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Abstract: The primal-dual gradient algorithm has been widely employed for solving constrained optimization problems.
While the convergence of this algorithm was proved in most references, it is less investigated whether it is globally linearly
convergent. Therefore, this paper studies convergence rate of its variant, i.e., the augmented primal-dual gradient algorithm
(Aug-PDQG), for handling the convex optimization problem with general convex inequality constraints. Specifically, it is
shown that the Aug-PDG can converge semi-globally to the optimizer at a linear rate under some mild assumptions and
an explicit bound is provided for the stepsize in this algorithm. Finally, a numerical example is presented to illustrate the
effectiveness of the theoretical result.
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1 Introduction

This paper deals with the constrained optimization
problem formulated as follows:

min - f(z),

s.t. g(x) <0, (1)

where the objective function f : R” — R and g(x) =
(91(2) g2(x) -+ gm(x))" with g; : R" — R being
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convex and continuously differentiable. By resorting to
the (or augmented) Lagrangian L(z, A) of problem (1),
the corresponding (or augmented) primal-dual gradient
algorithm (PDG) (or Aug-PDG) can be designed as

{ﬂfk+1 =Tk — OéVzL(l‘m )\k),
Aot = [ + aVaL(zg, A\o)]s

where @ > 0 is a stepsize and [-]; denotes the projec-
tion operator onto the nonnegative orthants component-
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wisely. It is known that Eq. (2) can find a saddle point
of L(x,\), and thus it has been extensively studied to
solve the constrained optimization problem [1].

Optimization has wide applications in the artifi-
cial intelligence field such as smart grids [2-3], wire-
less communication [4], robot systems [5], game theo-
ry [6-7], to name just a few. To date, there is a large
body of literature on theoretical analysis of asymptot-
ic convergence of various algorithms, including primal-
dual gradient-based algorithms, for tackling the opti-
mization problem under different settings [8—18].

In recent decades, researchers have focused on
the linear convergence and exponential convergence of
primal-dual gradient-based algorithms in discrete-time
and continuous-time, respectively. It is well-known
that when the objective function is strongly convex
and smooth, the gradient decent algorithm for uncon-
strained convex optimization can achieve global expo-
nential convergence in continuous-time and global lin-
ear convergence in discrete-time. In the context of con-
strained optimization with equality constraints Ax = b
or affine inequality constraints Az < b, PDG is proved
to converge globally exponentially in continuous-time
setup [19]. A proximal gradient flow was proposed
in [20], which can be applied to resolve convex op-
timization problems with affine inequality constraints
and has global exponential convergence when A has
full row rank. Local exponential convergence of the
primal-dual gradient dynamics can be established with
the help of spectral bounds of saddle matrices [21]. Re-
cently, the authors in [22] proved that the Aug-PDGD
in continuous-time for optimization with affine equal-
ity and inequality constraints achieves global expo-
nential convergence, and the global linear converge of
primal-dual gradient optimization (PDGO) in discrete-
time was discussed in [23] by contraction theory. It
should be noted that the aforementioned works focus on
unconstrained optimization or constrained optimization
with affine equality and/or affine inequality constraints.
For the case with nonlinear inequality constraints, the
asymptotic convergence has been extensively studied
such as in [24]. However, the linear/exponential con-
vergence for the optimization with nonlinear inequality
constraints is seldom investigated in the literature. One
exception is the recent work [25], where the authors
established a semi-global exponential convergence of
continuous-time Aug-PDGD in the sense that the con-
vergence rate depends on the distance from the initial
point to the optimal point.

However, [25] concentrates on the continuous-time
dynamics. As discrete-time algorithms are easily im-
plemented in practical applications, in this paper, the
discrete-time algorithm is addressed for the optimiza-
tion problem with nonlinear inequality constraints. The-
oretical analysis based on a quadratic Lyapunov func-

tion that has non-zero off-diagonal terms is first pre-
sented to show that the Aug-PDG achieves semi-global
linear convergence.

The rest of this paper is organized as follows. Sec-
tion 2 introduces preliminaries on optimization with
nonlinear equality constraints. The main result on the
semi-global linear convergence of Aug-PDGA, along
with its proof, is presented in Section 3. Section 4 pro-
vides a numerical example to illustrate the feasibility of
the obtained result. Section 5 makes a brief conclusion.

Notations. Let R™, R'" and R™*"™ be the sets of m-
dimensional real column vectors, m-dimensional non-
negative column vectors and m X n real matrices, re-
spectively. Define [x], to be the component-wise pro-
jection of a vector z € R™ onto R’". x > 0 for any vec-
tor z € R means that each entry of x is nonnegative.
For an integer n > 0, denote [n] := {1,2,--- ,n}. I,
is the identity matrix of dimension n. 1,, (resp. 0,,) rep-
resents an n-dimensional vector with all of its elements
being 1 (resp. 0). For a vector or matrix A, A" denotes
the transpose of A and A7 is a matrix composed of the
rows of A with the indices in Z. For real symmetric ma-
trices P and @, P > (=, >, <) ) means that P — Q) is
positive (positive semi-, negative, negative semi-) def-
inite, while for two vectors/matrices w, v of the same
dimension, w < v means that each entry of w — v is
nonnegative. diag{a,, as, - - - , a, } represents a diago-
nal matrix with a;, ¢ € [n], on its diagonal.

2 Preliminaries
Consider problem (1). An augmented Lagrangian
associated with problem (1) is introduced as [26]
L(z,\) == f(z)+ U(x, \), 3)
where z € R", A= (A Ay - A)t €R™, p > 0is
the penalty parameter, and

m i + )‘z 2 _ )\2

U($7 )\) = Z [p-g ( ) ]+ 7 .
i=1 2p

It can be verified that U(z, \) is convex in = and

concave in A, and U(z, ) is continuously differen-

tiable, i.e.,

“4)

V,U(x,\) = ﬁ”: pgi(2) + M)+ Vai(z), )
VU, ) = 3 @ T A = A g

— P
where ¢e; is an n-dimensional vector with the ¢th entry
being 1 and others 0. Then the Aug-PDG is explicitly
written as

<
Il

Lp+1 = T — Oéme(.Ik, )\k) =

v = aV () = o L lpai(rn) + Al Vo).
(7a)
Aer1 = A + aVL(xg, \p) =
7o [pgi(xr) + Nikly — Nik

)\k + « €iy (7b)
i=1 P
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where o € (0, p] is the stepsize to be specified. Here,
the initial conditions are arbitrarily chosen as zo € R"
and \g > 0.

To proceed, the following results are vital for solv-
ing the constrained optimization problem.

Lemma 1 For Aug-PDG (7), if Ay > 0, then

e 2 0,VEk > 0.

Proof This result can be proved by mathematical
induction, which is omitted here.

Lemma 2 A primal-dual pair (z*, \*) is an e-
quilibrium point of the Aug-PDG (7) if and only if (z*,
A*) is a Karush-Kuhn-Tucker (KKT) point of (1).

Proof If a primal-dual pair (z*, \*) is an equi-
librium point of the Aug-PDG (7), that is, 2* = z*
— aV,L(z*, \*) and \* = X\* +aV,L(z*, \*), then
V.L(z*,\*) =0and V,L(z*, \*) = 0. V,\L(z*, \*)
= () is equivalent to

A; = lpgi(x™) + Af]4, forany i € [m],  (8)
which implies A} > 0, g;(z*) < 0, and Afg;(z*) = 0.

For V,.L(z*,A*) = 0, one equivalently obtains

that

m

V@) + Xlpgi(z™) + N1 Vgi(z®) =

i=1
VI(@®) + 3 AVgi(a") = 0.
i=1
Thus, it can be claimed that the primal-dual pair

(x*, A*) is a KKT point.
Conversely, if (z*, A\*) is a KKT point of (1), then

Vix*)+ i AiVgi(z*) =0,

Agi(a") =0,
A* >0,
gi(z") < 0.

Via a simple computation, V,L(z*, \*) = 0 and
VaL(z*,A\*) = 0, which implies that (z*, \*) is an
equilibrium point of the Aug-PDG (7). O
3 Main results

In this section, the main result on the linear conver-
gence of the Aug-PDG is presented.

3.1 Convergence results

The following assumptions are essential for deriv-
ing the main result.

Assumption 1 The problem (1) has a unique
feasible solution z*, and at x*, the linear indepen-
dence constraint qualification (LICQ) holds at z*, i.e.,
{Vygi(z*)|i € T} is linearly independent, where Z :=
{i € [m]|gi(z*) = 0} is the so-called active set at x*.

Under Assumption 1, the optimal Lagrangian mul-

tiplier A* is also unique [27]. Denote by J the Jacobian
of g(x) at * and J7 the matrix composed of the rows

of J with the indices in Z. LICQ in Assumption 1 also
implies that JzJ7 > 0 [25]. Define

K= Amin(JzJ7) > 0 )
to be the smallest eigenvalue of J7.J7 .
Assumption 2 The objective function f(x) has

a quadratic gradient growth with parameter p > 0 over
R", i.e., forany x € R",

(Vf(@) = V(@) (@ —2%) > plle — "] (10)

The concept of quadratic gradient growth was in-
troduced in [28], which is a relaxation of strong con-
vexity condition for guaranteeing linear convergence
of gradient-based optimization algorithms. In fact, the
class of functions having quadratic gradient growth in-
clude the strongly convex functions as a proper subset
and some functions with quadratic gradient growth are
even not convex.

Assumption 3 The objective function f is [-
smooth over R", i.e.,

V(@) =Vl <z -yl Ve,y € R".

For any ¢ € [m], gi(z) is Ly-smooth and has
bounded gradient, i.e., for some Lg;, By,; > 0 and any
x,y € R, there holds

IVgi(x) = Vagi(y)|| < Lyillx — yll,
Vgi(z)|| < By.

Denote

1= [m\Z, Ly =/ 1L3i, By =/ 1331..

Under Assumption 3, one can obtain that

gty

NgE
NgE!

171 < By, (11)
lg(z) = 9W)ll = 1| 2 (9:l) = g:(y))* <
> Bz~ yll? = Bylle ~ . (12
Denote

do = \/llwo — a2 + A0 — N2

Before giving the main result of this paper, it is con-
venient to list the following concept similar to that in
continuous-time setting [29].

Definition 1  Consider the dynamics z(t + 1) =
@(2(t)) with initial point 2(0) = 2. Assume that z,
is an equilibrium point satisfying z. = ¢(z.). z. is
said to be a semi-global linear stable point if for any
h > 0, there exist ¢ > 0 and 0 < v < 1 such that
for any z, satisfying ||zo — ze|| < h, [|2(t) — z.|| <
ey lzo — ze||, Yt > 0. z is said to be a global linear
stable point if ¢ and  do not depend on h.

Then the main result is presented as follows.
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Theorem 1  Under Assumptions 1-3, if the step-
size 0 < av < 1 is chosen such that

2u KO 1—m7*

< i ) ) ) )

@ mln{p bl —|—2a45 2[)2"‘4(155 2/)(62—!-2(155)}
(13)

where d > 0 satisfies
o M I —n ~1
6 < — B

M Ble 8B ¥ L3 ) D )
(14)

T = [pr_réz%z({gi(x*)}/(\/gdo)—i-l]i,bl = a,+2B3,
2

bg = ay + > a, = 21 + 49%, Ay = 4B3,
p

asz = 2B21%/k 4 2B20%/k + 2B}/(kp*) + kBLp°/4,

as := BZI’/2 + B26? + 2B2, a5 := B, + 2/p?, and

01 = pB: + Lgy||\*||, then the sequences {x;} and

{Ar} generated by Aug-PDG (7) for the constrained

optimization (1) semi-globally converge to the optimal

point of the optimization problem (1) at a linear (or ex-
ponential) rate. Specifically, it holds that

o — 2|1 + A = A" < 3(L—)"dg,  (15)
where 0 < v < 1 satisfies

v < min{ey, ¢g, c3} (16)
with ¢; 1= pa — asda — b1a?/2 — agda?, ¢y = Kbal
4 —bya?/2 — az6a?, and ¢3 := ;p(l —7*) — (dak +
bra? 4 2a500°)/2 — 4ad B,

Proof The proof is postponed to the next subsec-
tion. O
Remark 1

sures that c1, co, c3 are positive, and then v > 0 can be guar-

The selection of parameters o and J en-

anteed. From Theorem 1, one can see that the convergence rate
is related to 7, where the distance do between the initial point
and the optimal one is involved. Therefore, the convergence
rate decreases to 0 as dg goes to infinity. The rate also changes
as (z1, \;) approaches the optimal point. In fact, any (3, A\ )
can be regarded as an initial point of the studied algorithm in
the sense of running the algorithm from the point (zj, ).
Then, when (z, \;) approaches the optimal point, 7 is s-
maller, leading to smaller 1 — . As a result, the rate is slow at
the beginning and then becomes fast when x;, goes to the op-
timal point. Consequently, Theorem 1 does not guarantee the
existence of a global linear convergence, and only semi-global
linear convergence can be ensured.

Remark 2  Compared with the most related litera-
ture [25], where a continuous-time algorithm, called Aug-
PDGD, was studied with a semi-global exponential conver-
gence, a discrete-time algorithm Aug-PDG is analyzed here
with a semi-global linear convergence. Although discrete-time
algorithms may be obtained by discretizing the continuous-
time Aug-PDGD using such as explicit Euler method, it is un-
clear how to select the sampling stepsize to guarantee the con-
vergence especially in the sense of semi-global convergence. In

comparison, an explicit bound on the stepsize « is established
here. However, one drawback is that the upper bound of « de-
pends on the bounds of the cost functions, constraint functions
and their gradients, as well as the optimal solution. This may be
tackled by adaptive methods, which will be our future research
of interest.

3.2 Proof of Theorem 1

To prove Theorem 1, intermediate results are first
presented as follows.

Lemma 3" For any y,y* € R, there exists

¢ € [0,1] such that [y] — [v*]+ = &(y — y*). Specifi-
cally, £ can be chosen as

e A

0, if y = y*.
Lemmad4  Under Assumption 1-3, x;, generated
by the Aug-PDG (7) satisfies
241 — 2*|* <
(1 = 2p0 + ar0?)||zx — 27[|* + asa®|| A — N[+
20(U(x*, \) — Uz, Ai))+
2a(U(xg, A*) = U(x", X7)). (17)
Proof By iterations in (7), one has that
lwpsr — 2|7 =
|z — aVoL(xk, Ae) — * + aV, Lz, \)||* =
lze — 27|1° + (| Vo L(zk, Ae) = Vo L(z™, A7) =
20(Vo L(xp, \p) — Vo L(x*, X)) (21, — 2%). (18)
Based on
VoL(zi, \i) = Vf(zr) + V.U (g, Ap) =
Vf(zy) + i[ﬂgl(%) + Akl Vi),
for the second term on the right side of (18), one has
||V L(zr, M) — Vo L(z*, \)|* <
207V f(zr) = V.f(=")|*+
202V, U (2, \i) — V.U (x*, )| (19)
Note that
V. U(xp, A\e) — V,U(2%,\7) =

m

;[Pgi (zr) + N+ Vgi(zr)—

[pgi(z") + A]+ Vgi(z") =

=1

([pgi(wx) + Aikls — [pgi(z™) + A1+ ) Vgi(zr)+

-
|

3

K2

2 lpgi(x7) + N1 (Vgi(z) = Vgi(z7)),

i=1

then
||va(xk:7)\k) - va(x*7)‘*)|’ <

21 I[pgi(wr) + Nig)s—

2 1
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[pg:(x™) + A ]o| - |Vgi(ze)||+ and the convexity of U(x, \) at z, i.e.,
m / / T /
> loou(a) + XL Vew) = Vaat). oy VAU S VU=,
i=1
Define for any x, x’ € R™. Plugging Eq. (25) and Eq. (26) into
¢ [pgi(xr) + Nik)+ — [pgi(z*) + Af]+ o Eq. (18), one concludes that Eq. (17) holds. O
ik — )

(pgi(xr) + Aik) — (pgi(x*) + A7)
if (pgi(wr) + Ai) — (pgi(z™) + A7) # 0, and
ik =0, (22)
if (pgi(zx) + Aik) — (pgi(z*) + A") = 0.Then §; ; €
[0, 1]. It can be obtained from Lemma 3 that
[pgi(k) + Aikls — [pgi(e™) + Al =
P&ik(gi(zn) — gi(@")) + & p(Ai — A7) (23)
Substituting Eq. (23) into Eq. (20) yields that
V.U (xp, M) — VU, X)) <

m

o P&k (gi(zr) — gi(z™))+

i=1

&rOik — ANV g+
S lpgi(@*) + X114 | Vagi(an) — Vai(a™)]| <

i=1

Q(pBgillfL‘k — 2+ Ak = A Bgit

YA Lyillwy — 27| <
1=1
Orl|zr — 2" || + ByllAe — A7, (24)

where Assumption 3 has been applied to get the sec-
ond inequality, and the third inequality is derived by

>oaib; < (/> ai [ > b7 forany a;,b; € R, 0; =
=1 =1 =1

pB2 + L]\ | and B, = @ 1= 5,

By Egs. (19)-(24)and Assumption 3, one has that

IVoL(zy, \i) — Vo L(x*, X)||> =

IV f(zn) = V(@) + VU (zg, Ae)—

V.U (z*, M) <

202 ||y, — 2 ||? + 2(0, ||vp — 2% ||+

Byl|Ax = A[)?* <

202 ||y, — 2 ||* + 4(02 ||y, — 2|2+

BI|[A, — X [*) =

a |z — 27]* + axf A = A%, (25)
where a; = 2[? + 46% and ay = 4B§.

For the third term on the right side of Eq. (18),
—20(V o L(zp, \i) — Vo L(z*, X)) (2 — 27) =
—2a(V f(ay) = Vf(a) (2 —2")—
20(V, U (21, M) — VU (2, X)) (2 — %) <
—2ual|ze — 2?4+ 2a(U(x*, A\p) — Uz, M)+
2a(U (zg, A*) = U(z*, \Y)), (26)

where the inequality is derived based on Assumption 2

Lemma 5 Under Assumptions 1-3, )\, generat-
ed by the Aug-PDG (7) satisfies

202
Ak = A2 < (1 + F)H/\k = NP+
2B’z — 2" *+
2a(U(xk,)\k) —U(Jl'k-,)\*)). (28)
Proof For [\ — \*
has
[Mer = NP = M 4+ aVaU (zg, Ax) = A°? =
Ak = N[ + @2 [[ VAU (ax, AP+
2C¥V>\U(I‘k,)\k))T(Ak —)\*) (29)
Recalling V, L(z*, \*) = V,\U(z*,A*) = 0 and
the notation of ; ;, in Eqgs. (21)—(22), it can be obtained
that

VAU (2k, M) |* =

VAU (x5, Ax) — VAU (25, A7)|1* =

H Z [p ( k) k}+ k [p ( ) }+ eiH2:
i=1 1%

| Z:l[gi,k(gi(xk) —gi(z"))+

2 by iteration (7b), one

1 *
*(fz‘,k - 1)(>\z‘,k - )‘i)]eiHZ =
P
_ . 1 «
1Zk(g(xr) — g(x")) + ;(:k — L) (e = A7 <
2
2B§Hwk—w*\lHEHAk—A*IIQ, (30)

where =) = diag{& x, - ,&mn.x}, the inequality is
obtained based on Eq. (12) and || Z;|| < 1, |5 —
I,|| < 1for &, €[0,1],4 € [m].

As U(x, \) is concave at A, one has

(VAU (25, M) " (A — A7) <

By Egs. (30)—(31), it can be derived from Eq. (29)
that Eq. (28) holds. ]

In what follows, we prove Theorem 1 in detail.
Proof of Theorem 1 Define

* T %
Vi = {f’; :‘i*} Qs [i’; _f*} NG

where
|, 6JF
Q(;_LSJ Im}. (33)
Asd < LB‘1 fi (14) h 1I <Q
S N rom , one as2 ntm = Qs
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= g[nm by Schur complement. Then, in the follow-
ing, we first discuss the bound of
Vi1 = e — |1 + [ Ao — X|I>+
26(zpy1 — ) T T (Apgr — A).

The bounds of ||z}, — 2*[|? and A\py; — A* are
given in Lemmas 4 and 5, respectively. It suffices to
compute the bound of 28 (x4 — x*) T T (A1 — A¥).

Note that (x*, A*) is the KKT point of (1), that is,

V. L(z*,\") = 0, (34)
ViaL(z*,\*) =0. (35)

It is easy to obtain that

(T — &%) T Ay — A) =
(xk ) JT()\k—)\*)—
a(Vf(wy) = V@) T (N =A%)~
a(V,U(x", \) — VU (2", /\*))TJT()\k —\")—
OZ(VIU(.ZE]C, )\k:) — VmU(IE*, )\k))TJT()\k; - )\*)+
(T — ) TN (VAU (21, A) — VAU (2%, \7)).
(36)
By Eq. (24), one has that
VLU (2, Ar) = VU (™, )| < Byl Ak — A7,
(37)
HVTU(.%']C, )\k) — VTU(CU*, )\k) S Glek — .’IJ*H
(38)
Similar to Egs. (21)—(22), define
[pgi(z*) + Aikls — [pgi(z”) + Af]+
€y = Aig — A* ’
WA if \i g #£ AL,
0, if \; x = A,
(39)
then
V.U (" ) — V,U(x", \%) =
;([pgi(ﬂf*) + Xiel+ = [pgi(") + Al ) Vagi(@™) =
Zgzk( ik )vyl(m*):
JT:)\()‘k —A%), (40)
where =, = diag{&; x, -+ ,&m.a}. For the last term

of Eq. (36), it holds that

O[(CC]H_l - .T*)TJT(V)\U(QZ‘k, )\k) - V)\U(.T*, )\*)) =
Oé(.l'k - .’L'*)TJT(V)\U(.ﬁk, )\k) - VAU(.ZU*, A*))—

o (Vf(zi) = Vf(2"))x

TV AU (20, M) — VAU (25, A7) —
(VU (wp, \) — VU (2, A7) x
TNVAU (2, M) — VAU (25, 07)) <
2B2a

e — 2" |*+

Vol. 39
RO
” VAU (2, ) — VAU (2%, 372+
BQ 2
IV f(zx) = Vf(z*)]*+
BZ 2
VU (2, \) — VU (2%, N2+

2||VAU(:::,€,A,€) — VU (x*, A2 (41)
Therefore, by Egs. (30)and (37)—(41), Eq. (36) is re-
written as
(@i = ") T Ay = A7) =
(2, — )T (e — A)—
aMy = A)TETTT (A — AF)—

a(V flzy) = V(@) T (M = A)—
a(VoU(z, M) — Vo U(x*, M) P T (N — AF)+
a(xpyr — fU*)TJT(V/\U(fL’ka Ar) = VU (2", A7) <

(zf, — )T (e — X)) —
a(A, — )\*)TE)\JJT()\;C — A"+

B2
i h )~ V(e

* R& *
)|I?+ §|’)\k — X|?+

233 i} )
VU (@™ AR) [P+

IV.U(zr, \ie) —
2

RO
o M= NP+ — =l — 2™ P+

“p a — VLU (2, ) |2+

VAU (2, Ar)

B22
P+

IVf(xr) =V

B2 2

V.U (zg, Ai) — VxU(x*,)\*)H2+
HV,\U(xk, Ar) — VU (2%, M) <

(I‘k — l‘*)TJT(Ak — )\*)—

a(Me — A)TETT (A — A+

(asa + aga?)||z, — z¥||*+

Ko .
(5 +asa”) A = A%, (42)
where the last inequality is obtained by a simple com-

putation, along with Eqgs. (24), (30) and (38).
Define

R [pgi(x* ) Nix + 113, 1 € I Nig # 0,
&k [pgi(x*)1dy + 1}37 1€1° N\ =0,
1, 1 €1,
(43)
where =, = diag{f}k, e ,émyk}. Then

U(z*, \p) = U(z",\") =

1 - )

%(/\k —A)NE = L)\ =), (44

Combining with Egs. (17) (28) (42) and (44), the
bound of Vj ;1 can be derived that

%,k+1 =
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k1 — 2|2 + [PAess — NP+
26(p1 — ) T (A1 — AY) <
T
T —x* Tp — "
(1 —7)Vsx + [AIZ _ A*] Q [)\: - A*] ;@9
where
_ Q1 yoJ" 4
Q= [W Q. | o
with
Q= (fy —2ua 4 2a30a + b10£2 + 20,450(2)17“
Q2 := (v + bk + bya® + 2a560°) I+

%(ék —I,) — ab(ExJJT + JITEY),

2
b= —|—2B§, and b, =ay+ —.
p

If @ < 0, then Vj 41 < (1—7) Vs, indicating that
Vs i < (1=7)"Vs0 and Auin (Qs) ([, — 2| + [ A —
AN1?) € Anax(Q5) (1 =) (lwo —2* |7+ Ao = A*[|).
Therefore,

g, — 2%+ | Ak = X*)1* <

Amax(CQ(S)

cHax\wo/ _ k o2 2
oy (L= ) o =27+ 20 = ).
47

)\max(Qé) < % _
Amin(Qé) = 172

T
|:_'7In 75J :| < 0.

Thus, Eq. (15) holds as
Note that

Hence, to prove ) =< 0, it suffices to ensure

|:Q1 + 71n

OmXTL

OTLXH’L

Q2 + I,
By Eq. (16), one can obtain that
2y — 2ua + 2asz0a + by + 2a460° < 0,

ie., Q1 +~vIL, X0.
Next, consider © :=

] =0. (48)

B =) —ad(E\J I +
P
JJTE)) in Q. If © + (2y + dak + bya? +
2a50a2)1,, < 0, then Qy +~I,, < 0.

Note that §; , = & » = 1 when i € Z. Partition ©

_ |61 65
o= [@;{ @2], (49)

as

where
@1 = —2(5CVJIJIT,

a ~
Oy = ~(Epze — I)—
2 P A

Oé(S(ENIcJIchC + JIcJITCE)\’Ic),
@3 = —(SO[JIJITC(I + EA,ZC)'

Under LICQ in Assumption 1, it can be obtained
that J;J; = k1. Then one can see from Eq. (16) that

1
01+ (2y + dak + bya? + 2a55a2)I =< —iéaJZJg.

By Lemma 6 in [22],
LI = Exze) 4+ ExzedreJie + JreJ7. S0z = 0,
then since 5},,@ < &\ fori € Z¢, one has

82 j (éhzc — I) - 5aL3(ék,IC — I) (50)

Denote ¢ = 27y + dak + boa® + 2a55a?, then one
can obtain that

Oy + ¢l — O3 (0, + ¢1,,) 103 <
%(1 — 0pL2)(Ere — I) + $I+

206 (1 + Zx 1e) e g (Jrdr) g dz. (I + Exze) =
%(1 — 6pL2)(Er — D)+

I +2a0(1 + =y z¢)Jze 7o (I + Enze) =<
« =
;(1 —0pL2)(Zze —I) + oI + 8ad B, (51
where AT(AA")™1 A < I for a full row rank matrix A

has been applied in the second inequality.
If forall: € Z¢and k > 0,

€ <" = [pmax{gi(+")Y(V3do) + 13, (52)

then one can obtain that the sum on the right hand of
Eq. (51) is less than or equal to 0 by Egs. (14) and (16),
and then by Schur complement, Q)3 + vI,,, = 0. Thus
Theorem 1 is proved.

What we left is to show Eq. (52). Based on Eq. (8)
and g;(z*) < 0 for ¢ € Z° one has that A} = 0,
i € I° For k = 0, obviously, for all i € Z¢, & < 7*,
which indicates that Eq. (52) holds for £ = 0, and then
Vs.1 < Vi0. Therefore, invoking Eq. (47) yields that for
alli € 7¢,

€1 < [pglégzi{gi(x*)}/(\/ﬁdo) +12 =7

Subsequently, by the mathematical induction, Eq.
(52) can be proved. The proof is completed. O

4 Example

In this section, an example motivated by applica-
tions in power systems [25] is presented to illustrate the
feasibility of the discrete-time Aug-PGD (7). Consider
the following constrained optimization problem:

min - f(z) = Y ((pi — pvi)® + ¢7),
Ppi,qi ER i=1

st gi(x) =pl+¢ —S; <0,
0 < p;i < Poyiy 1 € [n], (53)

wherex = (p1 - P qq -+ qn) " and p, ;, Si, @ € [n]
are constants. The problem Eq. (53) along with an affine
inequality constraint was considered in [25] but via a
continuous-time dynamics Aug-PDGD. The affine in-
equality constraints can be regarded as special nonlinear
constraints. Hence the algorithm Aug-PDG in this paper
is applicable to the optimization problem Eq. (53).



1976 Control Theory & Applications

Vol. 39

Letn = 10, S = (S1, -+, S,) = (2.7, 1.35, 2.7,
1.35, 2.025, 2.025, 2.7, 2.7, 1.35, 2.025) and p, =
(Pvas - yDun) = 4S. Choose p = 0.1. Three cas-
es are simulated, where the initial point (zg, o) is s-
elected randomly such that the distance from the ini-
tial point (xg, \g) to the optimal point (z*, \*) (i.e.,
do) is 0.1[|(z, A7), 5]|(z*, A")|| ‘and 10[|(z", A7),
respectively. The curves of the normalized distance
(), — 2", A — )|

[ 3]

are shown in Fig. 1 when choosing @ = 0.1 and in
Fig. 2 when choosing o« = 0.05, where for each case,
10 instances of randomly selected initial points are con-
sidered. From Fig. 1, it can be seen that the conver-
gence rates are different for different dy, and the dis-
tance ||(zy—x*, \x —A*)|| linearly decays on the whole.
From Figs. 1 and 2, when the algorithm is convergen-
t by choosing appropriate stepsize «, it can be seen that
the convergence rate is smaller if o is smaller. More-
over, for each case, the decreasing rate also changes
as (x, Ay ) approaches the optimal point. Specifically,
the decreasing rates are small at the beginning and then
become large when (1, \;) goes to the optimal point.
These observations support the semi-global linear con-
vergence of the Aug-PDG, which is consistent with our
theory analysis.

with respect to the iteration k

—_
(=
o

100k

102ES W do=0.1[j", 19|
—do=5||(", Al
——do=10[|(x", 1|
10

Normalized distance to [|(x", 27)]|

106 1 NV I
0 50 100 150 200 250 300

iteration k
Fig. 1 Simulation of the relative distances to ||(z*, \*)|| with

respect to iteration k by choosing o« = 0.1

10%

do=0.1]|(2", 1)
do=5/|(", 2|
——do=10]|@", A)|

e

10

Normalized distance to ||(2", 17)||

1
0 50 100 150 200 250 300

10°¢

iteration k

Fig. 2 Simulation of the relative distances to ||(z*, \*)|| with
respect to iteration k by choosing o = 0.05

5 Conclusion

In this paper, the linear convergence of an Aug-
PDG in discrete-time for convex optimization with non-
linear inequality constraints has been investigated. Un-
der some mild assumptions, the Aug-PDG has been
proved to semi-globally converge at a linear rate, which
depends on the distance from the initial point to the op-
timal point. Future research of interest may be to adopt-
ed adaptive methods to determine the upper bound of
stepsizes.
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