (13) if
and only if there are symmetric matrices P i > 0, and
any matrices Gi

11, G
i
12, G

i
21, G

i
22, F

i
11, F

i
12, F

i
21 and

F i
22 such that[
−sym{Gi} GiÂi+P i−F iT+Φi

∗ sym{F iÂi + Ψ i}

]
< 0, i=1, 2,

(16)
where

Φi = B̂iGi
11B̂

iTB̂iK̂Ĉi + B̂i⊥Gi
21B̂

iTB̂iK̂Ĉi,

Gi = [B̂i B̂i⊥]

[
Gi

11 Gi
12

Gi
21 Gi

22

]
[B̂i B̂i⊥]T,

Ψ i = B̂iF i
11B̂

iTB̂iK̂Ĉi + B̂i⊥F i
21B̂

iTB̂iK̂Ĉi,

and

F i = [B̂i B̂i⊥]

[
F i

11 F i
12

F i
21 F i

22

]
[B̂i B̂i⊥]T.

Similar to Corollary 1, if Gi
21 = 0, i = 1, 2

and F i
21 = 0, i = 1, 2, then Theorem 2 implies

Bi⊥TAiBi⊥ are stable. Also, similar to Corollary 2,
one can establish a corresponding result of Theorem 2
by using the information of Ci⊥.

Remark 4 Two plants in (13) can have different or-
ders and different numbers of unstable eigenvalues, which is d-
ifferent from robust control problems subject to stable dynam-
ic perturbations[25] and parametric uncertainties[30–31]. Theo-
rem 2 has no any conservativeness because two plants can have
different Lyapunov matrices and different G and F . Theorem
3 can also be generalized to simultaneous stabilization of more
plants.

Remark 5 It is well-known that simultaneous stabi-
lization of three plants or simultaneously strong stabilization
of two plants is NP hard, i.e. one cannot get polynomial time
algorithms[13]. Based on Theorem 2, one can establish the al-
gorithms like Algorithm 1 and Algorithm 2 for the above si-

multaneous stabilization problem.

3 H∞ and SPR control problems
In this section, the methods in the above sections are

extended to H∞ and SPR control problems. Consider a
general system

ẋ = Ax+B1w +Bu,
z = C1x+D11w +D12u,
y = Cx+D21w,

(17)

where w is the external disturbance and z is the regu-
lated output. The dynamic output feedback controller is
as given in (2). Then, the closed-loop transfer function
is given by

Gcl(s) = Ccl(sI −Acl)
−1Bcl +Dcl, (18)

where Acl = Â + B̂K̂Ĉ and Â, B̂, K̂ and Ĉ are as
given in (2), Bcl = B̂1+B̂K̂D̂21, Ccl = Ĉ1+D̂12K̂Ĉ

and Dcl = D11 + D̂12K̂D̂21, B̂1 =

[
B1

0

]
, D̂21 =[

D21

0

]
, Ĉ1 =

[
C1 0

]
, D̂12 =

[
D12 0

]
.

Combining Theorem 1 with the general bounded re-
al lemma, one can get the following result.

Theorem 3 A stable controller as given in (2)
and (4) stabilizes system (17) and makes ∥Gcl(s)∥∞ <
γI if and only if any one of the following two condi-
tions holds:

i) there are a symmetric matrix P > 0, and any
matrices G1, G2, F1 and F2 such that
−sym{G} M 1

12 M1
13 0

∗ sym{FÂ+ ΨĈ} M1
23 CT

cl

∗ ∗ − γI DT
cl

∗ ∗ ∗ − γI

<0,

(19)
where

M1
12 = GÂ+ P − FT + ΦĈ,

M1
13 = GB̂1 + ΦD̂21,

M1
23 = FB̂1 + ΨD̂21,

Φ = [B̂ B̂⊥]G1B̂
TB̂K̂,

G = [B̂ B̂⊥][G1 G2][B̂ B̂⊥]T,

Ψ = [B̂ B̂⊥]F1B̂
TB̂K̂,

and
F = [B̂ B̂⊥][F1 F2][B̂ B̂⊥]T.

ii) there are a symmetric matrix Q > 0, and any
matrices H1, H2, J1 and J2 such that
−sym{H} M 2

12 M 2
13 0

∗ sym{ÂJ + B̂Ψ} M 2
23 Bcl

∗ ∗ − γI Dcl

∗ ∗ ∗ − γI

<0,

(20)
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where

M2
12 = HTÂT + P − J + ΦTB̂T,

M2
13 = HTĈT

1 + ΦTD̂T
12,

M2
23 = JTĈT

1 + ΨTD̂T
12,

Φ = K̂ĈĈTH1[Ĉ
T ĈT⊥]T,

H = [ĈT ĈT⊥][HT
1 HT

2 ]
T[ĈT ĈT⊥]T,

Ψ = K̂ĈĈTJ1[Ĉ
T ĈT⊥]T,

and
J = [ĈT ĈT⊥][J1 J2][Ĉ

T ĈT⊥]T.

Proof Actually, the LMI (19) is just
−sym{G} GAcl + P − FT GBcl 0

∗ sym{FAcl} FBcl CT
cl

∗ ∗ − γI DT
cl

∗ ∗ ∗ − γI

<0,

(21)
which is equivalent to the bounded real lemma inequal-
ity[29] PAcl +AT

clP PBcl CT
cl

BT
clP − γI DT

cl

Ccl Dcl − γI

 < 0 (22)

for the H∞ norm condition ∥Gcl(s)∥∞ < γI . Theorem
3–ii) can be proved similarly. QED.

Similar to Corollary 2, Theorem 3–ii) can be
viewed as a dual case of Theorem 3–i). Compared with
Theorems 1 and 2, in Theorem 3, G1 can be viewed as
[GT

11 GT
21]

T and F1 can be viewed as [FT
11 FT

21]
T. For

convenience of statement, they are written as a compact
form. In this theorem, matrices P, G2 and F2, and Q,
H2 and J2 are relaxed from the control matrix K̂. If G1

and F1, and H1 and J1 are fixed, then (19) and (20) are
LMIs.

The following algorithm gives an alternately itera-
tive design method based on Theorem 3–i) and –ii) for
stable controllers.

Algorithm 3
Step 1 Design a stable stabilizing controller first

by Algorithm 1 and solve the inequality (21) to get γ
and matrices G and F . Let [G1 G2] = [B̂ B̂⊥]−1 ·
G[B̂ B̂⊥]−T and [F1 F2] = [B̂ B̂⊥]−1F [B̂ B̂⊥]−T.

Step 2 With the obtained G1 and F1, solve (19)
for a new controller and γ. With this controller, solve
(21) again to get a smaller γ, and matrices G and F .

Step 3 If γ obtained in Step 2 is small enough,
stop the algorithm. Otherwise, turn to Step 1 with the
new matrices G1 and F1 getting from G and F . Re-
peat Step 2 again to minimize γ. If Steps 1 and 2 get
matured, then turn to Step 4.

Step 4 With the controller and γ obtained in Step
3, solve the following inequality:


−sym{H} HTAT

cl +Q− J HTCT
cl 0

∗ sym{AclJ} JTCT
cl Bcl

∗ ∗ − γI Dcl

∗ ∗ ∗ − γI

<0,

(23)
to get matrices H and J . Let

[HT
1 HT

2 ]
T=[ĈT ĈT⊥]−1H[ĈT ĈT⊥]−T

and

[J1 J2] = [ĈT ĈT⊥]−1J [ĈT ĈT⊥]−T.

Step 5 With the obtained H1 and J1 in Step 4,
solve (20) for a new controller and γ. With this con-
troller, solve (23) again to get a smaller γ, and matrices
H and J .

Step 6 Turn to Step 4 with the new matrices H1

and J1 getting from H and J . Repeat Step 4 again to
minimize γ. To get a desirable controller and γ by alter-
nately iterative searching between Steps 1–3 and Steps
4–6.

Of course, one can also establish an algorithm for
H∞ control based on the separation of Lyapunov ma-
trix and control matrix as in Lemma 1 and Algorithm
2. Actually, the bounded real lemma condition (22) is
equivalent toM

3
11 PB̂1 + ĈT

1 D11 PB̂ + ĈT
1 D̂12

∗ − γ2I +DT
11D11 DT

11D̂12

∗ ∗ D̂T
12D̂12

−

2ΘTXΘ < 0, (24)

where M3
11 = sym{PÂ} + ĈT

1 Ĉ1, X is a diagonal

positive definite matrix, and Θ = [K̂Ĉ K̂D̂21 − I].

Noticing that Lyapunov matrix P and control matrix K̂
are separated from each other in the above inequality,
one can establish the following algorithm.

Algorithm 4
Step 1 Design a stabilizing controller K̂ first by

Algorithm 2 and solve the inequalityM
4
11 PB̂1 + ĈT

1 D11 PB̂ + ĈT
1 D̂12

∗ − γ2I +DT
11D11 DT

11D̂12

∗ ∗ D̂T
12D̂12

−

ΩTΘ −ΘTΩ < 0, (25)

where M4
11 = sym{PÂ} + ĈT

1 Ĉ1, Θ is as given in
(24) and Ω = [K01 K02 − X], to get γ, matrices
P > 0, any matrices K01, K02, and a diagonal matrix
X > 0.

Step 2 With the obtained matrices P, K01, K02

and X , solve (23) again to get a smaller γ. Then, repeat
Steps 1 and 2 to minimize γ. If γ is small enough, stop
the algorithm. Otherwise, turn to Step 3.

Step 3 With the controller and γ obtained in Step
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2, solve the following inequalityM
5
11 QĈT

1 + B̂1D
T
11 QĈT + B̂1D̂

T
21

∗ − γ2I +D11D
T
11 D11D̂

T
21

∗ ∗ D̂21D̂
T
21

−

ΓΩ −ΩTΓT < 0, (26)

where M 5
11 = ÂQ + QÂT + B̂1B̂

T
1 , Γ = [K̂TB̂T

K̂TD̂T
12 − I]T and Ω is as given in (25), to get γ and

matrices Q > 0, any matrices K01, K02, and a diago-
nal matrix X > 0.

Step 4 With the obtained K01, K02 and X in
Step 3, solve (26) again for a new controller K̂ and γ.
Repeat Steps 3 and 4 to minimize γ.

Remark 6 Similar to Theorem 3–i) and –ii), (26) can
be viewed as a dual inequality of (25). Since the searching di-
rections are different, an alternately iterative algorithm between
Steps 1–3 and Steps 4–6 of Algorithm 3, or between Steps 1–2
and Steps 3–4 of Algorithm 4, may sometimes further reduce
the design conservativeness.

The above method can also be extended to stable
controller design for SPR control problems.

Theorem 4 A stable controller K̂ as in (2) and
(4) stabilizes system (17) and makes that Gcl(s) (if it
is square) is SPR, if and only if there are a symmetric
matrix P > 0, and any matrices G1, G2, F1 and F2

such that−sym{G} M6
12 GB̂1 + ΦD̂21

∗ M6
22 FB̂1 + ΨĈ − CT

cl

∗ ∗ −Dcl −DT
cl

 < 0, (27)

where

M6
12 = GÂ+ P − FT + ΦĈ,

M6
22 = sym{FÂ+ ΨĈ},

Φ = [B̂ B̂⊥]G1B̂
TB̂K̂,

G = [B̂ B̂⊥][G1 G2][B̂ B̂⊥]T,

Ψ = [B̂ B̂⊥]F1B̂
TB̂K̂,

and
F = [B̂ B̂⊥][F1 F2][B̂ B̂⊥]T.

Proof Actually, the inequality (27) is just−(G+GT) GAcl+P−FT GBcl

∗ FAcl +AT
clF

T FBcl − CT
cl

∗ ∗ −Dcl −DT
cl

<0,

which is just equivalent to the bounded real lemma in-
equality[27][

PAcl +AT
clP PBcl − CT

cl

BT
clP − Ccl Dcl −DT

cl

]
< 0.

QED.
Similar to Theorem 3-ii), a dual case can also be

provided to (27).

Remark 7 SPR characteristic is closely related to ab-
solute stability of Lur’e systems[38–40]. One can also design
stable and reduced-order controllers for Lur’e systems by the
method of this paper.

4 Controller constraint problems
Generally, one needs to solve bilinear matrix in-

equalities (BMIs) to design controllers in most of con-
trol problems. So far, only state feedback controller
and full-order dynamic output feedback controller de-
sign problems can be transformed into LMIs. However,
in such LMIs, effective constraints cannot be exerted on
controllers and controllers with large parameters always
appear. The algorithms given in the above sections can
not only solve BMIs, but also can add norm constraints
on the designed variables to get controllers with reason-
able parameters. As discussed in Example 3, in Algo-
rithms 1 and 3, one can add the following constrains:[

αGI G

GT I

]
> 0, (28)

[
αFI F

FT I

]
> 0, (29)

and [
αKI K̂

K̂T I

]
> 0 (30)

with some scalars αG, αF and αK.
Similar constraints can be added in Algorithms 2

and 4.
Similar controller constraint problems can be con-

sidered on dynamic controllers.

Remark 8 In the general LMI method for the pole as-
signment problem, it is not easy to exert constraints on the state
feedback controllers because the control matrix is solved from
K = Y P−1. Similarly, in full-order controller design prob-
lems, controller parameters are eliminated by projection lem-
ma[41] which results in that one cannot effectively exert con-
troller constraints. For the new methods in this paper, one can
add controller norm constraints easily as discussed above, even
the bound constraint can be added for each controller param-
eters. As discussed in [14], state feedback controller design
with a bound constraint for each parameters is also NP hard.
Controller constraint problems can be solved by the iterative
method in this paper.

5 Examples
Example 1 Consider system (1) with matrix da-

ta

A =


0 1 0 0

0 0 1 0

0 0 0 1

−2 1 − 3 − 2

 , B =


0

0

0

1

 ,
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C = [−2 1 2 1].

Now, A has two unstable eigenvalues 0.2881 +
0.6475i and 0.2881 − 0.6475i. By taking the initial
matrix G11 = F11 = I3, G21 = F21 = diag{1, 1, 0}
and ϵ1 = 1.1, the first step of Algorithm 1 gives a
second-order stable controller stabilizing the system,

Ak =

[
0 1.7351

−1.6747 − 3.7258

]
, Bk =

[
−0.0809
−0.1492

]
,

Ck = [0.0862 − 0.4056], Dk = −0.9526.

On the other hand, one can also use Algorithm 2 to
design stable controllers for this example. First, take
an initial state feedback controller K0 such that the real
part of each eigenvalue of Â+ B̂K0 is less than −0.25.
Such an initial K0 can be solved by the general LMI
method as

K0 =−1.4295 −8.7890 −5.8360 −1.0760 0 0
0 0 0 0 −0.75 0
0 0 0 0 0 −0.75

.
Then, iteratively search a stable controller by Al-

gorithm 2. Unfortunately, this algorithm cannot get a
stabilizing solution. The main reason lies in that Â and
B̂ are both diagonal blocked, so K0 given by the gener-
al LMI algorithm in MATLAB is also diagonal blocked.
This results in that the searched controller K̂ falls into
a“diagonal blocked trap”. To avoid such a“diagonal
blocked trap”, one can revise K0 by adding nonzero
elements in the skew-diagonal blocks of K0 as

K0 =−1.4295 −8.789 −5.836 −1.076 0.1 0.2

1 0 0 0 −0.75 0

0 0.500 0 0 0 −0.75

.
With this new K0, by taking ϵ1 = 0.45, the first

step of Algorithm 2 gives a stable controller

Ak =

[
0 0.7878

−0.6020 − 1.1587

]
, Bk =

[
−0.0955
−0.1230

]
,

Ck = [0.2409 − 0.3396], Dk = −0.7071.

Remark 9 Stable controller design has been studied
by some authors[2–3, 8]. Compared with the existing method-
s for stable controller design, the new methods in this paper
are much simpler and more generalized. Here, Algorithm 1 is
based on a special structure of the new introduced slacked ma-
trices by using the information of B̂ and B̂⊥ Algorithm 2 is
based on the technique of Lyapunov matrix P and control ma-
trix K̂ from [33]. Both Algorithms 1 and 2 heavily rely on the
new stable controller structure (4). This controller structure is
very effective, see the subsequent examples. Actually, Algo-
rithms 1 and 2 can be viewed as two parallel algorithms, one
pays attention to the initial choice of the introduce slack matri-
ces which relax Lyapunov matrix free from control matrix, the

other pays attention to the initial choice of control matrix. Ex-
ample 1 shows that sometimes the initial G11 and F11 can be
chosen as identity matrices, and G21 and F21 can be chosen as
diagonal matrices with many zero elements. Of course, one can
also first design a state feedback matrix as in Algorithm 2, then
determine the initial G11, G21, and F11 and F21 by solving the
second step of Algorithm 1. However, Example 1 shows that
the initial state feedback matrix can easily fall into a ‘diagonal
blocked trap’ which can be revised as in Example 1 by adding
some nonzero elements, or can be avoided by the method of
assigning complex eigenvalues.

Example 2 Consider two systems (13) with ma-
trix data A1, B1 and C1 are equal to A, B and C as
given in Example 1, and

A2=

 0 1 0
0 0 1
0.8 − 3 − 2

 , B2=

00
1

 , C2=[1 1 2].

Now, A1 has two unstable eigenvalues as in Ex-
ample 1 and A2 has one unstable eigenvalue 0.228.
And, the orders of A1 and A2 are different. Let the
order of controller be 2. By taking the initial matri-
ces G1

11 = G2
11 = F 1

11 = F 2
11 = I3, G1

21 = F 1
21 =

diag{1, 1, 0}, G2
21 = F 2

21 =

[
1 0 0
0 − 1 0

]
and ϵ11 =

ϵ21 = 1.1, the first step like algorithm 1 gives a second-
order stable controller stabilizing two systems,

Ak =

[
0 1.4543

−1.2332 − 3.1366

]
, Bk =

[
−0.1344
−0.1296

]
,

Ck = [−0.0207 − 0.7324], Dk = −0.9114.

On the other hand, one can also use algorithm like
Algorithm 2 to design second-order stable controllers
for this example. First, take initial state feedback con-
trollers Ki

0 such that the real part of each eigenvalue

of Âi + B̂iKi
0 is less than −0.25. Similar to Example

1, Ki
0 also fall into a“diagonal blocked trap”, where

they are given by

K1
0 =−1.6033 −9.2651 −6.2799 −1.2897 0 0

0 0 0 0 −0.75 0
0 0 0 0 0 −0.75


and

K2
0 =

−3.0272 −1.9042 −0.2796 0 0
0 0 0 −0.75 0
0 0 0 0 −0.75

.
In this case, algorithm like Algorithm 2 cannot give

a stabilizing solution. By adding nonzero elements in
the skew-diagonal blocks of Ki

0, revise them as

K1
0 =−1.6033 −9.2651 −6.2799 −1.2897 0.1 0.2

1 0 0 0 −0.75 0
0 −0.5 0 0 0 −0.75


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and

K2
0 =

−3.0272−1.9042−0.2796 0.1 0.2
1 0 0 −0.75 0
0 0.5 0 0 −0.75

 .

With these new Ki
0, by taking ϵ11 = 0.6 and ϵ21 = 0.1,

the first step of algorithm like Algorithm 2 gives a stable
controller

Ak =

[
0 0.5143

−0.40697 − 1.1831

]
, Bk =

[
0.0377
0.0010

]
,

Ck = [−0.0361 0.4113], Dk = −0.9319.

Remark 10 The NP hardness of simultaneous
stabilization problems have been discussed by some au-
thors[13–14, 35]. A rank-one LMI method was given in [35] for
simultaneous stabilization problem involving with Hurwitz cri-
terion. By predetermining the stable controller structure as in
(4), two new iterative LMI methods can be given like Algo-
rithms 1 and 2. The above Examples 1 and 2 and the subse-
quent examples show that the new methods in this paper are
very effective.

Example 3 Consider a two-cart-one-spring sys-
tem (Benchmark problem) given in [42] with matrix da-
ta

A =


0 0 1 0
0 0 0 1

−k/m1 k/m1 − c/m1 0
k/m2 − k/m2 0 − c/m2

 ,

B =


0
0

1/m1

0

 , B1 =


0 0 0
0 0 0

1/m1 0 0
0 1/m2 0

 ,

C = C1 = (0, 1, 0, 0) and D11 = 0, D12 = 0,
D21 = (0, 0, 1), where m1 = m2, k = 2 and c =
0.2.

Here, design a second-order stable controller to sta-
bilize the system and satisfy a prescribed H∞ perfor-
mance index. First, taking the initial matrix G11 =
F11 = I3, G21 = F21 = diag{1, −1, 0} and ϵ1 =
0.5, the first step of Algorithm 1 gives a second-order
stable controller stabilizing the system,

Ak =

[
0 1.0198

−0.9958 − 2.6089

]
, Bk =

[
0.1180
0.4875

]
,

Ck = [0.1121 − 0.0402], Dk = −0.9480,

which achieves the H∞ performance index of the
closed-loop system γ = 6.0.

In order to avoid computing with large parameters,
one can further add constraints[

10000I6 G

GT I6

]
> 0

and [
10000I6 F

FT I6

]
> 0

in Algorithm 3. By the first three steps of Algorithm 3,
one can get a new controller,

Ak =

[
0 1.8004

−1.0092 − 1.8493

]
, Bk =

[
0.0202

0.3954

]
,

Ck = [0.0166 − 3.2712], Dk = −0.5989,

which achieves the H∞ performance index of the
closed-loop system γ = 2.77. Further, by Steps 4–
6 of Algorithm 3, one can get another controller with
γ = 2.73. But such an improvement is comparatively
minor.

On the other hand, one can also use Algorithm 4 to
design stable controllers for this example. First, take an
initial state feedback controller K0 such that Â+ B̂K0

is stable. Unfortunately, a diagonal blocked K0 appears
as in Examples 1 and 2. By making some similar revi-
sions as in Example 1, one can get an initial K0 as

K0 =−6.9721 1.6741 −3.9675 −1.2586 0.1 0.2

1 0 0 0 −0.5 0

0 −1 0 0 0 −0.5

 .

With this K0, by taking ϵ1 = 0.5, the first step of
Algorithm 2 gives a stable controller. In order to avoid
computing with large parameters, one can further add
constraints [

10000I3 K01

KT
01 I6

]
> 0

and [
10000I3 K02

KT
02 I3

]
> 0

in Algorithm 4. However, with such an initial stable
controller, one can not get a controller with γ < 3.2.

Remark 11 Example 3 shows that Algorithm 3 may
provide a better H∞ controller compared with Algorithm 4.
Since the introduction of slack matrices G and F , Algorithm
3 has good robustness against the choice of initial matrices G1

and F1. Comparatively, Algorithm 4 has less matrix variables
to solve. In addition, a nonsmooth H∞ control approach was
given in [18], which can be used to simultaneous stabilization,
decentralized control and fixed-order controller design prob-
lems without involving Lyapunov function. The methods in
this paper are based on the traditions LMI methods. The new
techniques presented here effectively simply the simultaneous
stabilization and stable reduced-order H∞ control problems.
The new methods are very simple and can be used to deal with
other control problems such as decentralized control and static
output feedback control problems[27–28, 36–37].

Example 4 Consider the system matrices given
in Example 3. Here, consider the pole assignment prob-
lems by state feedback controllers. First, solve the fol-
lowing inequality:

AP + PAT +BY + Y TBT + ϵ0P < 0 (31)
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with P > 0 and ϵ0 = 2.1. One can get a controller
K = Y P−1 = (−123.7857 − 13.4501 − 17.5409
−113.4392). Clearly, the parameters in this K are very
large. In this case, the real part of each eigenvalue of
A+BK is less than −1.39.

On the other hand, add a new constraint (30) in the
first step of Algorithm 1 with αK = 1000 and two new
constraints (28) and (29) in the second step of Algori-
thm 1 with αG = αF = 10000. Substitute Â, B̂, Ĉ by
A, B and I , and taking initial matrices G11 = F11 = 1
and G21 = F21 = (1 0 0)T. Then, the first step of
Algorithm 1 gives a state feedback stabilizing solution
with ϵ1 = 0.5. And one can get some new matrices G
and F by the second step with ϵ2 = 0.1. Through sev-
eral iterative steps by decreasing ϵ1 and ϵ2, and finally
by taking ϵ1 = ϵ2 = −1.8, one can get a new controller
K = (−20.7978 11.3897 − 8.2325 − 7.2084). As
one can see, the controller parameters are much smaller
than the ones from directly solving LMI (31). And in
this case, the real part of each eigenvalue of A+BK is
less than −1.4.

6 Conclusions
A new stable controller structure has been present-

ed, which is not so conservative based on the under-
standing of controller robustness. Combining with a
new structure on the introduce slack matrix variables
and the separation technique from the two stage al-
gorithms, two new methods have been proposed for
strong stabilization problems. Compared with the ex-
isting methods, the new methods are simple and easy
to be generalized to simultaneous stabilization of sev-
eral plants, H∞ control and SPR control problems and
decentralized controller design. Stable controllers with
any fixed-order can be effectively designed by the new
iteratively, even the first step of the proposed algorithms
can give stable solutions without any iterative steps for
several examples. Controller parameter bound con-
straints can be easily exerted in the new algorithms.
Some related NP hard problems have been discussed
and can be partly solved by the mew methods.
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