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摘要:原始–对偶梯度算法广泛应用于求解带约束的凸优化问题,大部分文献仅证明了该算法的收敛性,而没有
分析其收敛速度.因此,本文研究了求解带有不等式约束凸优化的一类离散算法,即增广原始–对偶梯度算法(Aug-
PDG),证明了Aug-PDG算法在一些较弱的假设条件下可以半全局线性收敛到最优解,并明确给出了算法中步长的
上界.最后,数值算例证实了所得理论结果的有效性.
关键词:凸优化;非线性约束;线性收敛;增广原始–对偶梯度算法
引用格式:孟敏,李修贤. Aug-PDG:带不等式约束凸优化算法的线性收敛性.控制理论与应用, 2022, 39(10): 1969

– 1977
DOI: 10.7641/CTA.2021.10583

Aug-PDG: linear convergence of convex optimization
with inequality constraints

MENG Min, LI Xiu-xian†

(Department of Control Science and Engineering, School of Electronics and Information Engineering,
Tongji University, Shanghai 201804, China;

Shanghai Research Institute for Intelligent Autonomous Systems, Tongji University, Shanghai 201210, China;
Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China)

Abstract: The primal-dual gradient algorithm has been widely employed for solving constrained optimization problems.
While the convergence of this algorithm was proved in most references, it is less investigated whether it is globally linearly
convergent. Therefore, this paper studies convergence rate of its variant, i.e., the augmented primal-dual gradient algorithm
(Aug-PDG), for handling the convex optimization problem with general convex inequality constraints. Specifically, it is
shown that the Aug-PDG can converge semi-globally to the optimizer at a linear rate under some mild assumptions and
an explicit bound is provided for the stepsize in this algorithm. Finally, a numerical example is presented to illustrate the
effectiveness of the theoretical result.
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1 Introduction
This paper deals with the constrained optimization

problem formulated as follows:

min
x∈Rn

f(x),

s.t. g(x) 6 0, (1)

where the objective function f : Rn → R and g(x) =

(g1(x) g2(x) · · · gm(x))
T with gi : Rn → R being

convex and continuously differentiable. By resorting to
the (or augmented) Lagrangian L(x, λ) of problem (1),
the corresponding (or augmented) primal-dual gradient
algorithm (PDG) (or Aug-PDG) can be designed as{

xk+1 = xk − α∇xL(xk, λk),

λk+1 = [λk + α∇λL(xk, λk)]+,
(2)

where α > 0 is a stepsize and [·]+ denotes the projec-
tion operator onto the nonnegative orthants component-
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wisely. It is known that Eq. (2) can find a saddle point
of L(x, λ), and thus it has been extensively studied to
solve the constrained optimization problem [1].

Optimization has wide applications in the artifi-
cial intelligence field such as smart grids [2–3], wire-
less communication [4], robot systems [5], game theo-
ry [6–7], to name just a few. To date, there is a large
body of literature on theoretical analysis of asymptot-
ic convergence of various algorithms, including primal-
dual gradient-based algorithms, for tackling the opti-
mization problem under different settings [8–18].

In recent decades, researchers have focused on
the linear convergence and exponential convergence of
primal-dual gradient-based algorithms in discrete-time
and continuous-time, respectively. It is well-known
that when the objective function is strongly convex
and smooth, the gradient decent algorithm for uncon-
strained convex optimization can achieve global expo-
nential convergence in continuous-time and global lin-
ear convergence in discrete-time. In the context of con-
strained optimization with equality constraints Ax = b
or affine inequality constraints Ax 6 b, PDG is proved
to converge globally exponentially in continuous-time
setup [19]. A proximal gradient flow was proposed
in [20], which can be applied to resolve convex op-
timization problems with affine inequality constraints
and has global exponential convergence when A has
full row rank. Local exponential convergence of the
primal-dual gradient dynamics can be established with
the help of spectral bounds of saddle matrices [21]. Re-
cently, the authors in [22] proved that the Aug-PDGD
in continuous-time for optimization with affine equal-
ity and inequality constraints achieves global expo-
nential convergence, and the global linear converge of
primal-dual gradient optimization (PDGO) in discrete-
time was discussed in [23] by contraction theory. It
should be noted that the aforementioned works focus on
unconstrained optimization or constrained optimization
with affine equality and/or affine inequality constraints.
For the case with nonlinear inequality constraints, the
asymptotic convergence has been extensively studied
such as in [24]. However, the linear/exponential con-
vergence for the optimization with nonlinear inequality
constraints is seldom investigated in the literature. One
exception is the recent work [25], where the authors
established a semi-global exponential convergence of
continuous-time Aug-PDGD in the sense that the con-
vergence rate depends on the distance from the initial
point to the optimal point.

However, [25] concentrates on the continuous-time
dynamics. As discrete-time algorithms are easily im-
plemented in practical applications, in this paper, the
discrete-time algorithm is addressed for the optimiza-
tion problem with nonlinear inequality constraints. The-
oretical analysis based on a quadratic Lyapunov func-

tion that has non-zero off-diagonal terms is first pre-
sented to show that the Aug-PDG achieves semi-global
linear convergence.

The rest of this paper is organized as follows. Sec-
tion 2 introduces preliminaries on optimization with
nonlinear equality constraints. The main result on the
semi-global linear convergence of Aug-PDGA, along
with its proof, is presented in Section 3. Section 4 pro-
vides a numerical example to illustrate the feasibility of
the obtained result. Section 5 makes a brief conclusion.

Notations. Let Rm, Rm
+ and Rm×n be the sets of m-

dimensional real column vectors, m-dimensional non-
negative column vectors and m × n real matrices, re-
spectively. Define [x]+ to be the component-wise pro-
jection of a vector x ∈ Rm onto Rm

+ . x > 0 for any vec-
tor x ∈ Rm means that each entry of x is nonnegative.
For an integer n > 0, denote [n] := {1, 2, · · · , n}. In
is the identity matrix of dimension n. 1n (resp. 0n) rep-
resents an n-dimensional vector with all of its elements
being 1 (resp. 0). For a vector or matrix A, AT denotes
the transpose of A and AI is a matrix composed of the
rows of A with the indices in I . For real symmetric ma-
trices P and Q, P ≻ (≽,≻,≼)Q means that P −Q is
positive (positive semi-, negative, negative semi-) def-
inite, while for two vectors/matrices w, v of the same
dimension, w 6 v means that each entry of w − v is
nonnegative. diag{a1, a2, · · · , an} represents a diago-
nal matrix with ai, i ∈ [n], on its diagonal.

2 Preliminaries
Consider problem (1). An augmented Lagrangian

associated with problem (1) is introduced as [26]

L(x, λ) := f(x) + U(x, λ), (3)

where x ∈ Rn, λ = (λ1 λ2 · · · λm)
T ∈ Rm, ρ > 0 is

the penalty parameter, and

U(x, λ) :=
m∑
i=1

[ρgi(x) + λi]
2
+ − λ2

i

2ρ
. (4)

It can be verified that U(x, λ) is convex in x and
concave in λ, and U(x, λ) is continuously differen-
tiable, i.e.,

∇xU(x, λ) =
m∑
i=1

[ρgi(x) + λi]+∇gi(x), (5)

∇λU(x, λ) =
m∑
i=1

[ρgi(x) + λi]+ − λi

ρ
ei, (6)

where ei is an n-dimensional vector with the ith entry
being 1 and others 0. Then the Aug-PDG is explicitly
written as

xk+1 = xk − α∇xL(xk, λk) =

xk − α∇f(xk)− α
m∑
i=1

[ρgi(xk) + λi,k]+∇gi(xk),

(7a)
λk+1 = λk + α∇λL(xk, λk) =

λk + α
m∑
i=1

[ρgi(xk) + λi,k]+ − λi,k

ρ
ei, (7b)



No. 10 MENG Min et al: Aug-PDG: linear convergence of convex optimization with inequality constraints 1971

where α ∈ (0, ρ] is the stepsize to be specified. Here,
the initial conditions are arbitrarily chosen as x0 ∈ Rn

and λ0 > 0.
To proceed, the following results are vital for solv-

ing the constrained optimization problem.

Lemma 1 For Aug-PDG (7), if λ0 > 0, then
λk > 0, ∀k > 0.

Proof This result can be proved by mathematical
induction, which is omitted here.

Lemma 2 A primal-dual pair (x∗, λ∗) is an e-
quilibrium point of the Aug-PDG (7) if and only if (x∗,
λ∗) is a Karush-Kuhn-Tucker (KKT) point of (1).

Proof If a primal-dual pair (x∗, λ∗) is an equi-
librium point of the Aug-PDG (7), that is, x∗ = x∗

− α∇xL(x
∗, λ∗) and λ∗ = λ∗ +α∇λL(x

∗, λ∗), then
∇xL(x

∗, λ∗) = 0 and ∇λL(x
∗, λ∗) = 0. ∇λL(x

∗, λ∗)
= 0 is equivalent to

λ∗
i = [ρgi(x

∗) + λ∗
i ]+, for any i ∈ [m], (8)

which implies λ∗
i > 0, gi(x∗) 6 0, and λ∗

i gi(x
∗) = 0.

For ∇xL(x
∗, λ∗) = 0, one equivalently obtains

that

∇f(x∗) +
m∑
i=1

[ρgi(x
∗) + λ∗

i ]+∇gi(x
∗) =

∇f(x∗) +
m∑
i=1

λ∗
i∇gi(x

∗) = 0.

Thus, it can be claimed that the primal-dual pair
(x∗, λ∗) is a KKT point.

Conversely, if (x∗, λ∗) is a KKT point of (1), then

∇f(x∗) +
m∑
i=1

λ∗
i∇gi(x

∗) = 0,

λ∗
i gi(x

∗) = 0,

λ∗ > 0,

gi(x
∗) 6 0.

Via a simple computation, ∇xL(x
∗, λ∗) = 0 and

∇λL(x
∗, λ∗) = 0, which implies that (x∗, λ∗) is an

equilibrium point of the Aug-PDG (7).

3 Main results
In this section, the main result on the linear conver-

gence of the Aug-PDG is presented.

3.1 Convergence results
The following assumptions are essential for deriv-

ing the main result.

Assumption 1 The problem (1) has a unique
feasible solution x∗, and at x∗, the linear indepen-
dence constraint qualification (LICQ) holds at x∗, i.e.,
{∇gi(x

∗)|i ∈ I} is linearly independent, where I :=
{i ∈ [m]|gi(x∗) = 0} is the so-called active set at x∗.

Under Assumption 1, the optimal Lagrangian mul-
tiplier λ∗ is also unique [27]. Denote by J the Jacobian
of g(x) at x∗ and JI the matrix composed of the rows

of J with the indices in I . LICQ in Assumption 1 also
implies that JIJ

T
I ≻ 0 [25]. Define

κ := λmin(JIJ
T
I ) > 0 (9)

to be the smallest eigenvalue of JIJ
T
I .

Assumption 2 The objective function f(x) has
a quadratic gradient growth with parameter µ > 0 over
Rn, i.e., for any x ∈ Rn,

(∇f(x)−∇f(x∗))T(x− x∗) > µ∥x− x∗∥2. (10)

The concept of quadratic gradient growth was in-
troduced in [28], which is a relaxation of strong con-
vexity condition for guaranteeing linear convergence
of gradient-based optimization algorithms. In fact, the
class of functions having quadratic gradient growth in-
clude the strongly convex functions as a proper subset
and some functions with quadratic gradient growth are
even not convex.

Assumption 3 The objective function f is l-
smooth over Rn, i.e.,

∥∇f(x)−∇f(y)∥ 6 l∥x− y∥, ∀x, y ∈ Rn.

For any i ∈ [m], gi(x) is Lgi-smooth and has
bounded gradient, i.e., for some Lgi, Bgi > 0 and any
x, y ∈ Rn, there holds

∥∇gi(x)−∇gi(y)∥ 6 Lgi∥x− y∥,
∥∇gi(x)∥ 6 Bgi.

Denote

Ic := [m]\I, Lg :=

√
m∑
i=1

L2
gi, Bg :=

√
m∑
i=1

B2
gi.

Under Assumption 3, one can obtain that

∥J∥ 6 Bg, (11)

∥g(x)− g(y)∥ =

√
m∑
i=1

(gi(x)− gi(y))2 6√
m∑
i=1

B2
gi∥x− y∥2 = Bg∥x− y∥. (12)

Denote

d0 :=
√
∥x0 − x∗∥2 + ∥λ0 − λ∗∥2.

Before giving the main result of this paper, it is con-
venient to list the following concept similar to that in
continuous-time setting [29].

Definition 1 Consider the dynamics z(t+ 1) =
ϕ(z(t)) with initial point z(0) = z0. Assume that ze
is an equilibrium point satisfying ze = ϕ(ze). ze is
said to be a semi-global linear stable point if for any
h > 0, there exist c > 0 and 0 < γ < 1 such that
for any z0 satisfying ∥z0 − ze∥ 6 h, ∥z(t) − ze∥ 6
cγt∥z0 − ze∥, ∀t > 0. ze is said to be a global linear
stable point if c and γ do not depend on h.

Then the main result is presented as follows.
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Theorem 1 Under Assumptions 1–3, if the step-
size 0 < α < 1 is chosen such that

α < min{ρ, 2µ

b1+2a4δ
,

κδ

2b2+4a5δ
,

1−π∗

2ρ(b2+2a5δ)
},

(13)

where δ > 0 satisfies

δ < min{ µ

2a3

,
1− π∗

2ρ(κ+ 8B2
g + L2

g(1− π∗))
, B−1

g },

(14)

π∗ := [ρmax
i∈Ic

{gi(x∗)}/(
√
3d0)+1]2+, b1 := a1+2B2

g ,

b2 := a2 +
2

ρ2
, a1 := 2l + 4θ21 , a2 := 4B2

g ,

a3 := 2B2
g l

2/κ + 2B2
gθ

2
1/κ + 2B2

g /(κρ2) + κB2
gρ

2/4,
a4 := B2

g l
2/2 + B2

gθ
2
1 + 2B2

g , a5 := B4
g + 2/ρ2, and

θ1 := ρB2
g + Lg∥λ∗∥, then the sequences {xk} and

{λk} generated by Aug-PDG (7) for the constrained
optimization (1) semi-globally converge to the optimal
point of the optimization problem (1) at a linear (or ex-
ponential) rate. Specifically, it holds that

∥xk − x∗∥2 + ∥λk − λ∗∥2 6 3(1− γ)kd20, (15)

where 0 < γ < 1 satisfies

γ 6 min{c1, c2, c3} (16)

with c1 := µα− a3δα− b1α
2/2− a4δα

2, c2 := κδα/
4− b2α

2/2− a5δα
2, and c3 :=

α

2ρ
(1− π∗)− (δακ+

b2α
2 + 2a5δα

2)/2− 4αδB2
g .

Proof The proof is postponed to the next subsec-
tion.

Remark 1 The selection of parameters α and δ en-
sures that c1, c2, c3 are positive, and then γ > 0 can be guar-
anteed. From Theorem 1, one can see that the convergence rate
is related to π∗, where the distance d0 between the initial point
and the optimal one is involved. Therefore, the convergence
rate decreases to 0 as d0 goes to infinity. The rate also changes
as (xk, λk) approaches the optimal point. In fact, any (xk, λk)

can be regarded as an initial point of the studied algorithm in
the sense of running the algorithm from the point (xk, λk).
Then, when (xk, λk) approaches the optimal point, π∗ is s-
maller, leading to smaller 1− γ. As a result, the rate is slow at
the beginning and then becomes fast when xk goes to the op-
timal point. Consequently, Theorem 1 does not guarantee the
existence of a global linear convergence, and only semi-global
linear convergence can be ensured.

Remark 2 Compared with the most related litera-
ture [25], where a continuous-time algorithm, called Aug-
PDGD, was studied with a semi-global exponential conver-
gence, a discrete-time algorithm Aug-PDG is analyzed here
with a semi-global linear convergence. Although discrete-time
algorithms may be obtained by discretizing the continuous-
time Aug-PDGD using such as explicit Euler method, it is un-
clear how to select the sampling stepsize to guarantee the con-
vergence especially in the sense of semi-global convergence. In

comparison, an explicit bound on the stepsize α is established
here. However, one drawback is that the upper bound of α de-
pends on the bounds of the cost functions, constraint functions
and their gradients, as well as the optimal solution. This may be
tackled by adaptive methods, which will be our future research
of interest.

3.2 Proof of Theorem 1
To prove Theorem 1, intermediate results are first

presented as follows.
Lemma 3 [22] For any y, y∗ ∈ R, there exists

ξ ∈ [0, 1] such that [y]+ − [y∗]+ = ξ(y− y∗). Specifi-
cally, ξ can be chosen as

ξ =


[y]+ − [y∗]+

y − y∗ , if y ̸= y∗,

0, if y = y∗.

Lemma 4 Under Assumption 1–3, xk generated
by the Aug-PDG (7) satisfies

∥xk+1 − x∗∥2 6
(1− 2µα+ a1α

2)∥xk − x∗∥2 + a2α
2∥λk − λ∗∥2+

2α(U(x∗, λk)− U(xk, λk))+

2α(U(xk, λ
∗)− U(x∗, λ∗)). (17)

Proof By iterations in (7), one has that

∥xk+1 − x∗∥2 =
∥xk − α∇xL(xk, λk)− x∗ + α∇xL(x

∗, λ∗)∥2 =
∥xk − x∗∥2 + α2∥∇xL(xk, λk)−∇xL(x

∗, λ∗)∥2−
2α(∇xL(xk, λk)−∇xL(x

∗, λ∗))T(xk − x∗). (18)

Based on

∇xL(xk, λk) = ∇f(xk) +∇xU(xk, λk) =

∇f(xk) +
m∑
i=1

[ρgi(xk) + λi,k]+∇gi(xk),

for the second term on the right side of (18), one has

α2∥∇xL(xk, λk)−∇xL(x
∗, λ∗)∥2 6

2α2∥∇f(xk)−∇f(x∗)∥2+
2α2∥∇xU(xk, λk)−∇xU(x∗, λ∗)∥2. (19)

Note that

∇xU(xk, λk)−∇xU(x∗, λ∗) =
m∑
i=1

[ρgi(xk) + λi,k]+∇gi(xk)−
m∑
i=1

[ρgi(x
∗) + λ∗

i ]+∇gi(x
∗) =

m∑
i=1

([ρgi(xk) + λi,k]+ − [ρgi(x
∗) + λ∗

i ]+)∇gi(xk)+

m∑
i=1

[ρgi(x
∗) + λ∗

i ]+(∇gi(xk)−∇gi(x
∗)),

then

∥∇xU(xk, λk)−∇xU(x∗, λ∗)∥ 6
m∑
i=1

|[ρgi(xk) + λi,k]+−
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[ρgi(x
∗) + λ∗

i ]+| · ∥∇gi(xk)∥+
m∑
i=1

[ρgi(x
∗) + λ∗

i ]+∥∇gi(xk)−∇gi(x
∗)∥. (20)

Define

ξi,k =
[ρgi(xk) + λi,k]+ − [ρgi(x

∗) + λ∗
i ]+

(ρgi(xk) + λi,k)− (ρgi(x∗) + λ∗
i )

, (21)

if (ρgi(xk) + λi,k)− (ρgi(x
∗) + λ∗

i ) ̸= 0, and

ξi,k = 0, (22)

if (ρgi(xk) + λi,k)− (ρgi(x
∗) + λ∗) = 0. Then ξi,j ∈

[0, 1]. It can be obtained from Lemma 3 that

[ρgi(xk) + λi,k]+ − [ρgi(x
∗) + λ∗

i ]+ =

ρξi,k(gi(xk)− gi(x
∗)) + ξi,k(λi,k − λ∗

i ). (23)

Substituting Eq. (23) into Eq. (20) yields that

∥∇xU(xk, λk)−∇xU(x∗, λ∗)∥ 6
m∑
i=1

|ρξi,k(gi(xk)− gi(x
∗))+

ξi,k(λi,k − λ∗
i )|∥∇gi(xk)∥+

m∑
i=1

[ρgi(x
∗) + λ∗

i ]+∥∇gi(xk)−∇gi(x
∗)∥ 6

m∑
i=1

(ρBgi∥xk − x∗∥+ |λi,k − λ∗
i |)Bgi+

m∑
i=1

λ∗
iLgi∥xk − x∗∥ 6

θ1∥xk − x∗∥+Bg∥λk − λ∗∥, (24)

where Assumption 3 has been applied to get the sec-
ond inequality, and the third inequality is derived by
n∑

i=1

aibi 6
√

n∑
i=1

a2
i

√
n∑

i=1

b2i for any ai, bi ∈ R, θ1 =

ρB2
g + Lg∥λ∗∥ and Bg =

√
m∑
i=1

B2
gi, Lg =

√
m∑
i=1

L2
gi.

By Eqs. (19)–(24)and Assumption 3, one has that

∥∇xL(xk, λk)−∇xL(x
∗, λ∗)∥2 =

∥∇f(xk)−∇f(x∗) +∇xU(xk, λk)−
∇xU(x∗, λ∗)∥2 6
2l2∥xk − x∗∥2 + 2(θ1∥xk − x∗∥+
Bg∥λk − λ∗∥)2 6
2l2∥xk − x∗∥2 + 4(θ21∥xk − x∗∥2+
B2

g∥λk − λ∗∥2) =
a1∥xk − x∗∥2 + a2∥λk − λ∗∥2, (25)

where a1 = 2l2 + 4θ21 and a2 = 4B2
g .

For the third term on the right side of Eq. (18),

− 2α(∇xL(xk, λk)−∇xL(x
∗, λ∗))T(xk − x∗) =

− 2α(∇f(xk)−∇f(x∗))T(xk − x∗)−
2α(∇xU(xk, λk)−∇xU(x∗, λ∗))T(xk − x∗) 6
− 2µα∥xk − x∗∥2 + 2α(U(x∗, λk)− U(xk, λk))+

2α(U(xk, λ
∗)− U(x∗, λ∗)), (26)

where the inequality is derived based on Assumption 2

and the convexity of U(x, λ) at x, i.e.,

U(x, λ)− U(x′, λ) > (∇xU(x′, λ))T(x− x′),
(27)

for any x, x′ ∈ Rn. Plugging Eq. (25) and Eq. (26) into
Eq. (18), one concludes that Eq. (17) holds.

Lemma 5 Under Assumptions 1–3, λk generat-
ed by the Aug-PDG (7) satisfies

∥λk+1 − λ∗∥2 6 (1 +
2α2

ρ2
)∥λk − λ∗∥2+

2B2
gα

2∥xk − x∗∥2+
2α(U(xk, λk)− U(xk, λ

∗)). (28)

Proof For ∥λk+1 − λ∗∥2, by iteration (7b), one
has

∥λk+1 − λ∗∥2 = ∥λk + α∇λU(xk, λk)− λ∗∥2 =
∥λk − λ∗∥2 + α2∥∇λU(xk, λk)∥2+
2α∇λU(xk, λk))

T(λk − λ∗). (29)

Recalling ∇λL(x
∗, λ∗) = ∇λU(x∗, λ∗) = 0 and

the notation of ξi,k in Eqs. (21)–(22), it can be obtained
that

∥∇λU(xk, λk)∥2 =
∥∇λU(xk, λk)−∇λU(x∗, λ∗)∥2 =

∥
m∑
i=1

[ρgi(xk)+λi,k]+−λi,k−[ρgi(x
∗)+λ∗

i ]++λ∗
i

ρ
ei∥2=

∥
m∑
i=1

[ξi,k(gi(xk)− gi(x
∗))+

1

ρ
(ξi,k − 1)(λi,k − λ∗

i )]ei∥2 =

∥Ξk(g(xk)− g(x∗)) +
1

ρ
(Ξk − Im)(λk − λ∗)∥2 6

2B2
g∥xk − x∗∥2 + 2

ρ2
∥λk − λ∗∥2, (30)

where Ξk = diag{ξ1,k, · · · , ξm,k}, the inequality is
obtained based on Eq. (12) and ∥Ξk∥ 6 1, ∥Ξk −
Im∥ 6 1 for ξi,k ∈ [0, 1], i ∈ [m].

As U(x, λ) is concave at λ, one has

(∇λU(xk, λk))
T(λk − λ∗) 6

U(xk, λk)− U(xk, λ
∗). (31)

By Eqs. (30)–(31), it can be derived from Eq. (29)
that Eq. (28) holds.

In what follows, we prove Theorem 1 in detail.
Proof of Theorem 1 Define

Vδ,k =

[
xk − x∗

λk − λ∗

]T
Qδ

[
xk − x∗

λk − λ∗

]
, (32)

where

Qδ =

[
In δJT

δJ Im

]
. (33)

As δ <
1√
2
B−1

g from (14), one has
1

2
In+m ≼ Qδ
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≼ 3

2
In+m by Schur complement. Then, in the follow-

ing, we first discuss the bound of

Vδ,k+1 = ∥xk+1 − x∗∥2 + ∥λk+1 − λ∗∥2+
2δ(xk+1 − x∗)TJT(λk+1 − λ∗).

The bounds of ∥xk+1 − x∗∥2 and λk+1 − λ∗ are
given in Lemmas 4 and 5, respectively. It suffices to
compute the bound of 2δ(xk+1 −x∗)TJT(λk+1 −λ∗).

Note that (x∗, λ∗) is the KKT point of (1), that is,

∇xL(x
∗, λ∗) = 0, (34)

∇λL(x
∗, λ∗) = 0. (35)

It is easy to obtain that

(xk+1 − x∗)TJT(λk+1 − λ∗) =

(xk − x∗)TJT(λk − λ∗)−
α(∇f(xk)−∇f(x∗))TJT(λk − λ∗)−
α(∇xU(x∗, λk)−∇xU(x∗, λ∗))TJT(λk − λ∗)−
α(∇xU(xk, λk)−∇xU(x∗, λk))

TJT(λk − λ∗)+

α(xk+1 − x∗)TJT(∇λU(xk, λk)−∇λU(x∗, λ∗)).
(36)

By Eq. (24), one has that

∥∇xU(x∗, λk)−∇xU(x∗, λ∗)∥ 6 Bg∥λk − λ∗∥,
(37)

∥∇xU(xk, λk)−∇xU(x∗, λk) 6 θ1∥xk − x∗∥.
(38)

Similar to Eqs. (21)–(22), define

ξi,λ =


[ρgi(x

∗) + λi,k]+ − [ρgi(x
∗) + λ∗

i ]+
λi,k − λ∗ ,

if λi,k ̸= λ∗
i ,

0, if λi,k = λ∗
i ,

(39)

then

∇xU(x∗, λk)−∇xU(x∗, λ∗) =
m∑
i=1

([ρgi(x
∗) + λi,k]+ − [ρgi(x

∗) + λ∗
i ]+)∇gi(x

∗) =

m∑
i=1

ξi,λ(λi,k − λ∗
i )∇gi(x

∗) =

JTΞλ(λk − λ∗), (40)

where Ξλ := diag{ξ1,λ, · · · , ξm,λ}. For the last term
of Eq. (36), it holds that

α(xk+1 − x∗)TJT(∇λU(xk, λk)−∇λU(x∗, λ∗)) =

α(xk − x∗)TJT(∇λU(xk, λk)−∇λU(x∗, λ∗))−
α2(∇f(xk)−∇f(x∗))×
JT(∇λU(xk, λk)−∇λU(x∗, λ∗))−
α2(∇xU(xk, λk)−∇xU(x∗, λ∗))T×
JT(∇λU(xk, λk)−∇λU(x∗, λ∗)) 6
2B2

gα

κρ2
∥xk − x∗∥2+

κρ2α

8
∥∇λU(xk, λk)−∇λU(x∗, λ∗)∥2+

B2
gα

2

2
∥∇f(xk)−∇f(x∗)∥2+

B2
gα

2

2
∥∇xU(xk, λk)−∇xU(x∗, λ∗)∥2+

α2∥∇λU(xk, λk)−∇λU(x∗, λ∗)∥2. (41)

Therefore, by Eqs. (30)and (37)–(41), Eq. (36) is re-
written as

(xk+1 − x∗)TJT(λk+1 − λ∗) =

(xk − x∗)TJT(λk − λ∗)−
α(λk − λ∗)TΞλJJ

T(λk − λ∗)−
α(∇f(xk)−∇f(x∗))TJT(λk − λ∗)−
α(∇xU(xk, λk)−∇xU(x∗, λk))

TJT(λk − λ∗)+

α(xk+1 − x∗)TJT(∇λU(xk, λk)−∇λU(x∗, λ∗)) 6
(xk − x∗)TJT(λk − λ∗)−
α(λk − λ∗)TΞλJJ

T(λk − λ∗)+

2B2
gα

κ
∥∇f(xk)−∇f(x∗)∥2 + κα

8
∥λk − λ∗∥2+

2B2
gα

κ
∥∇xU(xk, λk)−∇xU(x∗, λk)∥2+

κα

8
∥λk − λ∗∥2 +

2B2
gα

κρ2
∥xk − x∗∥2+

κρ2α

8
∥∇λU(xk, λk)−∇λU(x∗, λ∗)∥2+

B2
gα

2

2
∥∇f(xk)−∇f(x∗)∥2+

B2
gα

2

2
∥∇xU(xk, λk)−∇xU(x∗, λ∗)∥2+

α2∥∇λU(xk, λk)−∇λU(x∗, λ∗)∥2 6
(xk − x∗)TJT(λk − λ∗)−
α(λk − λ∗)TΞλJJ

T(λk − λ∗)+

(a3α+ a4α
2)∥xk − x∗∥2+

(
κα

2
+ a5α

2)∥λk − λ∗∥2, (42)

where the last inequality is obtained by a simple com-
putation, along with Eqs. (24), (30) and (38).

Define

ξ̃i,k :=


[ρgi(x

∗)/λi,k + 1]2+, i ∈ Ic, λi,k ̸= 0,

[ρgi(x
∗)/d0 + 1]

2

+, i ∈ Ic, λi,k = 0,

1, i ∈ I,
(43)

where Ξ̃k := diag{ξ̃1,k, · · · , ξ̃m,k}. Then

U(x∗, λk)− U(x∗, λ∗) =

1

2ρ
(λk − λ∗)T(Ξ̃k − Im)(λk − λ∗). (44)

Combining with Eqs. (17) (28) (42) and (44), the
bound of Vδ,k+1 can be derived that

Vδ,k+1 =
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∥xk+1 − x∗∥2 + ∥λk+1 − λ∗∥2+
2δ(xk+1 − x∗)TJT(λk+1 − λ∗) 6

(1− γ)Vδ,k +

[
xk − x∗

λk − λ∗

]T
Q

[
xk − x∗

λk − λ∗

]
, (45)

where

Q =

[
Q1 γδJT

γδJ Q2

]
, (46)

with

Q1 := (γ − 2µα+ 2a3δα+ b1α
2 + 2a4δα

2)In,

Q2 := (γ + δακ+ b2α
2 + 2a5δα

2)Im+
α

ρ
(Ξ̃k − Im)− αδ(ΞλJJ

T + JJTΞλ),

b1 = a1 + 2B2
g , and b2 = a2 +

2

ρ2
.

If Q ≼ 0, then Vδ,k+1 6 (1−γ)Vδ,k, indicating that
Vδ,k 6 (1−γ)kVδ,0 and λmin(Qδ)(∥xk−x∗∥2+∥λk−
λ∗∥2) 6 λmax(Qδ)(1−γ)k(∥x0−x∗∥2+∥λ0−λ∗∥2).
Therefore,

∥xk − x∗∥2 + ∥λk − λ∗∥2 6
λmax(Qδ)

λmin(Qδ)
(1− γ)k(∥x0 − x∗∥2 + ∥λ0 − λ∗∥2).

(47)

Thus, Eq. (15) holds as
λmax(Qδ)

λmin(Qδ)
6 3/2

1/2
= 3.

Note that [
−γIn γδJT

γδJ −γIm

]
≼ 0.

Hence, to prove Q ≼ 0, it suffices to ensure[
Q1 + γIn 0n×m

0m×n Q2 + γIm

]
≼ 0. (48)

By Eq. (16), one can obtain that

2γ − 2µα+ 2a3δα+ b1α
2 + 2a4δα

2 6 0,

i.e., Q1 + γIm ≼ 0.

Next, consider Θ :=
α

ρ
(Ξ̃k−Im)−αδ(ΞλJJ

T+

JJTΞλ) in Q2. If Θ + (2γ + δακ + b2α
2 +

2a5δα
2)Im ≼ 0, then Q2 + γIm ≼ 0.

Note that ξi,λ = ξ̃i,k = 1 when i ∈ I . Partition Θ
as

Θ =

[
Θ1 Θ3

ΘT
3 Θ2

]
, (49)

where

Θ1 := −2δαJIJ
T
I ,

Θ2 :=
α

ρ
(Ξ̃k,Ic − I)−

αδ(Ξλ,IcJIcJT
Ic + JIcJT

IcΞλ,Ic),

Θ3 := −δαJIJ
T
Ic(I +Ξλ,Ic).

Under LICQ in Assumption 1, it can be obtained
that JIJ

T
I ≽ κI . Then one can see from Eq. (16) that

Θ1 + (2γ + δακ+ b2α
2 + 2a5δα

2)I ≼ −1

2
δαJIJ

T
I .

By Lemma 6 in [22],

L2
g(I −Ξλ,Ic) + Ξλ,IcJIcJT

Ic + JIcJT
IcΞλ,Ic ≽ 0,

then since ξ̃i,k 6 ξi,λ for i ∈ Ic, one has

Θ2 ≼
α

ρ
(Ξ̃k,Ic − I)− δαL2

g(Ξ̃k,Ic − I). (50)

Denote ϕ = 2γ + δακ+ b2α
2 +2a5δα

2, then one
can obtain that

Θ2 + ϕI −ΘT
3 (Θ1 + ϕIm)

−1Θ3 ≼
α

ρ
(1− δρL2

g)(Ξ̃Ic − I) + ϕI+

2αδ(I +Ξλ,Ic)JIcJT
I (JIJI)

−1JIJ
T
Ic(I +Ξλ,Ic) ≼

α

ρ
(1− δρL2

g)(Ξ̃Ic − I)+

ϕI + 2αδ(I +Ξλ,Ic)JIcJT
Ic(I +Ξλ,Ic) ≼

α

ρ
(1− δρL2

g)(Ξ̃Ic − I) + ϕI + 8αδB2
gI, (51)

where AT(AAT)−1A ≼ I for a full row rank matrix A
has been applied in the second inequality.

If for all i ∈ Ic and k > 0,

ξ̃i,k 6 π∗ = [ρmax
i∈Ic

{gi(x∗)}/(
√
3d0) + 1]2+, (52)

then one can obtain that the sum on the right hand of
Eq. (51) is less than or equal to 0 by Eqs. (14) and (16),
and then by Schur complement, Q2 + γIm ≼ 0. Thus
Theorem 1 is proved.

What we left is to show Eq. (52). Based on Eq. (8)
and gi(x

∗) < 0 for i ∈ Ic, one has that λ∗
i = 0,

i ∈ Ic. For k = 0, obviously, for all i ∈ Ic, ξ̃i,0 6 π∗,
which indicates that Eq. (52) holds for k = 0, and then
Vδ,1 6 Vδ,0. Therefore, invoking Eq. (47) yields that for
all i ∈ Ic,

ξ̃i,1 6 [ρmax
i∈Ic

{gi(x∗)}/(
√
3d0) + 1]2+ = π∗.

Subsequently, by the mathematical induction, Eq.
(52) can be proved. The proof is completed.

4 Example
In this section, an example motivated by applica-

tions in power systems [25] is presented to illustrate the
feasibility of the discrete-time Aug-PGD (7). Consider
the following constrained optimization problem:

min
pi,qi∈R

f(x) =
n∑

i=1

((pi − pv,i)
2 + q2i ),

s.t. gi(x) = p21 + q2i − Si 6 0,

0 6 pi 6 pv,i, i ∈ [n], (53)

where x = (p1 · · · pn q1 · · · qn)T and pv,i, Si, i ∈ [n]
are constants. The problem Eq. (53) along with an affine
inequality constraint was considered in [25] but via a
continuous-time dynamics Aug-PDGD. The affine in-
equality constraints can be regarded as special nonlinear
constraints. Hence the algorithm Aug-PDG in this paper
is applicable to the optimization problem Eq. (53).
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Let n = 10, S = (S1, · · · , Sn) = (2.7, 1.35, 2.7,
1.35, 2.025, 2.025, 2.7, 2.7, 1.35, 2.025) and pv =
(pv,1, · · · , pv,n) = 4S. Choose ρ = 0.1. Three cas-
es are simulated, where the initial point (x0, λ0) is s-
elected randomly such that the distance from the ini-
tial point (x0, λ0) to the optimal point (x∗, λ∗) (i.e.,
d0) is 0.1∥(x∗, λ∗)∥, 5∥(x∗, λ∗)∥ and 10∥(x∗, λ∗)∥,
respectively. The curves of the normalized distance
∥(xk − x∗, λk − λ∗)∥

∥(x∗, λ∗)∥
with respect to the iteration k

are shown in Fig. 1 when choosing α = 0.1 and in
Fig. 2 when choosing α = 0.05, where for each case,
10 instances of randomly selected initial points are con-
sidered. From Fig. 1, it can be seen that the conver-
gence rates are different for different d0, and the dis-
tance ∥(xk−x∗, λk−λ∗)∥ linearly decays on the whole.
From Figs. 1 and 2, when the algorithm is convergen-
t by choosing appropriate stepsize α, it can be seen that
the convergence rate is smaller if α is smaller. More-
over, for each case, the decreasing rate also changes
as (xk, λk) approaches the optimal point. Specifically,
the decreasing rates are small at the beginning and then
become large when (xk, λk) goes to the optimal point.
These observations support the semi-global linear con-
vergence of the Aug-PDG, which is consistent with our
theory analysis.

Fig. 1 Simulation of the relative distances to ∥(x∗, λ∗)∥ with
respect to iteration k by choosing α = 0.1

Fig. 2 Simulation of the relative distances to ∥(x∗, λ∗)∥ with
respect to iteration k by choosing α = 0.05

5 Conclusion
In this paper, the linear convergence of an Aug-

PDG in discrete-time for convex optimization with non-
linear inequality constraints has been investigated. Un-
der some mild assumptions, the Aug-PDG has been
proved to semi-globally converge at a linear rate, which
depends on the distance from the initial point to the op-
timal point. Future research of interest may be to adopt-
ed adaptive methods to determine the upper bound of
stepsizes.
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