具有执行器故障的不确定多智能体系统自适应动态面控制

林曼菲, 张天平†

(扬州大学 信息工程学院 自动化专业部, 江苏 扬州 225127)

摘要:本文研究了一类具有输入量化、未建模动态和执行器故障的非线性多智能体系统的一致跟踪问题.引入一 个可量测的动态信号消除未建模动态对系统的影响.利用Young's不等式和高斯函数的性质,有效地处理了多智能 体邻居节点在设计的第一步中对子系统的耦合作用.通过将滞回量化器表示为具有有界系数和有界扰动的输入线 性函数,并利用动态面控制方法,提出一种自适应神经网络动态面控制方案,简化了控制器的设计,保证了闭环系统 的所有信号都是半全局一致终结有界的,所有跟随者都能实现期望的一致性.最后,仿真结果验证了所提出的自适 应控制策略的有效性.

关键词:多智能体系统;执行器故障;输入量化;动态面控制;未建模动态

引用格式: 林曼菲, 张天平. 具有执行器故障的不确定多智能体系统自适应动态面控制. 控制理论与应用, 2021, 38(9): 1452 – 1465

DOI: 10.7641/CTA.2021.00512

Adaptive dynamic surface control for uncertain multi-agent systems with actuator failures

LIN Man-fei, ZHANG Tian-ping[†]

(Department of Automation, College of Information Engineering, Yangzhou University, Yangzhou Jiangsu 225127, China)

Abstract: In this paper, the problem of consensus tracking is studied for a class of nonlinear multi-agent systems with input quantization and unmodeled dynamics as well as actuator failures. A measurable dynamic signal is introduced to eliminate influence of unmodeled dynamics on the system. With the help of Young's inequality and the characteristic of Gaussian function, the interconnection of neighbors of multi-agent at the first step of controller design is effectively handled. Using the linear function of input with bounded coefficient and bounded disturbance for the hysteresis quantizer and dynamic surface control method, an adaptive dynamic surface control scheme is proposed, and the design of the controller is simplified. It guarantees that all the signals of the closed-loop system are semi-globally uniformly ultimately bounded (UUB), and all the followers can accomplish the desired consensus results. Finally, the simulation results verify the availability of the proposed adaptive control strategy.

Key words: multi-agent systems; actuator failure; input quantification; dynamic surface control; unmodeled dynamics

Citation: LIN Manfei, ZHANG Tianping. Adaptive dynamic surface control for uncertain multi-agent systems with actuator failures. *Control Theory & Applications*, 2021, 38(9): 1452 – 1465

1 引言

多智能体系统是由多个智能体组成的分布式独立 系统,它能够解决单一智能体无法解决的问题,并提 高其效率及鲁棒性.特别是分布式多智能体系统的一 致性控制在传感器网络、随机多智能体系统、多机器 人、机器人编队等领域得到了广泛的研究.多智能体 系统的模型可分为无头节点模型和带有头节点的模 型^[1].对于多智能体系统的分布式控制,多智能体的 一致性控制已成为一个主要的研究方向,它的目的是 设计分布式算法,使得一组智能体达到给定的协议. 文献[2]利用强化学习控制方法(reinforcement learning control, RLC)研究了多智能体系统(multi-agent systems, MAS)中的一致性问题,并给出了一种可视的 分布式量化协议来更新动态系统.文献[3]研究了不可 测量状态非线性多智能体系统的一致量化控制设计 问题.文献[4]研究了具有固定拓扑结构的无向图上多

收稿日期: 2020-08-05; 录用日期: 2021-03-04.

[†]通信作者. E-mail: tpzhang@yzu.edu.cn; Tel.: +86 514-87978319.

本文责任编委:张承慧.

国家自然科学基金项目(62073283), 江苏省自然科学基金项目(BK20181218), 扬州大学高端人才支持计划项目(2016)资助.

Supported by the National Natural Science Foundation of China (62073283), the Natural Science Foundation of Jiangsu Province (BK20181218) and the Yangzhou University Top-level Talents Support Program (2016).

智能体系统的分布式一致跟踪问题,并将命令滤波器 后推技术推广到一致性跟踪控制问题中,避免了后推 设计中存在的"复杂性爆炸"问题.文献[5]研究了严 格反馈形式下的多智能体系统的一致性问题.文献 [6]考虑了一组高阶非线性严格反馈多智能体系统在 定向通信拓扑上跟踪期望轨迹的输出一致问题.

在实际工业应用中,当执行器将设计的控制信号 输入到实际系统中时,它们面临两个问题:信号量化 或执行器故障.量化控制技术广泛应用于现代生产过 程、电力系统、智能交通和需要通信的智能设备等领 域.量化是连续信号离散化的过程,必然会给系统带 来额外的非线性. 文献[7]引入了一种滞回量化器, 并 设计了一种基于动态面控制的控制律方法,去除了早 期文献中量化系统的许多假设. 文献[8]讨论了一类具 有输入量化、未建模动态和输出约束的非线性系统的 自适应输出反馈跟踪控制问题.引入了一类具有滞回 和均匀量化的新的量化器来处理输入信号. 文献 [9-10]提出了一种有限时间输入量化自适应控制方 法. 文献[11-12]提出了一种由均匀量化器和对数量化 器的组合的量化器.另一个问题是执行器故障,执行 器故障分为部分失效和完全失效,执行器完全失效时, 输出不再受执行器的影响[13-14]. 文献[15]引入光滑函 数来处理量化以及执行器故障对于系统性能的影响, 并将量化以及执行器故障推广到多智能体系统中. 文 献[16]针对未知执行器故障和系统不确定性,提出了 一种自适应控制方案,在执行器故障的情况下实现期 望的输出跟踪和闭环稳定.

将自适应动态面方法和神经网络相结合有效地解 决了一类自适应非线性系统的鲁棒自适应跟踪控制 问题. 自文献[17]提出后推设计方法以来, 后推设计被 广泛应用于非线性系统的控制器设计. 但是由于在递 归设计的每一步都需要对虚拟控制律进行求导,造成 了复杂性爆炸问题.为了解决这一问题[18]在后推设计 的每一步中引入一阶滤波器,提出了动态面控制,文 献[19]研究了具有动态不确定性的自适应动态面控 制. 文献[20]研究了一类带有未知死区的纯反馈非线 性系统的自适应动态面控制. 文献[21]针对一类具有 全状态约束和动态不确定性的纯反馈非线性系统,利 用径向基函数神经网络(radial basis function neural networks, RBFNNs)建立了自适应神经网络动态面控 制(dynamic surface control, DSC). 文献[22]将动态面 控制方法应用于随机系统中.在实际系统中存在许多 不确定性,如未建模动态、死区和状态约束,这可能会 降低系统的性能,甚至影响系统的稳定性.未建模动 态是不确定非线性系统研究中考虑的一种不确定性. 文献[23-24]引入动态信号来处理未建模动态. 文献 [25]用李雅普诺夫函数来处理未建模动态.

本文在已有文献的基础上,主要解决了一类具有

输入量化、未建模动态和执行器故障的非线性多智能 体系统的一致跟踪问题. 当多智能体系统同时存在输 入量化、未建模动态和执行器故障时,每一种不确定 性都会对系统稳定性产生影响,如何处理这些不确定 项对系统的影响,以及如何将输入量化以及执行器故 障模型线性化表示并设计合适的控制器是本文面临 的挑战. 本文的主要贡献如下: 1) 利用Young's不等式 和高斯函数的性质,有效地处理了多智能体邻居节点 在设计的第1步中对子系统的耦合作用,减少了所设 计的虚拟控制中神经网络基向量的变量个数,简化了 稳定性分析; 2) 与文献[3]相比,本文考虑了多智能体 系统中存在未建模动态以及执行器故障的问题,克服 了一阶滤波器常数无法求解的问题,并在设计过程中 简化了自适应律的设计; 3) 与文献[15]相比, 本文对 执行器故障模型和输入量化模型进行线性化处理,避 免设计中间控制器,并且简化了自适应律的设计,同 时采用自适应动态面方法,最后证明了领导者和跟随 者之间达成期望一致,同时保持误差一致有界.

2 问题描述与预备知识

2.1 问题描述

考虑由1个领导者和N个跟随者组成的具有滞回 量化器和执行器故障的不确定多智能体系统,第*i*个跟 随者系统和滞回量化器输出*Q_i(u_{i,f})*描述如下:

$$\begin{cases} \dot{z}_{i} = q_{i}(z_{i}, \bar{x}_{i,n}, t), \\ \dot{x}_{i,1} = x_{i,2} + f_{i,1}(x_{i,1}) + \Delta_{i,1}(z_{i}, \bar{x}_{i,n}, t), \\ \dot{x}_{i,j} = x_{i,j+1} + f_{i,j}(\bar{x}_{i,j}) + \Delta_{i,j}(z_{i}, \bar{x}_{i,n}, t), \\ \dot{x}_{i,n} = \sum_{f=1}^{p} [k_{i,f,h}Q_{i}(u_{i,f}(t)) + u_{i,sf,h}(t)] + \\ f_{i,n}(\bar{x}_{i,n}) + \Delta_{i,n}(z_{i}, \bar{x}_{i,n}, t), \\ y_{i} = x_{i,1}, \end{cases}$$
(1)

$$\begin{cases} u_{i,f,s} \operatorname{sgn} u_{i,f}, \\ \frac{u_{i,f,s}}{1+\delta_{i,f}} < |u_{i,f}| \leqslant u_{i,f,s}, \ \dot{u}_{i,f} < 0, \ \vec{\mathfrak{m}} \\ u_{i,f,s} < |u_{i,f}| \leqslant \frac{u_{i,f,s}}{1-\delta_{i,f}}, \ \dot{u}_{i,f} > 0; \\ u_{i,f,s} \operatorname{sgn} u_{i,f}(1+\delta_{i,f}), \\ u_{i,f,s} < |u_{i,f}| \leqslant \frac{u_{i,f,s}}{1-\delta_{i,f}}, \ \dot{u}_{i,f} < 0, \ \vec{\mathfrak{m}} \\ \frac{u_{i,f,s}}{1-\delta_{i,f}} < |u_{i,f}| \leqslant \frac{u_{i,f,s}(1+\delta_{i,f})}{1-\delta_{i,f}}, \ \dot{u}_{i,f} > 0; \\ 0, 0 \leqslant |u_{i,f}| < \frac{u_{i,f\min}}{1+\delta_{i,f}}, \ \dot{u}_{i,f} < 0, \ \vec{\mathfrak{m}} \\ \frac{u_{i,f\min}}{1+\delta_{i,f}} \leqslant |u_{i,f}| \leqslant u_{i,f\min}, \ \dot{u}_{i,f} > 0; \\ Q_i(u_{i,f}(t^-)), \ \dot{u}_{i,f} = 0, \end{cases}$$

(2)

其中: j = 2, ..., n-1; i = 1, ..., N; $\bar{x}_{i,k} = [x_{i,1}$ $x_{i,2} ... x_{i,k}]^{\mathrm{T}} \in \mathbb{R}^k$, k = 1, ..., n; $\bar{x}_{i,n}$ 是状态向 量; $y_i \in \mathbb{R}$ 表示系统输出; $f_{i,j}(\bar{x}_{i,j})$ 为未知非线性光滑 函数; $\Delta_{i,j}(z_i, \bar{x}_{i,j}, t)(j = 1, ..., n)$ 是未知非线性动 态扰动; $z_i \in \mathbb{R}$ 是未建模动态; $q_i(z_i, \bar{x}_{i,j}, t) \in \mathbb{R}$ 是满 足Lipschitz条件的未知函数向量; $u_{i,f} \in \mathbb{R}$ (f = 1, ..., p) 为第i 个跟随者第f 个执行器控制输入; $Q_i(u_{i,f}(t))$ 为滞回量化器的输出; $k_{i,f,h} \in [0,1]$ 是效 率系数; $u_{i,sf,h}$ 是第i个智能体的第f个执行器故障函 数, 它是一个未知函数, 同时满足分段连续有界条件; $u_{i,f,s} = \rho_{i,f}^{1-s}u_{i,f,\min}, s = 1, 2, ..., u_{i,f,\min} > 0$ 与0 < $\rho_{i,f} < 1$ 决定了 $Q_i(u_{i,f})$ 死区的大小; $\delta_{i,f} = \frac{1-\rho_{i,f}}{1+\rho_{i,f}}$. $Q_i(u_{i,f})$ 在集合 $U = \{0, \pm u_{i,f,s}, \pm u_{i,f}(1+\delta_{i,f,s})\}$ 内 取值, $\rho_{i,f}$ 是量化密度. 令

$$q_{i,f,1}(u_{i,f}) = \begin{cases} \frac{Q_i(u_{i,f})}{u_{i,f}}, \ |u_{i,f}| > u_{i,f,\min}, \\ 1, & |u_{i,f}| \leqslant u_{i,f,\min}, \end{cases}$$
(3)

$$q_{i,f,2}(u_{i,f}) = \begin{cases} 0, & |u_{i,f}| > u_{i,f,\min}, \\ -u_{i,f}, & |u_{i,f}| \leqslant u_{i,f,\min}, \end{cases}$$
(4)

由式(2)得1- $\delta_{i,f} \leq q_{i,f,1}(u_{i,f}) \leq 1+\delta_{i,f}, |q_{i,f,2}(u_{i,f})| \leq u_{i,f,\min}$. 将上式表示为

$$Q_i(u_{i,f}) = q_{i,f,1}(u_{i,f})u_{i,f} + q_{i,f,2}(u_{i,f}).$$
 (5)

第f个执行器在 $t_{i,f,h}^{s}$ 到 $t_{i,f,h}^{e}$ 时间段内发生第h次故障,故障模型描述如下:

$$k_{i,f,h}(q_{i,f,1}(t)u_{i,f} + q_{i,f,2}(t)) + u_{i,sf,h}(t),$$

$$t \in [t_{i,f,h}^{s}, t_{i,f,h}^{e}],$$
(6)

$$k_{i,f,h}u_{i,sf,h} = 0, \ h = 1, 2, 3, \cdots,$$
 (7)

其中: $k_{i,f,h} \in [0,1]$ 是效率系数; $u_{i,sf,h}$ 是第i个智能体 第f个执行器故障函数, 它是一个未知函数, 同时满足 分段连续有界条件. 在一段时间[$t_{i,f}^{s}, t_{i,f}^{e}$]内, 执行器 故障可能多次出现, 其中 $t_{i,f}^{s}$ 和 $t_{i,f}^{e}$ 为未知常数且满足 $0 \leq t_{i,f}^{s} \leq t_{i,f,1}^{s} \leq t_{i,f,2}^{e} \leq t_{i,f,2}^{e} \leq \cdots \leq t_{i,f,h}^{s}$ $\leq t_{i,f,h}^{e} \leq t_{i,f}^{e}$. 例如[$t_{i,f,1}^{s}, t_{i,f,1}^{s}$]表示第f个执行器第1 次故障.

故障模型包含如下4种情况:

1) 当 $k_{i,f,h} = 1, u_{i,sf,h} = 0$ 的情况下,执行器未发 生故障,系统输入为量化信号;

2) 当 $k_{i,f,h} \in (0,1), u_{i,sf,h} = 0$ 的情况下, $0 < \underline{k}_{i,f,h} \leq k_{i,f,h} < 1$,执行器部分失效,其中 $\underline{k}_{i,f,h}$ 为已 知常数;

3) 当 $k_{i,f,h} = 1, u_{i,sf,h} \neq 0$,执行器未发生故障 但对系统产生了一个干扰信号;

4) 当 $k_{i,f,h} = 0, u_{i,sf,h} \neq 0$, 执行器完全失效且 对系统产生了一个干扰信号. 本文主要考虑情况1-3,即系统在[t^s_{i,f},t^e_{i,f}]时间 内,第f个执行器发生h次故障,在其余时间内,第f个 执行器未发生故障,系统输入为量化信号.

系统的控制目标是考虑在执行器部分失效情况下, 在执行器发生故障的时间段内设计系统正常控制输 入*u_{i,f}*,使闭环系统中所有信号都是半全局一致终结 有界的,此外,使领导者和追随者之间达成期望一致, 同时保持误差一致有界.

2.2 基本假设

假设 $1^{[3]}$ 相对于跟随者,领导者的信号 $y_r \in \mathbb{R}$ 是可以获得的,且满足

$$[y_{\rm r} \ \dot{y}_{\rm r} \ \ddot{y}_{\rm r}]^{\rm T} \in \Pi_0 = \{[y_{\rm r}(t) \ \dot{y}_{\rm r}(t) \ \ddot{y}_{\rm r}(t)]^{\rm T} : y_{\rm r}^2(t) + \dot{y}_{\rm r}^2(t) + \ddot{y}_{\rm r}^2(t) \leqslant B_0\},$$
(8)

其中 $B_0 > 0$ 为常数.

假设 2^[7] 未知动态扰动 $\Delta_{i,j}(z_i, \bar{x}_{i,n}, t)$ (*i* = 1, …, *N*; *j* = 1, …, *n*)满足下列不等式

 $|\Delta_{i,j}(z_i, \bar{x}_{i,n}, t)| \leq \phi_{ij1}(||\bar{x}_{i,j}||) + \phi_{ij2}(||z_i||),$ (9) 其中: $\phi_{ij1}(\cdot)$ 是未知光滑函数, $\phi_{ij2}(\cdot)$ 是未知非负单调 递增连续函数.

假设 3^[15] 函数 $u_{i,sf,h}$ 有界,且上界是未知正数, 即存在正常数 $\bar{u}_{i,sf,h}$,使得 $|u_{i,sf,h}(t)| \leq \bar{u}_{i,sf,h}, \forall t \geq 0$.

假设4^[15]所有执行机构不会同时失效且每个执行器发生故障的次数为有限次,如果执行器故障小于*p*,则闭环系统仍与其余执行器良好工作.

假设 5^[24] 未建模动态 z_i 是指数输入状态实用 稳定的,对于系统 $\dot{z}_i = q_i(z_i, \bar{x}_{i,n_i}, t)$,存在Lyapunov 函数 $V_{i0}(z_i)$,使得

$$\bar{\alpha}_{i,1}(||z_i||) \leq V_{i,0}(z_i) \leq \bar{\alpha}_{i,2}(||z_i||), \quad (10)$$

$$\frac{\partial V_{i,0}(z_i)}{\partial z_i} q_i(z_i, \bar{x}_{i,n_i}, t) \leq -c_i V_{i,0}(z_i) + \gamma_i(|x_{i,1}|) + \iota_i, \quad (11)$$

其中: $\bar{\alpha}_{i,1}(\cdot), \bar{\alpha}_{i,2}(\cdot)$ 是 K_{∞} 类函数, $\gamma_i(\cdot)$ 是已知 K_{∞} 类函数, $c_i \eta_{\iota_i}$ 是已知正常数.

假设 6^[3] 多智能体存在根节点,根节点与其他 跟随者之间有连接且根节点能够获取来自于领导者 的信息.

引理 1^[24] 如果 $V_{i,0}$ 是系统 $\dot{z}_i = q_i(z_i, \bar{x}_{i,n}, t)$ 的 一个指数输入状态实用稳定的Lyapunov函数, 当式 (10)–(11)成立, 对任意常数 $c_{i0} \in (0, c_i)$, 任意初始时 刻 $t_{i0} > 0$, 任意初始条件 $z_{i0} = z_i(t_{i0}), v_{i0} > 0$, 对任意 连续 K_{∞} 类函数 $\bar{\gamma}_{i}(|x_{i,1}|)$,满足 $\bar{\gamma}_{i}(|x_{i,1}|) \ge \gamma_{i}(|x_{i,1}|)$,则存在一个有限时间 $T_{i0} = \max\{0, \ln[\frac{V_{i,0}(z_{i0})}{v_{i0}}]/(c_{i} - c_{i0})\} \ge 0$,一个非负函数 $D_{i}(t_{i0}, t)$,对于所有 $t \ge t_{i0}$,信号可以描述为

$$\dot{v}_i = -c_{i0}v_i + \bar{\gamma}_i(|x_{i,1}|) + \iota_i, \ v_i(t_{i0}) = v_{i0} > 0,$$
(12)

因此, 当 $t \ge t_{i0} + T_{i0}$ 时, $D_i(t_{i,0}, t) = 0$, 且 $V_{i,0}(z_i) \le v_i(t) + D_i(t_{i0}, t)$, 其中 $D_i(t_{i0}, t) = \max\{0, e^{-c_i(t-t_{i0})} V_{i,0}(z_{i0}) - e^{-c_{i0}(t-t_{i0})} v_{i0}\}.$

2.3 图理论

令*G* = (*Γ*, *ζ*)作为一个有向图来模拟*N*个跟随者 之间的信息交换;其中*Γ* = {*n*₁, · · · ,*n*_N}表示节点集 合, *ζ* = {(*n_i*, *n_j*)} ∈ *Γ* × *Γ*表示边集合. 定义邻接矩 阵*A* = [*a_{ij}*] ∈ ℝ^{N×N}, *a_{ij}* ≥ 0. 对于有向图,若(*j*,*i*) ∈ *ζ*, *i* ← *j*表明第*i*个智能体可以获取来自第*j*个智能 体的信息,此时*a_{ij}* = 1,否则*a_{ij}* = 0. 定义度矩阵以*D* = diag{*d*₁, · · · ,*d*_N}以及Laplacian矩 阵*L*, *L* = *D* − *A*, 其中*d_i* = $\sum_{j \in N_i} a_{ij}$, *N_i*为智能体*i*的邻居的集合,定 义为*N_i* = {*j* ∈ *Γ* : (*j*, *i*) ∈ *ζ*}. 从智能体*i*到智能体*j* 的有向图是{(*i*,*l*), (*l*,*m*), · · · ,(*k*, *j*)}的连续边缘序 列形式. 若存在一个称为根节点的智能体*i*, 从*i*到其他 智能体都有一条有向通路,则有向图*G*被称为生成树. 此外,定义*A*₀ = diag{*a*₁₀, · · · ,*a*_{N0}}是领导者的邻接 矩阵. *a_{i0}* = 1表示第*i*个跟随者可以获取来自领导者 的信息,否则*a_{i0}* = 0, 令*H* = *L* + *A*₀.

引理 2^[3] 如果生成树存在于有向图*G*中, 根跟随者有机会获得领导者的信息, 那么矩阵*H*所有特征值均具有正实部.

2.4 神经网络逼近

在给定的紧集 $\Omega_x \subset \mathbb{R}^n$,利用径向基函数神经网络逼近未知连续函数 $f_i(x)$,有

$$f_i(x) = \theta_i^{*\mathrm{T}} \phi_i(x) + \delta_i(x), \qquad (13)$$

其中: $\delta_i(x)$ 为逼近误差, $\phi_i(x) = [\phi_{i1}(x) \cdots \phi_{iM_i}(x)]^T \in \mathbb{R}^{M_i}$ 为基向量,其分量基函数 $\phi_{ij}(x)$ 取为下述高斯函数:

$$\phi_{i1}(x) = \exp[-\frac{(x-\mu_{ij})^2}{b_{ij}^2}],$$
(14)

其中: $1 \leq i \leq n, 1 \leq j \leq M_i, \mu_{ij}$ 和 b_{ij} 分别为高斯函数的中心和宽度, M_i 为第i个神经网络的节点数, 理想权重 θ_i 定义为

$$\theta_i^* = \arg\min_{\theta_i \in \mathbb{R}^{M_i}} [\sup_{x \in \Omega_x} |\theta_i^{\mathrm{T}} \phi_i(x) - f_i(x)|].$$
(15)

引理3^[26] 若 $Z = [\chi_1 \cdots \chi_N]^{\mathrm{T}} \in \mathbb{R}^N, X = [\chi_{i_1} \cdots \chi_{i_k}]^{\mathrm{T}} \in \mathbb{R}^k, \{i_1, \cdots, i_k\}$ 是 $\{1, \cdots, N\}$ 的

一个子序列, $\mu = [\mu_1 \cdots \mu_N]^{\mathrm{T}}, \sigma = [\sigma_1 \cdots \sigma_N]^{\mathrm{T}}$ 是两个常数向量,

$$\sigma_{1}, \cdots, \sigma_{N} > 0,$$

$$\varphi(Z) = \prod_{j=1}^{N} \exp\{-\frac{(\chi_{j} - \mu_{j})^{2}}{2\sigma_{j}^{2}}\},$$

$$\varphi(X) = \prod_{j=1}^{k} \exp\{-\frac{(\chi_{i_{j}} - \mu_{i_{j}})^{2}}{2\sigma_{i_{j}}^{2}}\},$$

$$\prod_{j=1}^{N} \exp\{-\frac{(\chi_j - \mu_j)^2}{2\sigma_j^2}\} \leqslant \prod_{j=1}^{k} \exp\{-\frac{(\chi_{i_j} - \mu_{i_j})^2}{2\sigma_{i_j}^2}\}$$

3 自适应动态面控制器设计

为每个跟随者设计一种自适应神经网络动态面控制,根据跟随者之间的关系定义坐标变换如下:

$$\begin{cases} s_{i,1} = \sum_{j \in N_i} a_{ij} (y_i - y_j) + a_{i0} (y_i - y_r(t)), \\ s_{i,j} = x_{i,j} - \omega_{i,j}, \\ y_{i,j} = \omega_{i,j} - \alpha_{i,j}, \end{cases}$$
(16)

其中: $j = 2, \dots, n; \omega_{i,j}, \alpha_{i,j}$ 稍后给出. 为了叙述方便, 定义一些符号如下:

$$\begin{split} \underline{s}_{N,k} &= [s_{1,k} \cdots s_{N,k}]^{\mathrm{T}}, \ \underline{\bar{s}}_{N,k} &= [\underline{s}_{N,1}^{\mathrm{T}} \cdots \underline{s}_{N,k}^{\mathrm{T}}]^{\mathrm{T}}, \\ k &= 1, \cdots, n, \ \bar{y}_{i,j} &= [y_{i,2} \cdots y_{i,j}]^{\mathrm{T}}, \\ \underline{y}_{N,k} &= [y_{1,k} \cdots y_{N,k}]^{\mathrm{T}}, \ k &= 2, \cdots, n, \\ \underline{\bar{y}}_{N,k} &= [\underline{y}_{N,2}^{\mathrm{T}} \cdots \underline{y}_{N,k}^{\mathrm{T}}]^{\mathrm{T}}, \ k &= 2, \cdots, n, \\ y &= [y_1 \ y_2 \ \cdots \ y_N]^{\mathrm{T}}, \ \bar{v}_N &= \{v_1, \cdots, v_N\}, \\ 1_N &= [1 \ \cdots \ 1]^{\mathrm{T}} \in \mathbb{R}^N, \ e_{i,1} &= y_i - y_r, \\ e_1 &= [e_{1,1} \ e_{2,1} \ \cdots \ e_{N,1}]^{\mathrm{T}}, \\ \underline{x}_{N,1} &= [x_{1,1} \ \cdots \ x_{N,1}]^{\mathrm{T}}, \ \underline{x}_{N,2} &= [x_{1,2} \ \cdots \ x_{N,2}]^{\mathrm{T}}. \\ &\boxplus s_{i,1} &= \sum_{j \in N_i} a_{ij}(y_i - y_j) + a_{i0}(y_i - y_r(t)) \ \Pi \\ \end{split}$$

$$\begin{split} \underbrace{\sum_{j=1}^{N} a_{1j} - a_{12} \cdots - a_{1N}}_{j=1} \\ \begin{bmatrix} \sum_{j=1}^{N} a_{1j} & -a_{12} & \cdots & -a_{1N} \\ -a_{21} & \sum_{j=1}^{N} a_{2j} & \cdots & -a_{2N} \\ \vdots & \vdots & & \vdots \\ -a_{N1} & -a_{N2} & \cdots & \sum_{j=1}^{N} a_{Nj} \end{bmatrix} e_1 + \\ \begin{bmatrix} a_{10} & 0 & \cdots & 0 \\ 0 & a_{20} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{N0} \end{bmatrix} e_1 = \\ (L + A_0)e_1 = H(y - 1_N y_r(t)). \end{split}$$

根据引理2可知, H可逆. 因此, 有

$$y = H^{-1}\underline{s}_{N,1} + 1_N y_r(t).$$
 (17)
步骤 1 由于第*i*个跟随者的同步误差为
 $s_{i,1} = \sum_{j \in N_i} a_{ij}(y_i - y_j) + a_{i0}(y_i - y_r(t)).$
将 $s_{i,1}$ 可得
 $\dot{s}_{i,1} =$
 $(\sum_{j \in N_i} a_{ij} + a_{i0})\dot{y}_i - \sum_{j \in N_i} a_{ij}\dot{y}_j - a_{i0}\dot{y}_r(t) =$
 $(\sum_{j \in N_i} a_{ij} + a_{i0})(x_{i,2} + f_{i,1}(x_{i,1}) +$
 $\Delta_{i,1}(z_i, \bar{x}_{i,n}, t)) - a_{i0}\dot{y}_r(t) -$
 $\sum_{j \in N_i} a_{ij}(x_{j,2} + f_{j,1}(x_{j,1}) + \Delta_{j,1}(z_j, \bar{x}_{j,n}, t)) =$
 $(\sum_{j \in N_i} a_{ij} + a_{i0})(s_{i,2} + y_{i,2} + \alpha_{i,2} +$
 $f_{i,1}(x_{i,1}) + \Delta_{i,1}(z_i, \bar{x}_{i,n}, t)) -$
 $\sum_{j \in N_i} a_{ij}(x_{j,2} + \Delta_{j,1}(z_j, \bar{x}_{j,n}, t) +$

$$f_{j,1}(x_{j,1})) - a_{i0}\dot{y}_{\rm r}(t). \tag{18}$$

定义Lyapunov函数为

$$V_1 = \frac{1}{2} \sum_{i=1}^{N} [s_{i,1}^2 + \frac{1}{\eta_{i,1}} \tilde{\lambda}_{i,1}^2].$$
 (19)

将V1关于时间t求导得

$$\dot{V}_{1} = \sum_{i=1}^{N} \{s_{i,1} [(\sum_{j \in N_{i}} a_{ij} + a_{i0})(s_{i,2} + y_{i,2} + \alpha_{i,2} + f_{i,1}(x_{i,1}) + \Delta_{i,1}(z_{i}, \bar{x}_{i,n}, t)) - a_{i0}\dot{y}_{r}(t) - \sum_{j \in N_{i}} a_{ij}(x_{j,2} + f_{j,1}(x_{j,1}) + \Delta_{j,1}(z_{i}, \bar{x}_{i,n}, t))] - \frac{1}{\eta_{i,1}} \tilde{\lambda}_{i,1} \dot{\hat{\lambda}}_{i,1} \} = \sum_{i=1}^{N} \{s_{i,1} [(d_{i} + a_{i0})(s_{i,2} + y_{i,2} + \alpha_{i,2} + f_{i,1}(x_{i,1}) + \Delta_{i,1}(z_{i}, \bar{x}_{i,n}, t)) - a_{i0}\dot{y}_{r}(t) - \sum_{j \in N_{i}} a_{ij}(x_{j,2} + f_{j,1}(x_{j,1}) + \Delta_{j,1}(z_{j,n}, t))] - \frac{\tilde{\lambda}_{i,1}\dot{\hat{\lambda}}_{i,1}}{\eta_{i,1}} \},$$
(20)

其中:
$$x_{i,2} = s_{i,2} + y_{i,2} + \alpha_{i,2}, d_i = \sum_{j \in N_i} a_{ij}$$

由Young's不等式得

$$s_{i,1}(d_i + a_{i0})(s_{i,2} + y_{i,2}) \leqslant$$

$$s_{i,1}^2(d_i + a_{i0})^2 + \frac{1}{2}s_{i,2}^2 + \frac{1}{2}y_{i,2}^2,$$

$$s_{i,1}(d_i + a_{i0})\Delta_{i,1}(z_i, \bar{x}_{i,n}, t) \leqslant$$
(21)

$$|s_{i,1}|(d_i + a_{i0})[\phi_{i11}(|x_{i,1}|) + \phi_{i12}(||z_i||)] \leq s_{i,1}^2(d_i + a_{i0})^2[\phi_{i11}(|x_{i,1}|) + \phi_{i12}(\bar{\alpha}_{i,1}^{-1}(v_i + D_{i0}))]^2/2 + \frac{1}{2}, \qquad (22)$$

$$s_{i,1} \sum_{j \in N_i} a_{ij}[x_{j,2} + f_{j,1}(x_{j,1}) + \Delta_{j,1}(z_j, \bar{x}_{j,n}, t)] \leq |s_{i,1}| \sum_{j \in N_i} a_{ij}[|x_{j,2}| + |f_{j,1}(x_{j,1})| + \phi_{j11}(|x_{j,1}|) + \phi_{j12}(||z_j||)] \leq s_{i,1}^2 d_i^2 \sum_{j \in N_i} [|x_{j,2}| + |f_{j,1}(x_{j,1})| + \phi_{j11}(|x_{j,1}|) + \phi_{j12}(\bar{\alpha}_{j,1}^{-1}(v_j + D_{j0}))]^2/2 + \frac{d_i}{2}. \qquad (23)$$

令

$$H_{i,1}(X_{i,1}) =$$

$$s_{i,1}(d_i + a_{i0})^2 [\phi_{i11}(|x_{i,1}|) + \phi_{i12}(\bar{\alpha}_{i1}^{-1}(v_i + D_{i0}))]^2 / 2 + (d_i + a_{i0}) f_{i,1}(x_{i,1}) + s_{i,1} d_i^2 \cdot \sum_{j \in N_i} [|x_{j2}| + |f_{j,1}(x_{j,1})| + \phi_{j11}(|x_{j,1}|) + \phi_{j12}(\bar{\alpha}_{j,1}^{-1}(v_j + D_{j0}))]^2 / 2, \qquad (24)$$

其中: $X_{i,1} = [x_{j_1,1} \ x_{j_2,1} \ \cdots \ x_{j_{k_i},1} \ x_{j_1,2} \ x_{j_2,2} \ \cdots \ x_{j_{k_i},2} \ x_{i,1} \ s_{i,1} \ v_i \ v_{j_1} \ \cdots \ v_{j_{k_i}}]^{\mathrm{T}}, N_i = \{j_1, \cdots, j_{k_i}\}.$

用 **RBFNNs** 逼 近 未 知 函 数 $H_{i,1}(X_{i,1})$,即 $H_{i,1}(X_{i,1}) = \theta_{i,1}^{*T}\varsigma_{i,1}(X_{i,1}) + \delta_{i,1}(X_{i,1}), \theta_{i,1}^{*}$ 是理想权 向量, $\varsigma_{i,1}(X_{i,1})$ 是径向基函数向量, $\delta_{i,1}(X_{i,1})$ 是逼近 误差.

$$\dot{V}_{1} \leqslant \sum_{i=1}^{N} \{s_{i,1}[(d_{i}+a_{i0})\alpha_{i,2}+\theta_{i,1}^{*T}\varsigma_{i,1}(X_{i,1})+\delta_{i,1}(X_{i,1})-a_{i0}\dot{y}_{r}(t)]+s_{i,1}^{2}(d_{i}+a_{i0})^{2}+\frac{1}{2}y_{i,2}^{2}+\frac{a_{i1}^{2}}{2}-\frac{1}{\eta_{i,1}}\tilde{\lambda}_{i,1}\dot{\lambda}_{i,1}\}+\sum_{i=1}^{N}\frac{d_{i}+1}{2}.$$
(25)

根据Young'不等式和引理3得

$$\frac{s_{i,1}\theta_{i,1}^{*1}\varsigma_{i,1}(X_{i,1}) \leqslant}{\frac{s_{i,1}^{2}\lambda_{i,1}\|\varsigma_{i,1}(X_{i,1})\|^{2}}{2b_{i1}^{2}} + \frac{b_{i1}^{2}}{2} \leqslant}{\frac{s_{i,1}^{2}\lambda_{i,1}\|\varsigma_{i1}(Z_{i,1})\|^{2}}{2b_{i1}^{2}} + \frac{b_{i1}^{2}}{2}},$$
(26)

$$s_{i,1}\delta_{i,1}(X_{i,1}) \leqslant s_{i,1}^2 + \frac{1}{4}\delta_{i,1}^2(X_{i,1}),$$
 (27)

其中
$$Z_{i,1} = [x_{i,1} \ s_{i,1} \ v_i]^{\mathrm{T}} \in \mathbb{R}^3.$$
 令 $\lambda_{i,1} = \|\theta_{i,1}^*\|^2, \tilde{\lambda}_{i,1}$
= $\lambda_{i,1} - \hat{\lambda}_{i,1},$ 则存在非负连续函数 $B_{i,1}(X_{i,1}),$ 使得
 $|\delta_{i,1}(X_{i,1})| \leq B_{i,1}(X_{i,1}).$ (28)

故式(27)可重新写为

$$s_{i,1}\delta_{i,1}(X_{i,1}) \leqslant s_{i,1}^2 + \frac{1}{4}B_{i,1}^2.$$
(29)

根据式(26)(29)代入式(25)得

$$\dot{V}_{1} \leqslant \sum_{i=1}^{N} \left\{ s_{i,1} \left[(d_{i} + a_{i0}) \alpha_{i,2} + \frac{s_{i,1} \lambda_{i,1} \| \varsigma_{i,1}(Z_{i,1}) \|^{2}}{2b_{i1}^{2}} - a_{i0} \dot{y}_{r}(t) \right] + s_{i,1}^{2} (d_{i} + a_{i0})^{2} + \frac{1}{2} s_{i,2}^{2} + \frac{1}{2} y_{i,2}^{2} + \frac{b_{i1}^{2}}{2} + \frac{1}{4} B_{i,1}^{2} + s_{i,1}^{2} - \frac{1}{\eta_{i,1}} \tilde{\lambda}_{i,1} \dot{\hat{\lambda}}_{i,1} \right\} + \sum_{i=1}^{N} \frac{1 + d_{i}}{2}.$$
(30)

设计虚拟控制律 $\alpha_{i,2}$ 和估计参数 $\hat{\lambda}_{i,1}$ 的自适应律如下:

$$\alpha_{i,2} = \frac{1}{(d_i + a_{i0})} (-k_{i,1}s_{i,1} + a_{i0}\dot{y}_{r}(t) - \frac{s_{i,1}\hat{\lambda}_{i,1} \|\varsigma_{i,1}(Z_{i,1})\|^2}{2b_{i1}^2}),$$
(31)

$$\dot{\hat{\lambda}}_{i,1} = \eta_{i,1} \left(\frac{s_{i,1}^2 \|\varsigma_{i,1}(Z_{i,1})\|^2}{2b_{i1}^2} - \sigma_{i,1} \hat{\lambda}_{i,1} \right), \quad (32)$$

其中: $k_{i,1} > 0$, $\eta_{i,1} > 0$, $\sigma_{i,1} > 0$ 是设计参数.

注1 根据假设6可知系统存在根节点,不妨设第 i_0 个智体是根节点.由于根节点能从头节点获取信息,因此有 a_{i_00} =1.当 $i \neq i_0$ 时,存在根节点到多智能体i的通路,即存在 $j_0 \neq i_i, j_0 \in N_i$,使得 $a_{ij_0} = 1$.故 $d_i = \sum_{j \in N_i} a_{ij} \ge 1$.进一步得 d_i + $a_{i0} \ge 1, i = 1, \dots, N$.

注2 引理3提供了处理非严格反馈系统中未知函数 变量不满足下三角条件的一种方法.根据上述推导可知,通过 利用引理3和Young's不等式,用于逼近未知函数的神经网络 回归向量中全部状态变量可用部分满足下三角条件的变量代 替,从而简化了虚拟控制器和稍后的控制器设计以及稳定性 分析.

将式(31)-(32)代入式(30)得

$$\dot{V}_{1} \leqslant \sum_{i=1}^{N} \{-(k_{i,1}-1-(d_{i}+a_{i0})^{2})s_{i,1}^{2}+\frac{1}{2}s_{i,2}^{2}+\frac{1}{2}y_{i,2}^{2}+\frac{b_{i,1}^{2}}{2}+\frac{1}{4}B_{i,1}^{2}+\sigma_{i,1}\tilde{\lambda}_{i,1}\tilde{\lambda}_{i,1}\}+\sum_{i=1}^{N}\frac{1+d_{i}}{2}.$$

$$\exists \lambda - \mbox{\widehat{M} is ightarrow \widehat{K}, $\widehat{E}\chi\omega_{i,2}$ und \widehat{T}:}$$
(33)

$$\tau_{i,2}\dot{\omega}_{i,2} + \omega_{i,2} = \alpha_{i,2}, \ \omega_{i,2}(0) = \alpha_{i,2}(0),$$
 (34)

其中: $\tau_{i,2} > 0$ 是一个正常数, $\alpha_{i,2}$ 是一阶滤波器输入, $\omega_{i,2}$ 是一阶滤波器输出. 令

$$y_{i,2} = \omega_{i,2} - \alpha_{i,2},$$
 (35)

对式(35)关于时间t求导得

$$\dot{y}_{i,2} = -\frac{y_{i,2}}{\tau_{i,2}} - \dot{\alpha}_{i,2}.$$
 (36)

进一步得

$$y_{i,2}\dot{y}_{i,2} \leqslant -\frac{y_{i,2}^2}{\tau_{i,2}} + |y_{i,2}|\kappa_{i,2}(\underline{s}_{N,1}, \underline{s}_{N,2}, \\ \underline{y}_{N,2}, \hat{\underline{\lambda}}_{N,1}, \overline{v}_N, y_r, \dot{y}_r, \ddot{y}_r),$$
(37)

其中: $\kappa_{i,2}(\underline{s}_{N,1}, \underline{s}_{N,2}, \underline{y}_{N,2}, \hat{\underline{\lambda}}_{N,1}, \overline{v}_N, y_r, \dot{y}_r, \ddot{y}_r)$ 是非负 连续函数, $\hat{\underline{\lambda}}_{N,1} = [\hat{\lambda}_{1,1} \cdots \hat{\lambda}_{N,1}]^{\mathrm{T}}.$

利用Young's不等式得

$$y_{i,2}\dot{y}_{i,2} \leqslant -\frac{y_{i,2}^2}{\tau_{i,2}} + y_{i,2}^2 + \frac{1}{4}\kappa_{i,2}^2.$$
(38)

步骤2 定义误差面如下:

$$s_{i,2} = x_{i,2} - \omega_{i,2}.$$
 (39)

将s_{i,2}关于时间t求导得

$$\dot{s}_{i,2} = x_{i,3} + f_{i,2}(\bar{x}_{i,2}) + \Delta_{i,2}(z_i, \bar{x}_{i,n}, t) - \dot{\omega}_{i,2} =$$

$$s_{i,3} + y_{i,3} + \alpha_{i,3} + f_{i,2}(\bar{x}_{i,2}) +$$

$$\Delta_{i,2}(z_i, \bar{x}_{i,n}, t) - \dot{\omega}_{i,2}.$$
(40)

定义Lyapunov函数如下:

$$V_2 = \frac{1}{2} \sum_{i=1}^{N} \{s_{i,2}^2 + \frac{1}{\eta_{i,2}} \tilde{\lambda}_{i,2}^2 + y_{i,2}^2\}.$$
 (41)

将V₂关于时间t求导得

$$\dot{V}_{2} = \sum_{i=1}^{N} \{s_{i,2}\dot{s}_{i,2} - \frac{1}{\eta_{i,2}}\tilde{\lambda}_{i,2}\dot{\hat{\lambda}}_{i,2} + y_{i,2}\dot{y}_{i,2}\} = \sum_{i=1}^{N} \{s_{i,2}[s_{i,3} + y_{i,3} + \alpha_{i,3} + f_{i,2}(\bar{x}_{i,2}) + \Delta_{i,2}(z_{i}, \bar{x}_{i,n}, t) - \dot{\omega}_{i,2}] - \frac{1}{\eta_{i,2}}\tilde{\lambda}_{i,2}\dot{\hat{\lambda}}_{i,2} + y_{i,2}\dot{y}_{i,2}\}.$$
(42)

由Young's不等式得

$$s_{i,2}(s_{i,3} + y_{i,3}) \leqslant s_{i,2}^2 + \frac{1}{2}s_{i,3}^2 + \frac{1}{2}y_{i,3}^2, \tag{43}$$

$$s_{i,2}A \circ (z, \bar{x}, -t) \leqslant$$

$$s_{i,2} \Delta_{i,2}(z_{i}, x_{i,n}, v) \leqslant$$

$$s_{i,2} [\phi_{i21}(\|\bar{x}_{i,2}\|) + \phi_{i22}(\|z_{i}\|)] \leqslant$$

$$s_{i,2}^{2} \frac{[\phi_{i21}(\|\bar{x}_{i,2}\|) + \phi_{i22}(\bar{\alpha}_{i,1}^{-1}(v_{i} + D_{i0}))]^{2}}{2} + \frac{1}{2},$$
(44)

$$\dot{V}_{2} \leqslant \sum_{i=1}^{N} \{s_{i,2}[\alpha_{i,3} + f_{i,2} - \dot{\omega}_{i,2} + s_{i,2}(\bar{x}_{i,2}) \cdot \frac{[\phi_{i21}(\|\bar{x}_{i,2}\|) + \phi_{i22}(\bar{\alpha}_{i,1}^{-1}(v_{i} + D_{i0}))]^{2}}{2}] + s_{i,2}^{2} + \frac{1}{2}s_{i,3}^{2} + \frac{1}{2}y_{i,3}^{2} + \frac{1}{2} - \frac{1}{\eta_{i,2}}\tilde{\lambda}_{i,2}\dot{\lambda}_{i,2} + y_{i,2}\dot{y}_{i,2}\}.$$
(45)

令

1458

$$H_{i,2}(X_{i,2}) =$$

$$f_{i,2}(\bar{x}_{i,2}) - \dot{\omega}_{i,2} + s_{i,2}[\phi_{i21}(\|\bar{x}_{i,2}\|) + \phi_{i22}(\bar{\alpha}_{i,1}^{-1}(v_i + D_{i0}))]^2/2, \qquad (46)$$

用 RBFNNs 逼 近 未 知 函 数 H_{i,2}(X_{i,2}), 即 $H_{i,2}(X_{i,2}) = \theta_{i,2}^{*T} \varsigma_{i,2}(X_{i,2}) + \delta_{i,2}(X_{i,2}), \ \theta_{i2}^{*} \notin \mathbb{H}$ 想 权 向量, $\varsigma_{i,2}(X_{i,2})$ 是径向基函数向量, $\delta_{i,2}(X_{i,2})$ 是逼近 误差.

$$\dot{V}_{2} \leqslant \sum_{i=1}^{N} \{s_{i,2}[\alpha_{i,3} + \theta_{i,2}^{*T}\varsigma_{i,2}(X_{i,2}) + \delta_{i,2}(X_{i,2})] + s_{i,2}^{2} + \frac{1}{2}s_{i,3}^{2} + \frac{1}{2}y_{i,3}^{2} + \frac{1}{2} - \frac{1}{\eta_{i,2}}\tilde{\lambda}_{i,2}\dot{\lambda}_{i,2} + y_{i,2}\dot{y}_{i,2}\}.$$
(47)

由Young's不等式得

$$s_{i,2}\theta_{i,2}^{*\mathrm{T}}\varsigma_{i,2}(X_{i,2}) \leqslant \frac{s_{i,2}^2\lambda_{i,2}\|\varsigma_{i,2}(X_{i,2})\|^2}{2b_{i2}^2} + \frac{b_{i2}^2}{2},$$
(48)

$$s_{i,2}\delta_{i,2}(X_{i,2}) \leqslant s_{i,2}^2 + \frac{1}{4}\delta_{i,2}^2(X_{i,2}).$$
 (49)

令 $\lambda_{i,2} = \|\theta_{i2}^*\|^2$, 且定义 $\tilde{\lambda}_{i,2} = \lambda_{i,2} - \hat{\lambda}_{i,2}$. 存在非 负连续函数 $B_{i,2}(\bar{x}_{i,2}, s_{i,2}, v_i, \dot{\omega}_{i,2})$, 使得

$$|\delta_{i,2}(X_{i,2})| \leqslant B_{i,2}(\bar{x}_{i,2}, s_{i,2}, v_i, \dot{\omega}_{i,2}), \quad (50)$$

其中
$$\bar{x}_{i,2} = [x_{i,1} \ x_{i,2}]^{\mathrm{T}}$$
. 故式(49)可重新写为

$$s_{i,2}\delta_{i,2}(X_{i,2}) \leqslant s_{i,2}^2 + \frac{1}{4}B_{i,2}^2,$$
 (51)
 $\dot{V}_2 \leqslant$

$$\sum_{i=1}^{N} \{s_{i,2}[\alpha_{i,3} + \frac{s_{i,2}\lambda_{i,2}\|\varsigma_{i,2}(X_{i,2})\|^2}{2b_{i2}^2}] + 2s_{i,2}^2 + \frac{1}{2}s_{i,3}^2 + \frac{1}{2}y_{i,3}^2 + \frac{1}{2} - \frac{1}{\eta_{i,2}}\tilde{\lambda}_{i,2}\dot{\lambda}_{i,2} - \frac{y_{i,2}^2}{\tau_{i,2}} + y_{i,2}^2 + \frac{1}{4}\kappa_{i,2}^2 + \frac{1}{4}B_{i,2}^2 + \frac{b_{i2}^2}{2}\}.$$
(52)

设计虚拟控制律 $\alpha_{i,3}$ 和估计参数 $\hat{\lambda}_{i,2}$ 的自适应律 如下:

$$\alpha_{i,3} = -k_{i,2}s_{i,2} - \frac{s_{i,2}\hat{\lambda}_{i,2}\|\varsigma_{i,2}(X_{i,2})\|^2}{2b_{i2}^2} - \frac{1}{2}s_{i,2},$$
(53)

$$\dot{\hat{\lambda}}_{i,2} = \eta_{i,2} \left(\frac{s_{i,2}^2 \|\varsigma_{i,2}(X_{i,2})\|^2}{2b_{i2}^2} - \sigma_{i,2} \hat{\lambda}_{i,2} \right), \tag{54}$$

其中 $k_{i,2} > 0$, $\eta_{i,2} > 0$, $\sigma_{i,2} > 0$ 是设计参数. 将式(53)–(54)代入式(52)得

$$\dot{V}_2 \leqslant$$

$$\sum_{i=1}^{N} \{-(k_{i,2}-2)s_{i,2}^{2} + \frac{1}{2}s_{i,3}^{2} + \frac{1}{2}y_{i,3}^{2} - \frac{1}{2}s_{i,2}^{2} + \frac{1}{2} + (1 - \frac{1}{\tau_{i,2}})y_{i,2}^{2} + \frac{1}{4}\kappa_{i,2}^{2} + \frac{1}{4}B_{i,2}^{2} + \frac{b_{i2}^{2}}{2} + \sigma_{i,2}\tilde{\lambda}_{i,2}\hat{\lambda}_{i,2}\}.$$
(55)

引入一阶滤波器, 定义*ω*_{i.3}如下:

$$\tau_{i,3}\dot{\omega}_{i,3} + \omega_{i,3} = \alpha_{i,3}, \ \omega_{i,3}(0) = \alpha_{i,3}(0).$$
 (56)

其中: $\tau_{i,3} > 0$ 是一个正常数, $\alpha_{i,3}$ 是一阶滤波器输入, $\omega_{i,3}$ 是一阶滤波器输出. 令

$$y_{i,3} = \omega_{i,3} - \alpha_{i,3}.$$
 (57)

对式(57)关于时间t求导得

$$\dot{y}_{i,3} = -\frac{y_{i,3}}{\tau_{i,3}} - \dot{\alpha}_{i,3}.$$
 (58)

进一步得

$$y_{i,3}\dot{y}_{i,3} \leqslant -\frac{y_{i,3}^{2}}{\tau_{i,3}} + |y_{i,3}|\kappa_{i,3}(\bar{\underline{s}}_{N,3}, \underline{\bar{y}}_{N,3}, \\ \underline{\hat{\lambda}}_{N,1}, \underline{\hat{\lambda}}_{N,2}, \bar{v}_{N}, y_{r}, \dot{y}_{r}, \ddot{y}_{r}),$$
(59)

其中: $\kappa_{i,3}(\bar{\underline{s}}_{N,3}, \underline{\bar{y}}_{N,3}, \hat{\underline{\lambda}}_{N,1}, \hat{\underline{\lambda}}_{N,2}, \bar{v}_N, y_r, \dot{y}_r, \ddot{y}_r)$ 是非负 连续函数, $\hat{\underline{\lambda}}_{N,2} = [\hat{\lambda}_{1,2} \cdots \hat{\lambda}_{N,2}]^{\mathrm{T}}$.

利用Young's不等式得

$$y_{i,3}\dot{y}_{i,3} \leqslant -\frac{y_{i,3}^2}{\tau_{i,3}} + y_{i,3}^2 + \frac{1}{4}\kappa_{i,3}^2.$$
 (60)

步骤m (3 $\leq m \leq n - 1$) 定义误差面如下:

$$s_{i,m} = x_{i,m} - \omega_{i,m}.$$
 (61)

将s_{i,m}关于时间t求导得

$$\dot{s}_{i,m} =$$

$$x_{i,m+1} + f_{i,m}(\bar{x}_{i,m}) + \Delta_{i,m}(z_i, \bar{x}_{i,n}, t) - \dot{\omega}_{i,m} = s_{i,m+1} + y_{i,m+1} + \alpha_{i,m+1} + f_{i,m}(\bar{x}_{i,m}) + \Delta_{i,m}(z_i, \bar{x}_{i,n}, t) - \dot{\omega}_{i,m}.$$
(62)

定义Lyapunov函数如下:

$$V_m = \frac{1}{2} \sum_{i=1}^{N} \{s_{i,m}^2 + \frac{1}{\eta_{i,m}} \tilde{\lambda}_{i,m}^2 + y_{i,m}^2\}.$$
 (63)

$$\begin{split} \dot{V}_{m} &= \\ \sum_{i=1}^{N} \left\{ s_{i,m} \dot{s}_{i,m} - \frac{1}{\eta_{i,m}} \tilde{\lambda}_{i,m} \dot{\hat{\lambda}}_{i,m} + y_{i,m} \dot{y}_{i,m} \right\} = \\ \sum_{i=1}^{N} \left\{ s_{i,m} [s_{i,m+1} + y_{i,m+1} + \alpha_{i,m+1} + g_{i,m} (\bar{x}_{i,m}) + \Delta_{i,m} (z_{i}, \bar{x}_{i,n}, t) - \dot{\omega}_{i,m}] - \frac{1}{\eta_{i,m}} \tilde{\lambda}_{i,m} \dot{\hat{\lambda}}_{i,m} + y_{i,m} \dot{y}_{i,m} \right\}. \end{split}$$
(64)

为

由Young's不等式得
$$s_{i,m}(s_{i,m+1} + y_{i,m+1}) \leq s_{i,m}^2 + \frac{1}{2}s_{i,m+1}^2 + \frac{1}{2}y_{i,m+1}^2.$$
(65)

$$s_{i,m} \Delta_{i,m}(z_{i}, \bar{x}_{i,n}, t) \leqslant$$

$$s_{i,m}[\phi_{im1}(\|\bar{x}_{i,m}\|) + \phi_{im2}(\|z_{i}\|)] \leqslant$$

$$s_{i,m}^{2} \frac{[\phi_{im1}(\|\bar{x}_{i,m}\|) + \phi_{im2}(\bar{\alpha}_{i,1}^{-1}(v_{i} + D_{0}))]^{2}}{2} + \frac{1}{2},$$
(66)

$$\dot{V}_{m} \leqslant \sum_{i=1}^{N} \{s_{i,m} [\alpha_{i,m+1} + f_{i,m}(\bar{x}_{i,m}) + s_{i,m} \frac{[\phi_{im1}(\|\bar{x}_{i,m}\|) + \phi_{im2}(\bar{\alpha}_{i1}^{-1}(v_{i} + D_{i0}))]^{2}}{2} - \dot{\omega}_{i,m}] + s_{i,m}^{2} + \frac{1}{2}s_{i,m+1}^{2} + \frac{1}{2}y_{i,m+1}^{2} + \frac{1}{2} - \frac{1}{\eta_{i,m}}\tilde{\lambda}_{i,m}\dot{\lambda}_{i,m} + y_{i,m}\dot{y}_{i,m}\}.$$
(67)

$$H_{i,m}(X_{i,m}) = f_{i,m}(\bar{x}_{i,m}) - \dot{\omega}_{i,m} + s_{i,m}[\phi_{im1}(\|\bar{x}_{i,m}\|) + \phi_{im2}(\bar{\alpha}_{i,1}^{-1}(v_i + D_{i0}))]^2/2,$$
(68)

用 RBFNNs 逼 近 未 知 函 数 $H_{i,m}(X_{i,m})$,即 $H_{i,m}(X_{im}) = \theta_{i,m}^{*T}\varsigma_{i,m}(X_{i,m}) + \delta_{i,m}(X_{i,m}), \theta_{i,m}^{*}$ 是理 想权向量, $\varsigma_{i,m}(X_{i,m})$ 是径向基函数向量, $\delta_{i,m}(X_{i,m})$ 是逼近误差.

$$\dot{V}_{m} \leqslant \sum_{i=1}^{N} \{s_{i,m} [\alpha_{i,m+1} + \theta_{i,m}^{*T} \varsigma_{i,m}(X_{i,m}) + \delta_{i,m}(X_{i,m})] + s_{i,m}^{2} + \frac{1}{2} s_{i,m}^{2} + \frac{1}{2} y_{i,m}^{2} + \frac{1}{2} - \frac{1}{\eta_{i,m}} \tilde{\lambda}_{i,m} \dot{\lambda}_{i,m} + y_{i,m} \dot{y}_{i,m} \}.$$
(69)

由Young's不等式得

$$s_{i,m}\theta_{i,m}^{*^{\mathrm{T}}}\varsigma_{i,m}(X_{i,m}) \leqslant \frac{s_{i,m}^{2}\lambda_{i,m}\|\varsigma_{i,m}(X_{i,m})\|^{2}}{2b_{im}^{2}} + \frac{b_{im}^{2}}{2},$$
(70)

$$s_{i,m}\delta_{i,m}(X_{i,m}) \leqslant s_{i,m}^2 + \frac{1}{4}\delta_{i,m}^2(X_{i,m}).$$
 (71)

令 $\lambda_{i,m} = \|\theta_{i,m}^*\|^2$, 且定义 $\tilde{\lambda}_{i,m} = \lambda_{i,m} - \hat{\lambda}_{i,m}$. 存在 非负连续函数 $B_{i,m}(\bar{x}_{i,m}, s_{i,m}, v_i, \dot{\omega}_{i,m})$, 使得

$$|\delta_{i,m}(X_{i,m})| \leqslant B_{i,m}(\bar{x}_{i,m}, s_{i,m}, v_i, \dot{\omega}_{i,m}), \quad (72)$$

其中
$$\bar{x}_{i,m} = [x_{i,1} \ x_{i,2} \ \cdots \ x_{i,m}]^{\mathrm{T}}$$
. 故式(71)可重新写

$$s_{i,m}\delta_{i,m}(X_{i,m}) \leqslant s_{i,m}^2 + \frac{1}{4}B_{i,m}^2, \tag{73}$$
$$\dot{V}_m \leqslant$$

$$\sum_{i=1}^{N} [s_{i,m} [\alpha_{i,m+1} + \frac{s_{i,m} \lambda_{i,m} \|\varsigma_{i,m}(X_{i,m})\|^2}{2b_{im}^2}] + 2s_{i,m}^2 + \frac{1}{2}s_{i,m+1}^2 + \frac{1}{2}y_{i,m+1}^2 + \frac{1}{2} - \frac{1}{\eta_{i,m}} \tilde{\lambda}_{i,m} \dot{\hat{\lambda}}_{i,m} - \frac{y_{i,m}^2}{\tau_{i,m}} + y_{i,m}^2 + \frac{1}{4}\kappa_{i,m}^2 + \frac{1}{4}B_{i,m}^2 + \frac{b_{im}^2}{2}].$$
(74)

设计虚拟控制律 $\alpha_{i,m+1}$ 和参数 $\hat{\lambda}_{i,m}$ 的自适应律如下:

$$\alpha_{i,m+1} = -k_{i,m}s_{i,m} - \frac{s_{i,m}\lambda_{i,m}\|\varsigma_{i,m}(X_{i,m})\|^2}{2b_{im}^2} - \frac{1}{2}s_{i,m},$$
(75)

$$\dot{\hat{\lambda}}_{i,m} = \eta_{i,m} \left(\frac{s_{i,m}^2 \|\varsigma_{i,m}(X_{i,m})\|^2}{2b_{im}^2} - \sigma_{i,m} \hat{\lambda}_{i,m} \right), \quad (76)$$

其中 $k_{i,m} > 0$, $\eta_{i,m} > 0$, $\sigma_{i,m} > 0$ 是设计参数. 将式(75)–(76)代入式(74)得

$$\tau_{i,m+1}\dot{\omega}_{i,m+1} + \omega_{i,m+1} = \alpha_{i,m+1},$$
 (78)

其中: $\omega_{i,m+1}(0) = \alpha_{i,m+1}(0), \tau_{i,m+1} > 0$ 是一个正常数, $\alpha_{i,m+1}$ 是一阶滤波器输入, $\omega_{i,m+1}$ 是一阶滤波器输出. 令

$$y_{i,m+1} = \omega_{i,m+1} - \alpha_{i,m+1},$$
 (79)

对式(79)关于时间t求导得

$$\dot{y}_{i,m+1} = -\frac{y_{i,m+1}}{\tau_{i,m+1}} - \dot{\alpha}_{i,m+1}.$$
 (80)

进一步得

$$y_{i,m+1}\dot{y}_{i,m+1} \leq -\frac{y_{i,m+1}^{2}}{\tau_{i,m+1}} + |y_{i,m+1}|\kappa_{i,m+1}(\bar{\underline{s}}_{N,m+1}, \underline{\bar{y}}_{N,m+1}, \underline{\hat{\bar{\lambda}}}_{N,m}, \bar{v}_{N}, y_{r}, \dot{y}_{r}, \ddot{y}_{r}),$$
(81)

其中: $\kappa_{i,m+1}(\underline{\bar{s}}_{N,m+1}, \underline{\bar{y}}_{N,m+1}, \overline{\hat{\lambda}}_{N,m}, \overline{v}_N, y_r, \dot{y}_r, \ddot{y}_r)$ 是 非负连续函数, $\overline{\hat{\lambda}}_{N,m} = [\hat{\lambda}_{1,1} \cdots \hat{\lambda}_{N,1} \cdots \hat{\lambda}_{1,m}$ … $\hat{\lambda}_{N,m}]^{\mathrm{T}}$. 利用Young's不等式得

$$y_{i,m+1}\dot{y}_{i,m+1} \leqslant -\frac{y_{i,m+1}^2}{\tau_{i,m+1}} + y_{i,m+1}^2 + \frac{1}{4}\kappa_{i,m+1}^2.$$
(82)

步骤n 定义误差面如下:

$$s_{i,n} = x_{i,n} - \omega_{i,n}. \tag{83}$$

将s_{i,n}关于时间t求导得

$$\dot{s}_{i,n} = \sum_{f=1}^{p} [k_{i,f,h} q_{i,f,1} u_{i,f} + k_{i,f,h} q_{i,f,2} + u_{i,sf,h}] + f_{i,n}(\bar{x}_{i,n}) + \Delta_{i,n}(z_i, \bar{x}_{i,n}, t) - \dot{\omega}_{i,n}.$$
(84)

定义Lyapunov函数:

$$V_n = \frac{1}{2} \sum_{i=1}^{N} \left(s_{i,n}^2 + \frac{1}{\eta_{i,n}} \tilde{\lambda}_{i,n}^2 + y_{i,n}^2 \right).$$
(85)

将Vn关于时间t求导得

$$\dot{V}_{n} = \sum_{i=1}^{N} \{ \sum_{f=1}^{p} [s_{i,n}(k_{i,f,h}q_{i,f,1}u_{i,f} + k_{i,f,h}q_{i,f,2} + u_{i,sf,h} + f_{i,n}(\bar{x}_{i,n}) + \Delta_{i,n}(z_{i}, \bar{x}_{i,n}, t) - \dot{w}_{i,n})] - \frac{1}{\eta_{i,n}} \tilde{\lambda}_{i,n} \dot{\lambda}_{i,n} + y_{i,n} \dot{y}_{i,n} \}.$$
(86)

根据Young's不等式得

$$s_{i,n} \Delta_{i,n}(z_i, \bar{x}_{i,n}, t) \leq s_{i,n}[\phi_{in1}(\|\bar{x}_{i,n}\|) + \phi_{in2}(\|z_i\|)] \leq s_{i,n}^2 \frac{[\phi_{in1}(\|\bar{x}_{i,n}\|) + \phi_{in2}(\bar{\alpha}_{i,1}^{-1}(v_i + D_{i0}))]^2}{2} + \frac{1}{2},$$
(87)

$$\dot{V}_{n} \leq \sum_{i=1}^{N} \{ \sum_{f=1}^{p} s_{i,n} [k_{i,f,h}q_{i,f,1}u_{i,f} + k_{i,f,h}q_{i,f,2} + u_{i,sf,h} + f_{i,n}(\bar{x}_{i,n}) + s_{i,n}[\phi_{in1}(\|\bar{x}_{i,n}\|) + \phi_{in2}(\bar{\alpha}_{i,1}^{-1}(v_{i} + D_{i0}))]^{2}/2 - \dot{\omega}_{i,n}] - \frac{1}{\eta_{i,n}} \tilde{\lambda}_{i,n} \dot{\lambda}_{i,n} + y_{i,n} \dot{y}_{i,n} + \frac{1}{2} \}.$$
(88)

$$H_{i,n}(X_{i,n}) = f_{i,n}(\bar{x}_{i,n}) - \dot{\omega}_{i,n} + s_{i,n} \frac{[\phi_{in1}(\|\bar{x}_{i,n}\|) + \phi_{in2}(\bar{\alpha}_{i,1}^{-1}(v_i + D_{i0}))]^2}{2a_{in}^2}$$

 $\mathrm{\sharp} \mathrm{th} \mathrm{th} X_{i,n} = [\bar{x}_{i,n}^{\mathrm{T}} \ s_{i,n} \ v_i \ \dot{\omega}_{i,n}]^{\mathrm{T}} \in \mathbb{R}^{n+3}.$

用 **RBFNNs** 逼 近 未 知 函 数 $H_{i,n}(X_{i,n})$,即 $H_{i,n}(X_{i,n}) = \theta_{i,n}^{*T}\varsigma_{i,n}(X_{i,n}) + \delta_{i,n}(X_{i,n}), \theta_{i,n}^{*}$ 是理想 权向量, $\varsigma_{i,n}(X_{i,n})$ 是径向基函数向量, $\delta_{i,n}(X_{i,n})$ 是逼 近误差.

$$\dot{V}_{n} \leqslant
\sum_{i=1}^{N} \sum_{f=1}^{p} \{ s_{i,n} [k_{i,f,h} q_{i,f,1} u_{i,f} + k_{i,f,h} q_{i,f,2} + u_{i,sf,h} + \theta_{i,n}^{*T} \varsigma_{i,n} (X_{i,n}) + \delta_{i,n} (X_{i,n})] - \frac{1}{\eta_{i,n}} \tilde{\lambda}_{i,n} \dot{\lambda}_{i,n} + y_{i,n} \dot{y}_{i,n} + \frac{1}{2} \}.$$
(89)

由Young's不等式得

$$s_{i,n}\theta_{i,n}^{*\mathrm{T}}\varsigma_{i,n}(X_{i,n}) \leqslant \frac{s_{i,n}^{2}\lambda_{i,n}\|\varsigma_{i,n}(X_{i,n})\|^{2}}{2b_{in}^{2}} + \frac{b_{in}^{2}}{2},$$
(90)

$$s_{i,n}\delta_{i,n}(X_{i,n}) \leqslant s_{i,n}^2 + \frac{1}{4}\delta_{i,n}^2(X_{i,n}).$$
 (91)

令 $\lambda_{i,n} = \|\theta_{in}^*\|^2$, $\tilde{\lambda}_{i,n} = \lambda_{i,n} - \hat{\lambda}_{i,n}$. 存在非负连 续函数 $B_{i,n}(\bar{x}_{i,n}, s_{i,n}, v_i, \dot{\omega}_{i,n})$, 使得

$$|\delta_{i,n}(X_{i,n})| \leq B_{i,n}(\bar{x}_{i,n}, s_{i,n}, v_i, \dot{\omega}_{i,n}),$$
 (92)

其中:
$$\bar{x}_{i,n} = [x_{i,1} \cdots x_{i,n}]^{\mathrm{T}}$$
. 故式(91)可重新写为
 $s_{i,n}\delta_{i,n}(X_{i,n}) \leq s_{i,n}^{2} + \frac{1}{4}B_{i,n}^{2}$, (93)
 $\dot{V}_{n} \leq$

$$\sum_{i=1}^{N} \{\sum_{f=1}^{p} [s_{i,n}(k_{i,f,h}q_{i,f,1}u_{i,f} + k_{i,f,h}q_{i,f,2} + u_{i,sf,h} + \frac{s_{i,n}\lambda_{i,n}\|\varsigma_{i,n}(X_{i,n})\|^2}{2b_{in}^2})] - \frac{1}{\eta_{i,n}}\tilde{\lambda}_{i,n}\dot{\hat{\lambda}}_{i,n} + y_{i,n}\dot{y}_{i,n} + \frac{b_{in}^2}{2} + \frac{1}{4}B_{i,n}^2 + s_{i,n}^2 + \frac{1}{2}\}.$$

$$(94)$$

$$\oplus @@:ds_{2}_{i,n}d: A = \{0, 1, 2\}, \qquad (94)$$

$$\min_{1 \leq f \leq p} \{ \min_{t \geq 0} (k_{i,f,h}(t)q_{i,f,1}(t)) \} \ge$$
$$\min_{1 \leq f \leq p} \{ \underline{k}_{i,f,h}(1-\delta_{i,f}) \} > 0.$$

令 $r_i = \min_{1 \leq f \leq p} \{\underline{k}_{i,f,h}(1 - \delta_{i,f})\}, \ \mu_i = \sum_{f=1}^p (u_{i,f\min} + \overline{u}_{i,sf,h}).$ 在执行器部分失效情况下, $r_i > 0$ 为己知 常数.

控制律 $u_{i,f}$ 以及估计参数 $\hat{\lambda}_{i,n}$ 的自适应律设计如下:

$$u_{i,f} = -\frac{1}{r_i} (k_{i,n} s_{i,n} + \frac{1}{2} s_{i,n} + \frac{s_{i,n} \hat{\lambda}_{i,n} \|\varsigma_{i,n}(X_{i,n})\|^2}{2b_{in}^2}),$$
(95)

$$\dot{\hat{\lambda}}_{i,n} = \eta_{i,n} \left(\frac{s_{i,n}^2 \|\varsigma_{i,n}(X_{i,n})\|^2}{2b_{in}^2} - \sigma_{i,n} \hat{\lambda}_{i,n} \right), \tag{96}$$

其中: $k_{i,n} > 0$, $\eta_{i,n} > 0$, $\sigma_{i,n} > 0$ 是设计参数. 将式 (95)–(96)代入式(94)得

$$\dot{V}_n \leqslant$$

$$\sum_{i=1}^{N} \{-(k_{i,n}-1)s_{i,n}^{2} + |s_{i,n}|\mu_{i} + \sigma_{i,n}\tilde{\lambda}_{i,n}\hat{\lambda}_{i,n} - \frac{1}{2}s_{i,n}^{2} + (1-\frac{1}{\tau_{i,n}})y_{i,n}^{2} + \frac{1}{4}\kappa_{i,n}^{2} + \frac{b_{in}^{2}}{2} + \frac{1}{4}B_{i,n}^{2} + \frac{1}{2}\}.$$
(97)

由Young's不等式得

$$s_{i,n}\mu_{i} \leqslant s_{i,n}^{2} + \frac{1}{4}\mu_{i}^{2}, \qquad (98)$$

$$\dot{V}_{n} \leqslant \sum_{i=1}^{N} \{-(k_{i,n}-2)s_{i,n}^{2} + \sigma_{i,n}\tilde{\lambda}_{i,n}\hat{\lambda}_{i,n} - \frac{1}{2}s_{i,n}^{2} + (1-\frac{1}{\tau_{i,n}})y_{i,n}^{2} + \frac{1}{4}\kappa_{i,n}^{2} + \frac{b_{in}^{2}}{2} + \frac{1}{4}B_{i,n}^{2} + \frac{1}{2} + \frac{1}{4}\mu_{i}^{2}\}. \qquad (99)$$

4 稳定性分析

定义总的Lyapunov函数和紧集如下:

$$\begin{cases} V = \sum_{j=1}^{n} V_{j} = \\ \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{n} [s_{i,j}^{2} + \frac{1}{\eta_{i,j}} \tilde{\lambda}_{i,j}^{\mathrm{T}} \tilde{\lambda}_{i,j} + y_{i,j}^{2}], \\ \Pi_{1} = \{ [\underline{\bar{s}}_{N,n}^{\mathrm{T}} \ \underline{\bar{y}}_{N,n}^{\mathrm{T}} \ \underline{\bar{\lambda}}_{N,n}^{\mathrm{T}}]^{\mathrm{T}} : V \leq P \} \subset \mathbb{R}^{p_{n}}, \end{cases}$$
(100)

其中: $y_{i,1} = 0, B_0 和 P$ 是给定的正常数, $p_n = (3n - 1)N, \overline{\lambda}_{N,n} = [\lambda_{1,1} \cdots \lambda_{N,1} \cdots \lambda_{1,n} \lambda_{N,n}]^{\mathrm{T}}.$ 当 $y_i \in L_{\infty}$ 时, $\overline{q}v_i \in L_{\infty}$. 由式(17)得 $\underline{x}_{N,1} = y = H^{-1}\underline{s}_{N,1} + 1_N y_{\mathrm{r}}.$ 因为 $\underline{x}_{N,2} = \underline{s}_{N,2} + \underline{y}_{N,2} + [\alpha_{1,2} \cdots \alpha_{N,2}]^{\mathrm{T}},$ 所以易得在紧集 $\Pi_0 \times \Pi_1 \subset \mathbb{R}^{3 \times p_n}$ 上, 连续函数 $B_{i,j}(\cdot)$ 有最大值 $N_{i,j}(j = 1, \cdots, n), \kappa_{i,j}(\cdot)$ 有最大值 $M_{i,j}(j = 2, \cdots, n).$

定理1 考虑具有控制器(95), 虚拟控制器(31) (53)(75), 以及自适应律(32)(54)(76)(96)的多智能体系 统(1), 若假设1–6成立, 则对任意正常数P及有界初始 条件 $V(0) \leq P$, 存在 $k_{i,1}$, $k_{i,j}$ ($j = 2, \dots, n$), $\tau_{i,j}$, $\eta_{i,j}$, $\sigma_{i,j}$ 满足式(101), 使得当系统具有量化输入、执行器 故障及未建模动态的情况下, 闭环多智能体系统所有 信号一致终结有界, 各跟随误差收敛到原点的一个小 领域内, 其中

$$\begin{cases} k_{i,1} \ge 1 + (d_i + a_{i0})^2 + \frac{\alpha_0}{2}, \\ k_{i,j} \ge 2 + \frac{\alpha_0}{2}, \ j = 2, \cdots, n, \\ \frac{1}{\tau_{i,j}} \ge \frac{3}{2} + \frac{\alpha_0}{2}, \\ \alpha_0 \le \min_{1 \le i \le N, 1 \le j \le n} \{\eta_{i,j} \sigma_{i,j}\}. \end{cases}$$
(101)

证 如果 $V \leq P$,可得 $s_{i,1}, \dots, s_{i,n}, y_{i,2}, \dots, y_{i,n}, \tilde{\lambda}_{i,j}$ 有界,故自适应律的估计值 $\hat{\lambda}_{i,j} \in L_{\infty}$ $(j = 1, \dots, n)$.因为 $y_r \in L_{\infty}, s_{i,1} \in L_{\infty}$,所以 y_i 有界.由 y_i

 $= x_{i,1}, \ \overline{\eta} \Rightarrow x_{i,1}, v_i \in L_{\infty}. \ \overline{\#} - \overline{\#} \Rightarrow \|z_i\| \leqslant \alpha_{i1}^{-1}(v_i + D_{i0}) \in L_{\infty}. \ \overline{\boxplus} \Rightarrow y_{i,2} \in L_{\infty}, \ \overline{\boxplus} y_{i,2} = w_{i,2} - \alpha_{i,2} \overline{\eta} \Rightarrow w_{i,2}, \alpha_{i,2} \in L_{\infty}. \ \overline{\boxplus} x_{i,2} = s_{i,2} + y_{i,2} + \alpha_{i,2} \overline{\eta} \Rightarrow x_{i,2} \in L_{\infty}. \ \overline{\boxplus} = \overline{\eta} \Rightarrow w_{i,j}, \ \alpha_{i,j} \in L_{\infty}(j = 2, \cdots, n). \ \overline{\boxplus} x_{i,j} = s_{i,j} + y_{i,j} + \alpha_{i,j} \overline{\eta} \Rightarrow x_{i,j} \in L_{\infty}. \ \overline{\boxplus} s_{i,n} \in L_{\infty}, \ \hat{\lambda}_{i,n} \in L_{\infty}, \ \overline{\Downarrow} \Rightarrow x_{i,j} \in L_{\infty}. \ \overline{\updownarrow} \Rightarrow x_{i,j} \in L_{\infty}. \ \overline{\Downarrow} \Rightarrow x_{i,j} \in L_{\infty}. \ \overline{\Downarrow} \Rightarrow x_{i,j} \in L_{\infty}. \ \overline{\updownarrow} \Rightarrow x_{i,j} \in L_{\infty}. \ \overline{\downarrow} \Rightarrow x_{i,j} \in L_{\infty}.$

 $u_{i,f} = -\frac{1}{r_i} (k_{i,n} s_{i,n} + \frac{1}{2} s_{i,n} + \frac{s_{i,n} \hat{\lambda}_{i,n} \|\varsigma_{in}(X_{in})\|^2}{2b_{in}^2}),$ $\overline{\eta} \| u_{i,f} \in L_{\infty}. \ \overline{\pi} V \leqslant P, \ \underline{\xi} \notin \mathbb{B} \ \underline{\delta} B_{i,j}(\cdot) \ \overline{\eta} \ \overline{\theta} \ \overline{\chi} \ \underline{\delta}$ $N_{i,j}, \ \kappa_{i,j}(\cdot) \ \overline{\eta} \ \overline{\theta} \ \overline{\chi} \ \underline{\delta} \ \underline{\delta}$

$$\dot{V} \leqslant \sum_{i=1}^{N} -[k_{i,1} - 1 - (d_{i} + a_{i0})^{2}]s_{i,1}^{2} + \sum_{i=1}^{N} \sum_{j=2}^{n} -(k_{i,j} - 2)s_{i,j}^{2} - \sum_{i=1}^{N} \sum_{j=2}^{n} -(k_{i,j} - 2)s_{i,j}^{2} + \sum_{i=1}^{N} \sum_{j=1}^{n} \sigma_{i,j}\tilde{\lambda}_{i,j}\hat{\lambda}_{i,j} + \sum_{i=1}^{N} \sum_{j=1}^{n} \frac{(1-\tau_{i,j})^{2}}{2} + \sum_{i=1}^{N} \sum_{j=1}^{n} \frac{\sigma_{i,j}}{4} + \sum_{i=1}^{N} \frac{1+d_{i}}{2} + \sum_{i=1}^{N} \sum_{j=1}^{n} \frac{b_{ij}^{2}}{2} + \sum_{i=1}^{N} \sum_{j=1}^{n} \frac{B_{i,j}^{2}}{4} + \sum_{i=1}^{N} \frac{1}{4}\mu_{i}^{2} + \sum_{j=2}^{n} \frac{1}{2} \leqslant \sum_{i=1}^{N} \sum_{j=1}^{n} -[k_{i,1} - 1 - (d_{i} + a_{i0})^{2}]s_{i,1}^{2} + \sum_{i=1}^{N} \sum_{j=2}^{n} -(k_{i,j} - 2)s_{i,j}^{2} - \sum_{i=1}^{N} \sum_{j=2}^{n} (\frac{1-\tau_{i,j}}{2})y_{i,j}^{2} + \sum_{i=1}^{N} \sum_{j=1}^{n} \frac{\sigma_{i,j}}{2}\tilde{\lambda}_{i,j}^{2} - \sum_{i=1}^{N} \sum_{j=1}^{n} \frac{\sigma_{i,j}}{2}\tilde{\lambda}_{i,j}^{2} + \sum_{i=1}^{N} \sum_{j=1}^{n} \frac{1+d_{i}}{2} + \sum_{i=1}^{N} \sum_{j=1}^{n} \frac{\sigma_{i,j}}{2} + \sum_{i=1}^{N} \sum_{j=1}^{n} \frac{N_{i,j}^{2}}{4} + \sum_{i=1}^{N} \sum_{j=1}^{n} \frac{1+d_{i}}{2} + \sum_{i=1}^{N} \sum_{j=1}^{n} \frac{1}{2} + \sum_{i=1}^{N} \sum_{j=1}^{n} \frac{N_{i,j}^{2}}{4} + \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{1}{4}\mu_{i}^{2}, \quad (102)$$

其中

$$D_{0} = \sum_{i=1}^{N} \sum_{j=1}^{n} \frac{\sigma_{i,j}}{2} \lambda_{i,j}^{2} + \sum_{i=1}^{N} \frac{1+d_{i}}{2} + \sum_{i=1}^{N} \sum_{j=1}^{n} \frac{b_{ij}^{2}}{2} + \sum_{i=1}^{N} \frac{1}{4} \mu_{i}^{2} + \sum_{j=2}^{n} \frac{1}{2} + \sum_{i=1}^{N} \sum_{j=1}^{n} \frac{N_{i,j}^{2}}{4} + \sum_{i=1}^{N} \sum_{j=2}^{n} \frac{M_{j}^{2}}{4}.$$
(103)

所以

$$V \leqslant -\alpha_0 V + D_0.$$
 (104)

$$\begin{split} & \overline{A}V = P, \alpha_0 \geqslant \frac{D_0}{P}, \, \mathbb{M} \, \bar{f} \, \dot{V} \leqslant 0. \, \mathbb{R} \, \overline{K}V(0) \leqslant P, \\ & \alpha_0 \geqslant \frac{D_0}{P} \, \mathbb{P}V(t) \leqslant P, \, \forall t \geqslant 0, \, \underline{C} \, \overline{C}(104) \overline{M} \, \underline{D} \, \overline{D} \, \overline{M} \, \underline{C}(104) \overline{M} \, \underline{D} \, \overline{M} \, \underline{C}(104) \overline{M} \, \underline$$

 $\frac{1462}{\mathrm{e}^{\alpha_0 t}}$ 得

$$\frac{\mathrm{d}}{\mathrm{d}t}(V(t)\mathrm{e}^{\alpha_0 t}) \leqslant \mathrm{e}^{\alpha_0 t} D_0.$$
(105)

将上式两边积分得

$$0 \leq V(t) \leq \frac{D_0}{\alpha_0} + (V(0) - \frac{D_0}{\alpha_0})e^{-\alpha_0 t}.$$
 (106)

因此, 闭环系统的所有信号都为半全局一致终结 有界. 因为 $\frac{1}{2} \|\underline{s}_{N,1}\|^2 \leq V(t)$, 根据引理2得

$$||e_{1}|| = ||y - 1_{N}y_{r}|| \leq \frac{1}{\sigma(H)} \sqrt{\frac{2D_{0}}{\alpha_{0}} + 2(V(0) - \frac{D_{0}}{\alpha_{0}})e^{-\alpha_{0}t}}, \quad (107)$$

其中: $\sigma(H)$ 是矩阵H的最小奇异值. 对于给定的设计 参数 σ_{ij} , 选取充分大的设计参数 γ_{ij} . 由式(101)可知, 常数 α_0 可充分大. 根据式(104)可知, 常数 D_0 与所有的 设计参数 γ_{ij} 无关. 因此, 对于给定的设计参数 σ_{ij} 和正 常数P, 通过选取充分大的设计参数 γ_{ij} 使常数 α_0 充分 大, 从而使 $\frac{D_0}{\alpha_0}$ 充分小. 根据式(107)可知, 随着时间t的不断增大, 跟踪误差能够变得足够小.

5 仿真算例

下面给出一个算例验证所设计控制器的有效性.

例1 考虑如下多智能体系统:

$$\begin{cases} \dot{z}_i = q(z_i, \bar{x}_2, t), \\ \dot{x}_{i,1} = x_{i,2} + f_{i,1}(x_{i,1}) + \Delta_{i,1}(z_i, \bar{x}_2, t), \\ \dot{x}_{i,2} = \sum_{f=1}^3 W_{i,f}(t) + f_{i,2}(\bar{x}_{i,2}) + \Delta_{i,2}(z_i, \bar{x}_2, t), \\ y_{i,1} = x_{i,1}, \end{cases}$$

其中: *i* = 1, 2, 3, 4. 故障模型描述如下:

$$\begin{split} W_{i,1}(t) &= \\ \begin{cases} k_{i,1,1}Q_i(u_{i,1}(t)) + u_{i,s1,1}(t), \ t \in [0,3), \\ Q_i(u_{i,1}(t)), & t \in [3,5), \\ k_{i,1,2}Q_i(u_{i,1}(t)) + u_{i,s1,2}(t), \ t \in [5,+\infty), \end{cases} \\ k_{i,1,1} &= k_{i,1,2} = 0.3, \ u_{i,s1,1} = u_{i,s1,2} = 0.1 \sin t, \\ W_{i,2}(t) &= \\ \begin{cases} k_{i,2,1}Q_i(u_{i,1}(t)) + u_{i,s2,1}(t), \ t \in [0,5), \\ Q_i(u_{i,2}(t)), & t \in [5,8), \\ k_{i,2,2}Q_i(u_{i,1}(t)) + u_{i,s2,2}(t), \ t \in [8,+\infty), \end{cases} \\ k_{i,2,1} &= k_{i,2,2} = 0.5, \ u_{i,s2,1} = u_{i,s2,2} = 0.5 \cos t \\ W_{i,3}(t) &= Q_i(u_{i,3}(t)), \ t \in [0,+\infty). \end{split}$$

未建模动态为 $\dot{z}_i = -z_i + |y_i|^2 + 0.5$,动态信号为 $\dot{v}_i = -0.6v_i + 1.5|y_i|^4 + 1.5$,期望的跟踪轨迹 $y_r = 0.5[\sin t + \sin(0.5t)].$ 考虑具有一个领导者和4个跟随者的多智能体系统,4个跟随者通过如图1所示的有向通信拓扑图连接. 在图1中,领导者有指向所有跟随者"1","2","3","4"的路径.由拓扑图可知,

$$a_{11} = a_{13} = a_{14} = 0, \ a_{12} = 1,$$

$$a_{21} = a_{22} = a_{23} = a_{24} = 0,$$

$$a_{31} = a_{33} = a_{34} = 0, \ a_{32} = 1,$$

$$a_{41} = a_{42} = a_{44} = 0, \ a_{43} = 1.$$

故邻接矩阵A为

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$

由拓扑图可知, 第2个跟随者能够获取来自领导者的信息, 即 $a_{20} = 1$, A_0 为对角矩阵, 表示为 $A_0 = diag\{0, 1, 0, 0\}$.

选取
f_{1,1} =
$$\frac{x_{1,1}}{1+x_{1,1}^4}$$
, f_{1,2} = -0.3 cos $x_{1,1}e^{-(x_{1,2}^4)}$,
f_{2,1} = $\frac{x_{2,1}}{1+x_{2,1}^4}$, f_{2,2} = 0.1 cos $x_{2,1}e^{-(x_{2,2}^4)}$,
f_{3,1} = $\frac{x_{3,1}}{1+x_{3,1}^4}$, f_{3,2} = 0.1 cos $x_{3,1}e^{-(x_{3,2}^4)}$,
f_{4,1} = $\frac{x_{4,1}}{1+x_{4,1}^4}$, f_{4,2} = 0.1 cos $x_{4,1}e^{-(x_{4,2}^4)}$.
误差面定义如下:

$$\begin{cases} s_{i,1} = \sum_{j \in N_i} a_{ij}(y_i - y_j) + a_{i0}(y_i - y_r(t)), \\ s_{i,2} = x_{i,2} - \omega_{i,2}, \end{cases}$$

虚拟控制律设计如下:

$$\begin{aligned} \alpha_{i,2} &= \frac{1}{(d_i + a_{i0})} (-k_{i,1} s_{i,1} + a_{i0} \dot{y}_{r}(t) - \\ &\frac{s_{i,1}^2 \hat{\lambda}_{i,1} \|\varsigma_{i,1}(Z_{i,1})\|^2}{2b_{i1}^2}), \end{aligned}$$

自适应律设计如下:

$$\dot{\hat{\lambda}}_{i,1} = \eta_{i,1} \left(\frac{s_{i,1}^2 \|\varsigma_{i,1}(Z_{i,1})\|^2}{2b_{i1}^2} - \sigma_{i,1} \hat{\lambda}_{i,1} \right), \\ \dot{\hat{\lambda}}_{i,2} = \eta_{i,2} \left(\frac{s_{i,2}^2 \|\varsigma_{i,2}(X_{i,2})\|^2}{2b_{i2}^2} - \sigma_{i,2} \hat{\lambda}_{i,2} \right),$$

控制律设计如下:
$$\begin{split}
u_{i,f} &= -\frac{1}{r_i} (k_{i,4} s_{i,2} + \frac{1}{2} s_{i,2} + \frac{s_{i,2} \hat{\lambda}_{i,2} \|\varsigma_{i,2}(X_{i,2})\|^2}{2b_{i2}^2}),\\
\\
其中: \tau_{i,2} \dot{\omega}_{i,2} + \omega_{i,2} &= \alpha_{i,2}.\\
\\$$
选取量化器 $Q_i(u_{i,f}(t))$ 的设计参数如下: $\rho_{i,f} &= 0.24, \ \delta_{i,f} &= \frac{1 - \rho_{i,f}}{1 + \rho_{i,f}}, \ u_{i,f,\min} = 0.1,\\ u_{i,f} &= \rho_{i,f}^{k-1} u_{i,f,\min}, \ k = 1, 2, \cdots, \infty.\\$ 选取设计参数如下: $\kappa_{1,1} &= 40, \ \kappa_{1,2} &= 50, \ \kappa_{1,3} &= 80, \ \kappa_{1,4} &= 90,\\ \kappa_{2,1} &= 50, \ \kappa_{2,2} &= 80, \ \kappa_{2,3} &= 80, \ \kappa_{2,4} &= 90,\\ \eta_{i,j} &= 0.2, \ \sigma_{i,j} &= 0.6, \ i = 1, 2, 3, 4, \ j &= 1, 2,\\ b_{11} &= b_{12} &= b_{13} &= b_{14} &= 25,\\ b_{21} &= b_{22} &= b_{23} &= b_{24} &= 25,\\ r_1 &= 0.3, \ r_2 &= 0.3, \ r_3 &= 0.3, \ r_4 &= 0.3. \end{split}$

选取初值如下:

 $\begin{aligned} x_{1,1}(0) &= 0.16, \ x_{1,2}(0) = 0.01, \ x_{1,3}(0) = -0.08, \\ x_{1,4}(0) &= -0.055, \ x_{2,1}(0) = 0, \ x_{2,2}(0) = 0, \\ x_{2,3}(0) &= 0, \ x_{2,4}(0) = 0, \\ \hat{\lambda}_{1,1}(0) &= 0.4, \ \hat{\lambda}_{2,1}(0) = 0.35, \ \hat{\lambda}_{3,1}(0) = 0.2, \\ \hat{\lambda}_{4,1}(0) &= 0.1, \ \hat{\lambda}_{1,2}(0) = 0.5, \ \hat{\lambda}_{2,2}(0) = 0.4, \\ \hat{\lambda}_{3,2}(0) &= 0.3, \ \hat{\lambda}_{4,2}(0) = 0.1. \end{aligned}$

仿真结果如图2-9所示.图2表明各跟随智能体对 头智能体具有良好的一致跟踪性;图4表明各执行器 输入信号是有界的;图5-8表明不同智能体的故障信 号是有界的;图9表明估计参数随着时间的增大趋于 稳定.

Fig. 5 The actuator fault signals of the first follower

Fig. 6 The actuator fault signals of the second follower

Fig. 7 The actuator fault signals of the third follower

结论 6

本文针对一类具有输入量化、未建模动态和执行 器故障的非线性多智能体系统,提出了一种自适应动 态面控制方法. 通过理论分析证明了闭环控制系统是 半全局一致终结有界的,所有跟随者都能实现期望的 一致性. 仿真结果证明了所提出方案的有效性.

参考文献:

- [1] WEI R, BEARD R W, ATKINS E M. Information consensus in multivehicle cooperative control. IEEE Control Systems Magazine, 2007, 27(2): 71 - 82.
- [2] ZHANG T, LI J M. Robust iterative learning control of multi-agent systems with logarithmic quantizer. Proceedings of the 34th Chinese Control Conference. Hangzhou: IEEE, 2015: 7033 - 7038.
- [3] QU F Y, TONG S C. Observer-based fuzzy adaptive quantized control for uncertain nonlinear multiagent systems. International Journal of Adaptive Control and Signal Processing, 2019, 33(4): 567 - 585.
- [4] SHEN Q K, SHI P. Distributed command filtered backstepping consensus tracking control of nonlinear multiple-agent systems in strict - feedback form. Automatica, 2015, 53: 120 - 124.
- [5] YOO S J. Distributed adaptive containment control of uncertain nonlinear multi-agent systems in strict-feedback form. Automatica, 2013, 49(7): 2145 - 2153.
- [6] WANG G. WANG C L. LI L. et al. Distributed adaptive consensus tracking control of higher-order nonlinear strict-feedback multi-agent systems using neural networks. Neurocomputing, 2016, 214: 269 -279.
- [7] XIA X N, ZHANG T P. Adaptive quantized output feedback DSC of uncertain systems with output constraints and unmodeled dynamics based on reduced-order K-filters. Neurocomputing, 2018, 310: 236 -245.
- [8] WANG M, ZHANG T P, YANG Y Y. Adaptive neural output feedback control for uncertain nonlinear systems with input quantization and output constraints. International Journal of Adaptive Control and Signal Processing, 2020, 34(2): 228 - 247.
- [9] WANG F, CHEN B, LIN C, et al. Adaptive neural network finitetime output feedback control of quantized nonlinear systems. IEEE Transactions on Cybernetics, 2018, 48(6): 1839 - 1848.

- [10] LIU Z, WANG F, ZHANG Y, et al. Fuzzy adaptive quantized control for a class of stochastic nonlinear uncertain systems. *IEEE Transactions on Cybernetics*, 2016, 46(2): 524 – 534.
- XING L T, WEN C Y, LIU Z T, et al. Robust adaptive output feedback control for uncertain nonlinear systems with quantized input. *International Journal of Robust and Nonlinear Control*, 2017, 27(11): 1999 – 2016.
- [12] XING L T, WEN C Y, ZHU Y, et al. Output feedback control for uncertain nonlinear systems with input quantization. *Automatica*, 2016, 65: 191 – 202.
- [13] BOSKOVIC J, MEHRA R. Multiple-model adaptive flight control scheme for accommodation of actuator failures. *Journal of Guidance,* and Dynamics, 2002, 25(4): 712 – 724.
- [14] TAO G, JOSHI S M, MA X L. Adaptive state feedback and tracking control of systems with actuator failures. *IEEE Transactions on Automatic Control*, 2001, 46(1): 78 – 95.
- [15] LI Y, WANG C L, CAI X, et al. Neural-network-based distributed adaptive asymptotically consensus tracking control for nonlinear multiagent systems with input quantization and actuator faults. *Neurocomputing*, 2019, 349: 64 – 76.
- [16] TANG X D, TAO G, JOSHI S M. An adaptive control scheme for output feedback nonlinear systems with actuator failures. *IFAC Proceedings Volumes*, 2002, 35(1): 415 – 420.
- [17] KANELLAKOPOULOS I, KOKOTOVIC P V, MORSE A S. Systematic design of adaptive controllers for feedback linearizble systems. *IEEE Transactions on Automatic Control*, 1991, 36(11): 1241 – 1253.
- [18] SWAROOP D, HEDRICK J K, YIP P P, et al. Dynamic surface control for a class of nonlinear systems. *IEEE Transactions on Automatic Control*, 2000, 45(10): 1893 – 1899.
- [19] ZHANG Tianping, GAO Zhiyuan. Adaptive dynamic surface control including dynamic uncertainties. *Control and Decision*, 2013, 28(10): 1541 – 1546.

(张天平, 高志远. 具有动态不确定性的自适应动态面控制. 控制与 决策, 2013, 28(10): 1541 – 1546.)

- [20] ZHANG T P, GE S S. Adaptive dynamic surface control of nonlinear systems with unknown dead zone in pure feedback form. *Automatica*, 2008, 44(7): 1895 – 1903.
- [21] ZHANG T P, XIA M Z, YI Y, et al. Adaptive neural dynamic surface control of pure-feedback nonlinear systems with full state constraints and dynamic uncertainties. *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, 2017, 47(8): 2378 – 2387.
- [22] XIA M Z, ZHANG T P, YANG Y Q, et al. Adaptive DSC of stochastic non-linear systems with input unmodelled dynamics. *IET Control Theory Applications*, 2017, 11(6): 781 – 790.
- [23] JIANG Z P, PRALY L, Design of robust adaptive controllers for nonlinear systems with dynamic uncertainties. *Automatica*, 1998, 34(7): 825 – 840.
- [24] ZHANG T P, SHI X C, ZHU Q, et al. Adaptive neural tracking control of pure-feedback nonlinear systems with unknown gain signs and unmodeled dynamics. *Neurocomputing*, 2013, 121: 290 – 297.
- [25] JIANG Z P, HILL D J. A robust adaptive backstepping scheme for nonlinear systems with unmodeled dynamics. *IEEE Transactions on Automatic Control*, 1999, 44(9): 1705 – 1711.
- [26] CHEN P H, ZHANG T P. Adaptive dynamic surface control of stochastic nonstrict-feedback constrained nonlinear systems with input and state unmodeled dynamics. *International Journal of Adaptive Control and Signal Processing*, 2020, 34(10): 1405 – 1429.

作者简介:

林曼菲 硕士研究生,主要研究方向为自适应控制、非线性控制,

E-mail: linmanfei_1996@163.com;

张天平博士,教授,博士生导师,目前主要从事自适应控制、模 糊控制理论、智能控制及非线性控制等研究工作,E-mail:tpzhang@ yzu.edu.cn.