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摘要:具有可数状态空间的马尔可夫决策过程(Markov decision process, MDP)在平均准则下,最优(平稳)策略不一定
存在.本文研究平均准则可数状态MDP中满足最优不等式的最优策略.不同于消去折扣(因子)方法,利用离散的
Dynkin公式推导本文的主要结果.首先给出遍历马氏链的泊松方程和两个零常返马氏链的例子,证明了满足两个方向
相反的最优不等式的最优策略存在性.其次,通过两个比较引理和性能差分公式,证明了正常返链和多链最优策略的存
在性,并进一步推广到其他情形.特别地,本文通过几个应用举例,说明平均准则性能敏感的本质.本文的结果完善了可
数状态MDP在平均准则下的最优不等式的理论.
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Abstract: For the long-run average of a Markov decision process (MDP) with countable state spaces, the optimal (sta-
tionary) policy may not exist. In this paper, we study the optimal policies satisfying optimality inequality in a countable-state
MDP under the long-run average criterion. Different from the vanishing discount approach, we use the discrete Dynkin’s
formula to derive the main results of this paper. We first provide the Poisson equation of an ergodic Markov chain and two
instructive examples about null recurrent Markov chains, and demonstrate the existence of optimal policies for two optimal-
ity inequalities with opposite directions. Then, from two comparison lemmas and the performance difference formula, we
prove the existence of optimal policies under positive recurrent chains and multi-chains, which is further extended to other
situations. Especially, several examples of applications are provided to illustrate the essential of performance sensitivity of
the long-run average. Our results make a supplement to the literature work on the optimality inequality of average MDPs
with countable states.
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1 Introduction
The Markov decision process (MDP) is an impor-

tant optimization theory for stochastic dynamic systems
and has wide applications; see, e.g. [1–10]. In this pa-
per, we study the long-run average MDP with a count-
able state space. It is well known that in this problem an
optimal policy may not exist, and if it exists, it may be
history-dependent, not necessarily a stationary (or else

called a Markov) policy.
In the literature, conditions have been found that

guarantee the existence of the long-run average opti-
mal policy for MDPs with countable states [7–8,10–12].
The existence conditions are usually stated in terms of
discounted value functions with the discount factor ap-
proaching one. It is also proved that there are average
optimal policies for MDPs with countable states for
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which an optimality inequality, instead of an equality,
holds. The approach is presented in details in [10], and
it is called the “vanishing discount approach” in [7], and
the “differential discounted reward” approach in [8].

In this paper, we use the discrete Dynkin’s formula
(e.g. page 122 in [13]) to derive the average optimal pol-
icy. We observed that the long-run average of a count-
able MDP does not depend on its value at any finite s-
tate, or at any “non-frequently visited” states, which is
an important fact studied in the literature [3–4, 6, 8, 14].
We construct several examples about null recurrent
Markov chains, which motivate the derivation of the
strict optimality inequality and optimality equality. We
present two comparison lemmas and the performance
difference formula via the discrete Dynkin’s formula,
which is an important tool to prove the existence of av-
erage optimal policies.

The Poisson equation provides a method to solve
the long-run average cost, where the existence and prop-
erties of its solutions are studied in many literature, for
example, refer to page 269 to 303 in [5] which considers
the Poisson equation with time-homogeneous Markov
chains on a countable state space. Actually, the Poisson
equation is a different view to study the existence of
the long-run average optimal policy. From the Poisson
equation, we derive the optimality inequality/equality
and the existence of average optimal policies of posi-
tive recurrent chains, multi-chains and other generalized
forms such as considering the performance sensitivity.
One of the optimality inequality directions is present-
ed as the sufficient condition for average optimal. The
more general optimality equations are obtained by the
approach of performance difference formulas, which is
a useful approach beyond the dynamic programming
and has been successfully applied to many problems
(e.g. [15–16]).

The remainder of this paper is organized as follows.
In Section 2, we introduce the optimization problem and
derive the Poisson equation of ergodic Markov chains.
In Section 3, we give two examples to demonstrate the
existence of the long-run average optimal policy for t-
wo optimality inequalities with opposite directions. Our
main results are given in Section 4, where the existence
of optimal policies under multi-chains, null and posi-
tive recurrent chains are provided and some examples
and applications are also presented. Finally, we con-
clude this paper in Section 5.

2 Preliminaries
2.1 The problem

Consider a stochastic chain X := {X0, X1, · · · }
with a countable state space S = {0, 1, 2, · · · }, where
Xk is the system state at time k. Let S := |S| be the

number of states in S; S may be infinity. Let P :=
[Pi,j]

S
i,j=1 be the transition probability matrix, which

may depend on the history of X , denoted as ⌢hk :=
{X0, X1, · · · , Xk}. If Pi,j depends only on the current
state Xk = i, then X is a Markov chain. The states of
a Markov chain may be classified into transient states,
and null or positive recurrent states. Let (Ω,F ,P) be
the probability space generated by the chain, and E be
the corresponding expectation.

In optimization problems, at any state i ∈ S , we
take an action α ∈ A(i), with A(i) being the set of
all available actions at i. The action α determines the
transition probabilities at i. The action α can be de-
termined by a policy d. We use a superscript to de-
note the policy or action associated with a quantity, e.g.
P d

i,j or Pα
i,j , i, j ∈ S . The stochastic chain is denot-

ed by Xd := {Xd
0 , X

d
1 , · · · }. A policy may depend

on the history ⌢hk = {x0, a0, x1, a1, · · · , xk} (xi ∈
S, i = 0, 1, · · · , k; ai ∈ A(xi), i = 0, 1, · · · , k − 1),
denoted by d⌢hk

, and, if necessary, the corresponding
quantities are denoted by a subscript ⌢hk, e.g. P d

⌢hk

1. If
the policy d depends only on the current state, then d
is called a Markov policy. Let Π be the space of all
policies, including the history-dependent policies, and
Π0 ⊂ Π be the space of all Markov policies. For each
history-dependent randomized policy, we can construct
a randomized Markov policy with the same joint prob-
ablity distribution of states and actions. And for most
Markov decision problems, we can consider determin-
istic Markov policy instead of randomized Markov pol-
icy, see, e.g. [8]. So we mainly consider deterministic
policy in the followings.

At state i with action α determined by policy d, a
cost (or reward), denoted by Cα(i) or Cd(i). The dis-
counted cost criterion with discount factor 0 < β < 1
under policy d is

ηd
β(i) = Ed{

∞∑
k=0

βkCd(Xd
k)|Xd

0 = i}.

The long-run average cost criterion under policy d
is

ηd(i) = lim sup
N→∞

1

N
Ed{

N−1∑
k=0

Cd(Xd
k)|Xd

0 = i}. (1)

The optimal performance of long-run average cost
is η∗(i) = inf

d∈Π
ηd(i). The goal of optimization is to find

an optimal policy d∗, if it exists, that attains the optimal
performance2

d∗ = arg{min
d∈Π

ηd(i), i ∈ S}.

2.2 The Poisson equation
Consider a Markov chain {Xk, k = 0, 1, · · · } un-

der a Markov policy d (We omit the superscript “d”, for
a generic discussion). Let τ(i, j) = min{t > 0 : Xt =

1Instead of P d⌢hk , with a double superscript.
2Under some technical conditions, such a policy indeed exists.
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j|X0 = i} be the first passage time from i to j. For an
ergodic Markov chain, the stationary probability distri-
bution exists, the long-run average η does not depend
on the initial state i, and τ(i, j) < ∞ for all i, j ∈ S .
Furthermore, we have η = lim

k→∞
E[C(Xk)|X0 = i].

We further define

g(i, j) := E{
τ(i,j)−1∑

k=0

[C(Xk)− η]|X0 = i}, i, j ∈ S.

First, we choose a reference state, e.g. state 0, and
define

g(i) := g(i, 0) =

E{
τ(i,0)−1∑

k=0

[C(Xk)− η]|X0 = i}, i ∈ S, (2)

with g(0) = g(0, 0) = 0. g(i), i = 0, 1, · · · , is called a
potential function of the Markov chain3. And we further
assume |g(i)| < ∞, i ∈ S.

Let A := P − I be the discrete version of the in-
finitesimal generator, with I being the identity matrix.
g := (g(0) g(1) · · · )T, C := (C(0) C(1) · · · )T, and
e := (1 1 · · · )T.

Lemma 1 The potential function g(i) of a
Markov chain, i ∈ S , in (2) satisfies the Poisson e-
quation Ag + C = ηe.

Proof From (2), we have

g(i) = C(i)− η +

E{E[
τ(i,0)−1∑

k=1

[C(Xk)− η]|X1]|X0 = i} =

C(i)− η +

E{E[
τ(X1,0)∑
k=1

[C(Xk)− η]|X1]|X0 = i} =

C(i)− η + E{g(X1)|X0 = i}, i ∈ S.
On every sample path with X1 ̸= 0 (when X1 = 0,

Lemma 1 is easy to verify since τ(i, 0) = 1, i ∈ S),
the Markov chain reaches state 0 from state X1 at time
1 after time τ(i, 0)−1, i.e., τ(X1, 0) = τ(i, 0)−1, and
the second equality in the above equation holds. Thus,
this equation is the Poisson equation

Ag(i) + C(i) = η, i ∈ S, (3)

in which Ag is a vector, and Ag(i) is its ith compo-
nent.

For multi-chains, η depends on i and the Poisson
equation is4:

Ag(i) + C(i) = η(i), i ∈ S.
Obviously, the potential function is only up to an

additive constant; i.e., if g(i), i ∈ S , is a solution to the

Poisson equation, so is g(i)+ c for any constant c. Any
state i ∈ S can be chosen as a reference state and we
may set g(i) = 0.

Remark 1 For null recurrent Markov chains,
τ(i, j) may be infinity, and g(i) in (2) is not well de-
fined. However, in some special cases, there might be
some function g(i) and a constant η such that the Pois-
son equation (3) holds, see Example 1.

3 Examples
To motivate our further research, let us first consider

some examples.
Example 1 This is a well-known example [6–8,

10] that shows there is an optimal policy for which the
optimality equation for finite chains does not hold, in-
stead, it satisfies an inequality. As in the literature, we
use the discounted performance to approach the long-
run average.

The state space is S = {0, 1, 2, · · · }. At state i
> 1, there is a “null” action with Pi,i−1 = 1 and cost
C(i) = 1. At state 0, there are actions a and b, with
Ca(0) = 0 and Cb(0) = 1. The transition probabilities
at state 0 for both actions are the same as P0,i = pi,
i > 1, where pi, i > 1, be a probability distribution on

i > 1, with
∞∑
i=1

ipi = ∞.

Let f (respectively, d) be the stationary policy that
chooses a (respectively, b) when at state 0. The costs
under d are identically 1, and hence ηd(i) = 1 for all
i. The Markov chain under policy f is null recurrent,
and the number of cost 1 is higher than that of cost 0,
so we have ηf (i) = 1 for all i. In both cases, the limit
in the long-run average (1) exists, and both d and f are
optimal long-run average policies (among two policies
Π := {f, d}).

Next, we have ηd
β(i) =

1

1− β
, and because Ca(0)

= 0, it is clear that ηf
β(i) <

1

1− β
. Thus, f is discount

optimal for all β ∈ (0, 1).
Now, we focus on policy f and suppress the su-

perscript “f”. We have η(i) ≡ η = 1 for all i, and
by the structure of the Markov chain under f , we have

ηβ(i) =
1− βi

1− β
+βiηβ(0), i > 0. Therefore, for i > 0,

gβ(i) := ηβ(i)− ηβ(0) =

(
1− βi

1− β
)[1− (1− β)ηβ(0)] =

(1 + β + · · ·+ βi−1)[1− (1− β)ηβ(0)].
(4)

3In the literature, the solution to a Poisson equation is called a potential function; the conservative law for potential energy holds,
see [17] and [4].

4The theory for multi-class decomposition and optimization for finite Markov chains is well developed, see [4, 8] for homogeneous
chains, and [3] for nonhomogeneous chains. The decomposition of countable state chains is similar to that for the finite chains, except
that there are infinitely many sub-chains.
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The Poisson equation for the discounted problem is

ηβ(i) = Cα(i) + β
∑
j

Pα
i,jηβ(j), i ∈ S,

where α is the action taken at state i. We have

ηβ(i)− ηβ(0) =

Cα(i)− (1− β)ηβ(0) + β
∑
j

Pα
i,j[ηβ(j)− ηβ(0)].

With gβ(i) = ηβ(i)− ηβ(0), we have

gβ(i) + (1− β)ηβ(0) = Cα(i) + β
∑
j

Pα
i,jgβ(j).

(5)

It has been shown (e.g. [10]) that lim
β→1

(1−β)ηβ(i)

= η = 1 for all i ∈ S . From (4), we have

g(i) := lim
β→1

gβ(i) = i(1− η) = 0, i ∈ S.

However, this convergence is not uniform on S as
β → 1.

When i > 0, there is only one term, Pi,i−1 = 1, in
the summation of the right-hand-side of (5), so we may
take the limit of β → 1 on both sides and obtain

g(i) + η = C(i) + g(i− 1), i > 0.

Indeed, we have 0 + 1 = 1 + 0. However, when i = 0,
the summation on the right-hand-side of (5) contains
infinitely many terms and we cannot exchange the or-
der of lim

β→1
and

∑
j

(Fatou’s lemma for lim inf , non-

uniform for lim). Indeed, at i = 0 we have 0 + 1 >
0 +

∑
j

Pi,j × 0, i.e.

g(0) + η > Ca(0) +
∑
j

P a
0,jg(j) =

min
α=a,b

{Cα(0) +
∑
j

Pα
0,jg(j)}. (6)

This is called the optimality inequality for the long-
run average MDP with countable states in the literature.

Example 2 In this example, we show that the
direction of the “optimality inequality” (6) can be re-
versed. Consider the same Markov chain as Example 1,
but with a different cost at state i = 0. Specifically,
there are two actions, a and b, having the same transi-
tion probabilities at all states i ∈ S , and the same costs
C(i) = 1, for all i ̸= 0. However, we set Ca(0) = 2
and Cb(0) = 3. Policy f takes action a and policy d
takes action b at i = 0.

First, we have ηf
β(i) < ηd

β(i). Thus, d is not dis-
count optimal for all β ∈ (0, 1). Next, because both
Markov chains under f and d are null recurrent, the cost
change at one state 0 does not change the long-run av-
erage. In general, the long-run average of a stochastic
chain does not depend on its values in any finite pe-
riod or any “zero frequently” visited period [3]. This
is called the “under-selectivity” [3, 14]. Thus, we have
ηf (i) = ηd(i) ≡ η = 1 for all i. Therefore f and d are
both long-run average optimal.

Now, we analyze policy f . Similar to Example 1,

we have (dropping the superscript “f”) ηβ(i) =
1− βi

1− β
+ βiηβ(0), i > 0. Therefore (cf. (4)),

gβ(i) := ηβ(i)− ηβ(0) =

(1 + β + · · ·+ βi−1)[1− (1− β)ηβ(0)]. (7)

Similarly, η = lim
β→1

(1−β)ηβ(i) for all i. From (7),

we have g(i) := lim
β→1

gβ(i) = i(1 − η) = 0, i ∈ S.
This convergence is also not uniform on S as β → 1.

As in Example 1, when i > 0, we have 0 + 1 =
1 + 0, that is, the optimality equation holds:

g(i) + η = C(i) +
∑
j

P0,jg(j), i = 1, 2, · · · .

However, when i = 0, we have 0 + 1 < 2 +∑
j

Pi,j × 0; i.e.,

g(0) + η < Ca(0) +
∑
j

P a
0,jg(j) =

min
α=a,b

{Cα(0) +
∑
j

Pα
0,jg(j)}. (8)

Compared with the optimality inequality (6), the in-
equality sign is reversed in (8).

Remark 2 1) The two inequalities (6) and (8)
are not necessary conditions. Also, an average optimal
policy may not be the limiting point of discount optimal
policies. In the following, we will see that (8) is a suf-
ficient condition for average optimal, and (6) is neither
necessary, nor sufficient.

2) In the examples, the Markov chain is null re-
current. So the probability of visiting each state is ze-
ro. Therefore, we may arbitrarily change the cost at
any state without changing the long-run average; but it
changes the relation in the optimality condition. The in-
equality (6) is due to the null recurrency of the states
and the under-selectivity of the long-run average, it is
not an essential property in optimization.

4 Optimization in countable state spaces
4.1 Fundamental results

We assume that the transition probability matrix
P = [Pi,j]i,j∈S does not depend on time; i.e., the
chain X under a Markov policy is a time-homogeneous
Markov chain.

Let r : S → R be a function on S , with E[r(Xn)|
X0 = i] < ∞, i ∈ S , n > 1; and we also denote it
as a column vector r := (r(0) r(1) · · · r(i) · · · )T.
For time-homogeneous Markov chains, it holds that
E[r(Xn+1)|Xn = i] = E[r(X1)|X0 = i].

In general, we define an infinitesimal operator A⌢hn
:

it acts on the function r resulting a function, or a vec-
tor, A⌢hn

r (the subscript⌢hn refers to history dependent),
with

(A⌢hn
r)(i) = E[r(Xn+1)|Xn = i]− r(i),
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i ∈ S, n > 1. (9)

We have A⌢hn
r(i) =

∑
j∈S

P
⌢hn

i,j r(j)− r(i), i ∈ S , or A⌢hn

= P
⌢hn − I , with I being the identity matrix. From (9),

we have

E[A⌢hn
r(Xn)|X0 = i] =

E{E[r(Xn+1)|Xn]− r(Xn)|X0 = i} =

E[r(Xn+1)|X0 = i]− E[r(Xn)|X0 = i].

Adding this equation from n = 0 to N , we get the
following discrete Dynkin’s formula:

N∑
k=0

E[A⌢hk
r(Xk)|X0 = i] =

E[r(XN+1)|X0 = i]− r(i). (10)

Lemma 2 (Comparison Lemma I) Consider
any Markov policy d ∈ Π0 associated with P d, which
generates a Markov chain {Xd

k , k = 0, 1, · · · } with
long-run average ηd(i), i ∈ S . Suppose there are a con-
stant J and a function r(i): S → R, such that

Ed[r(Xd
n)|Xd

0 = i] < ∞, i ∈ S, n > 1, (11)

lim
N→∞

1

N
Ed[r(Xd

N)|Xd
0 = i] = 0, i ∈ S (12)

and the optimality inequality

J + r(i) 6 Cα(i) +
∑
j∈S

Pα
i,jr(j) (13)

holds for any i ∈ S , with α = d(i) being the action
taken at state i, then

J 6 ηd(i), i ∈ S. (14)

Proof By (10) and (12), we have (omitting the su-
perscript “d”)

lim
N→∞

1

N

N−1∑
k=0

E[Ar(Xk)|X0 = i] = 0.

Thus,

η(i)− J =

lim sup
N→∞

1

N

N−1∑
k=0

E[Ar(Xk) + C(Xk)− J |X0 = i].

The theorem follows directly from this difference
formula.

Remark 3 1) Condition (12) can be replaced by
a more general one

lim
N→∞

1

N
Ed[r(Xd

N)|Xd
0 = i] 6 0.

However, for positive costs, the relation < does not
make practical sense.

2) If (13) changes to J + r(i) > Cα(i) +∑
j∈S

Pα
i,jr(j), then (14) becomes J > ηd(i), and (12)

can be relaxed to lim
N→∞

1

N
Ed[r(Xd

N)|Xd
0 = i] > 0.

3) The Markov chain may be a multi-chain. When
the Markov chain is recurrent, ηd(i) ≡ η, i ∈ S , being

a constant.
4) The condition (13) is only sufficient, it is not

necessary as shown in Example 1. It may not need to
hold at some null recurrent states.

Example 3 It is interesting to note that in Exam-
ple 2, condition (8) satisfies the optimality inequality
(13) for both policies d and f , and hence it is a suffi-
cient condition for J to be the optimal average. How-
ever, in Example 1, the inequality (6) is not a sufficient
condition.

For history-dependent policies, it is more conve-
nient to state the comparison lemma for all policies.

Lemma 3 (Comparison Lemma II) Let d ∈ Π
associated with a stochastic chain {Xd

k , k = 0, 1, · · · }
and long-run average ηd(i), i ∈ S . The action α deter-
mines the transition probabilities Pα

i,j , i, j ∈ S . Sup-
pose there is a function r(i): S → R, satisfying (11)
and (12) for all d ∈ Π . If there is a constant J such that
the optimality inequality

J + r(i) 6 min
α∈A(i)

{Cα(i) +
∑
j∈S

Pα
i,jr(j)} (15)

holds for any i ∈ S , then J 6 ηd(i), i ∈ S for all d ∈
Π .

Proof For a optimization problem with history
dependent randomized policy, we can transform into
considering randomized Markov policy, see [8]. So the
proof can be derived by Lemma 2.

The performance difference formula may con-
tain more information than the above two comparison
lemmas. For history-dependent chains, the potentials
and Poisson equations are not well studied, and the
“lim sup” average does not make sense at transient
states, so we have to assume that the limit in (1) exists.

Lemma 4 Let f ∈ Π and d ∈ Π0, and gd is the
potential of d. Assume that

lim
N→∞

1

N
Ef [gd(Xf

N)|X
f
0 = i] = 0. (16)

Then, we have

ηf (i)− ηd(i) =

lim
N→∞

1

N

N−1∑
k=0

Ef{{[P f
⌢hk
gd](Xf

k ) + Cf (Xf
k )} −

{[P dgd](Xf
k ) + Cd(Xf

k )}|X
f
0 = i} +

{ lim
N→∞

1

N

N−1∑
k=0

Ef [ηd(Xf
k )|X

f
0 = i]− ηd(i)}. (17)

When lim
N→∞

Ef [ηd(Xf
N)|X

f
0 = i] exists,

lim
N→∞

1

N

N−1∑
k=0

Ef [ηd(Xf
k )|X

f
0 = i]

in (17) is equal to lim
N→∞

Ef [ηd(Xf
N)|X

f
0 = i]. When

d is single class, ηd(i) ≡ ηd for all i ∈ S , then
Ef [ηd(Xf

k )|X
f
0 = i] ≡ ηd, for all i. The second term
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on the right-hand-side of (17) disappears.

Proof We just need to prove (17). By (10) and the
assumption, we have

ηf (i)− ηd(i) =

lim
N→∞

1

N

N−1∑
k=0

Ef{Cf (Xf
k )|X

f
0 = i}+

lim
N→∞

1

N
{Ef [gd(Xf

N)|X
f
0 = i]− gd(i)} − ηd(i) =

lim
N→∞

1

N

N−1∑
k=0

Ef{Cf (Xf
k )|X

f
0 = i}+

lim
N→∞

1

N

N−1∑
k=0

Ef{[P f
⌢hk
gd](Xf

k )− gd(Xf
k )|X

f
0 = i}−

ηd(i),

in which the assumption (16) plays an important role in
the first equality, then the Lemma follows directly from
the Poisson equation of gd.
4.2 Optimal policy is positive recurrent or multi-

chain
Many results follow naturally from Lemma 2. First,

we have

Theorem 1 Suppose there is a positive recurrent
Markov policy d∗ satisfying the Poisson equation

Ad∗
gd

∗
+ Cd∗

= ηd∗
e, (18)

where ηd∗
is a constant, and

min
α∈A(i)

{Cα(i) +
∑
j∈S

Pα
i,jg

d∗
(j)} =

Cd∗
(i) +

∑
j∈S

P d∗

i,j g
d∗
(j) = ηd∗

+ gd
∗
(i), (19)

Ed[gd
∗
(Xd

n)|Xd
0 = i] < ∞, n = 1, 2, · · · ,

lim
N→∞

1

N
Ed[gd

∗
(Xd

N)|Xd
0 = i] = 0, (20)

for all i ∈ S and d ∈ Π , then d∗ is an optimal policy in
Π 5, and the optimality inequality becomes an equality.

Proof Set r(i) := gd
∗
(i), and J = ηd∗

in the op-
timality inequality (15), and we get ηd∗ 6 ηd(i) for all
i ∈ S and d ∈ Π .

Remark 4 1) In this theorem, d∗ cannot be a
multi-chain, because J in Lemma 3 has to be a constan-
t. For multi-chain optimal policies, see Theorem 3.

2) d∗ is usually positive recurrent, but if it is null
recurrent and equation (18) holds for ηd∗

and a function
gd

∗
, then the theorem may also hold.
3) All the other policies d ∈ Π may be null re-

current, or multi-chain. Condition (19) may not need to
hold at some null states which are null-recurrent at all
the Markov chains under all other policies.

Theorem 2 Suppose all policies in Π0 are pos-
itive recurrent, and Markov policy d ∈ Π0 is long-run

average optimal in Π0. Then (18) and (19) hold, and it
is optimal in Π .

By the performance difference formula (17), we
have a set of more general optimality equations. The
proof of the following theorem is similar to that in [3]
for time nonhomogeneous Markov chains, see also [4]
and [8] for finite multi-chains.

Theorem 3 Let d∗ ∈ Π0 satisfying the Poisson
equation Ad∗

gd
∗
(i)+Cd∗

(i) = ηd∗
(i), and |ηd∗

(i)| <
L < ∞, for all i ∈ S . Suppose that for all α ∈ A(i),
Aα

i,j := Pα
i,j − I , there exists a constant M < ∞ such

that

|
∑
j∈S

Aα
i,jg

d∗
(j) + Cα(i)| 6

M |
∑
j∈S

Ad∗

i,jg
d∗
(j) + Cd∗

(i)|, i ∈ S, (21)

and (20) holds for all i ∈ S, d ∈ Π . Then d∗ is optimal
in Π if

a) ηd∗
(i) = min

α∈A(i)
{
∑
j∈S

Pα
i,jη

d∗
(j)}, i ∈ S, (22)

and there is an ϵ > 0 such that for all i ∈ S, α ∈ A(i),
if ηd∗

(i) <
∑
j∈S

Pα
i,jη

d∗
(j) then∑

j∈S
Pα

i,jη
d∗
(j)− ηd∗

(i) > ϵ, (23)

and

b) ηd∗
(i) + gd

∗
(i) =

min
α∈A0(i)

{Cα(i) +
∑
j∈S

Pα
i,jg

d∗
(j)}, i ∈ S, (24)

where A0(i) := {α ∈A(i) :
∑
j∈S

Pα
i,jη

d∗
(j) = ηd∗

(i)},

i ∈ S .

Proof Let d be any policy in Π . By (22), we have
Ed[ηd∗

(Xd
k)|Xd

0 = i] > ηd∗
(i), for any k, so we have

lim
N→∞

1

N

N−1∑
k=0

Ed[ηd∗
(Xd

k )|Xd
0 = i]− ηd∗

(i) > 0.

(25)

Next, applying the Dynkin’s formula, we have

lim
K→∞

1

K

K−1∑
k=0

Ed{[(P d
⌢hk
ηd∗

)(Xd
k)−

ηd∗
(Xd

k)]|Xd
0 = i} = 0.

Let I be an indicator function. Under condition
(22), the above equation implies

lim
K→∞

1

K

K−1∑
k=0

Ed{[(P d
⌢hk
ηd∗

)(Xd
k)− ηd∗

(Xd
k)]

I[(P d
⌢hk
ηd∗

)(Xd
k)− ηd∗

(Xd
k) > 0]|Xd

0 = i} = 0.
(26)

From Ad∗
gd

∗
(i) + Cd∗

(i) = ηd∗
(i), we group the

5(ηd∗ , gd
∗
, d∗) is called a canonical triplet in [7].
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terms together
K−1∑
k=0

[(Ad∗
gd

∗
)(Xd

k) + Cd∗
(Xd

k)] =

K−1∑
k=0

ηd∗
(Xd

k) =

K−1∑
k=0

[ηd∗
(Xd

k)]I[(P
d

⌢hk
ηd∗

)(Xd
k)− ηd∗

(Xd
k) > 0]+

K−1∑
k=0

[ηd∗
(Xd

k)]I[(P
d

⌢hk
ηd∗

)(Xd
k)− ηd∗

(Xd
k) = 0].

(27)

The third line of (27) is
K−1∑
k=0

[
ηd∗

(Xd
k)

(P d
⌢hk
ηd∗)(Xd

k)− ηd∗(Xd
k )

]

[(P d
⌢hk
ηd∗

)(Xd
k )− ηd∗

(Xd
k)]

I[(P d
⌢hk
ηd∗

)(Xd
k)− ηd∗

(Xd
k) > 0].

By (23) and the finiteness of ηd∗
(i), the fraction in

the above expression is bounded. From (26), we get

lim
K→∞

1

K

K−1∑
k=0

Ed{[(Ad∗
gd

∗
)(Xd

k ) + Cd∗
(Xd

k)]

I[(P d
⌢hk
ηd∗

)(Xd
k)− ηd∗

(Xd
k) > 0]|Xd

0 = i} = 0,

and therefore, from (27), it holds that

lim
K→∞

1

K

K−1∑
k=0

Ed{(Ad∗
gd

∗
)(Xd

k)+

Cd∗
(Xd

k)|Xd
0 = i} =

lim
K→∞

1

K

K−1∑
k=0

Ed{[(Ad∗
gd

∗
)(Xd

k) + Cd∗
(Xd

k)]

I[(P d
⌢hk
ηd∗

)(Xd
k )− ηd∗

(Xd
k) 6 0]|Xd

0 = i}. (28)

Now, by (21), we have

|Ad
⌢hk
gd

∗
(i) + Cd(i)| 6 M |Ad∗

gd
∗
(i) + Cd∗

(i)| =
M |ηd∗

(i)| < ML, (29)

for all i ∈ S and any history⌢hk. Then similar to (28),
we have

lim
K→∞

1

K

K−1∑
k=0

Ed{(Ad
⌢hk
gd

∗
)(Xd

k )+

Cd(Xd
k)|Xd

0 = i} =

lim
K→∞

1

K

K−1∑
k=0

Ed{[(Ad
⌢hk
gd

∗
)(Xd

k) + Cd(Xd
k)]

I[(P d
⌢hk
ηd∗

)(Xd
k )− ηd∗

(Xd
k) 6 0]|Xd

0 = i}. (30)

Furthermore, condition b) is equivalent to

(Ad
⌢hk
gd

∗
)(i) + Cd(i) >

(Ad∗
gd

∗
)(i) + Cd∗

(i), i ∈ S, d⌢hk
∈ A0(i). (31)

From (31) (28) and (30), we have

lim
K→∞

1

K
Ed{

K−1∑
k=0

(Ad
⌢hk
gd

∗
)(Xd

k)+

Cd(Xd
k )|Xd

0 = i} =

lim
K→∞

1

K
Ed{

K−1∑
k=0

[(Ad
⌢hk
gd

∗
)(Xd

k ) + Cd(Xd
k)]

I[(P d
⌢hk
ηd∗

)(Xd
k)− ηd∗

(Xd
k) 6 0]|Xd

0 = i} =

lim
K→∞

1

K
Ed{

K−1∑
k=0

[(Ad
⌢hk
gd

∗
)(Xd

k ) + Cd(Xd
k)]

I[(P d
⌢hk
ηd∗

)(Xd
k)− ηd∗

(Xd
k) = 0]|Xd

0 = i} >

lim
K→∞

1

K
Ed{

K−1∑
k=0

[(Ad∗
gd

∗
)(Xd

k) + Cd∗
(Xd

k)]

I[(P d
⌢hk
ηd∗

)(Xd
k)− ηd∗

(Xd
k) 6 0]|Xd

0 = i} =

lim
K→∞

1

K
Ed{

K−1∑
k=0

[(Ad∗
gd

∗
)(Xd

k)+

Cd∗
(Xd

k)]|Xd
0 = i}. (32)

Next, setting f := d and d := d∗ in the perfor-
mance difference formula (17), we get

ηd(i)− ηd∗
(i) =

lim
N→∞

1

N

N−1∑
k=0

Ed{{[P d
⌢hk
gd

∗
](Xd

k) + Cd(Xd
k)}−

{[P d∗
gd

∗
](Xd

k) + Cd∗
(Xd

k)}|Xd
0 = i}+

{ lim
N→∞

1

N

N−1∑
k=0

Ed[ηd∗
(Xd

k)|Xd
0 = i]− ηd∗

(i)}. (33)

From this equation, (25) and (32), we conclude that
ηd(i) > ηd∗

(i), i ∈ S , or ηd > ηd∗
, for all d ∈ Π .

That is, d∗ is an optimal policy.

Remark 5 1) The restriction of (24) to A0 is
very important; otherwise, the inequality in (32) may
be false and conditions (22) and (24) may not have a
solution, see also Example 9.1.1 in [11].

2) The technical conditions (21) and (23) indicate
that some kind of uniformity is required for countable-
state problems. They are not very restrictive and can be
replaced by other similar conditions.

4.3 Under-selectivity
Under-selectivity refers to the property that the

long-run average of a stochastic chain does not de-
pend on its value in any finite period, or at any “non-
frequently visited” periods, or states, defined below.

Definition 1 a) A subsequence of k = 0, 1, · · · ,
denoted by k0, k1, · · · , is called a non-frequently visit-
ed sequence, if lim

n→∞

n

kn
= 0.

b) A subset of the state space, S0 ⊂ S , is called a
non-frequently visited set of a Markov chain X , if

lim
K→∞

1

K

K−1∑
k=0

I(Xk ∈ S0) = 0, w.p.1, (34)

with I being an indicator function.

It is clear that non-frequently visited sets include
transient states in multi-chains and finite sets of null re-
current states.

Theorem 4 Theorem 3 holds even if Condition
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(24) does not hold at any non-frequently visited set of
states of a policy.

Proof By (29), |(ηd∗
(i) + gd

∗
(i)) − (Cα(i) +∑

j∈S
Pα

i,jg
d∗
(j))|, α ∈ A0(i), i ∈ S , are bounded. Sup-

pose (24) does not hold on a non-frequently visited set
S0 of states of a policy d0. Then by (34), we have

lim
K→∞

1

K

K−1∑
k=0

I(Xd0

k ∈ S0)

[Ed{{[P d
⌢hk
gd

∗
](Xd

k) + Cd(Xd
k)}−

{[P d∗
gd

∗
](Xd

k) + Cd∗
(Xd

k)}|Xd
0 = i}] = 0, w.p.1.

This cannot change the relation ηd > ηd∗
in

(33).
4.4 Null recurrent Markov policies

When the optimal policy is null recurrent, the situ-
ation is a bit complicated. The Poisson equation (3) and
the potential function g(i) may not exist, and it is diffi-
cult to find the function r(i), i ∈ S , in (13), except for
very simple cases, e.g. in Examples 1 and 2, r(i) ≡ 0,
for all i ∈ S .

To further understand the problem, consider a null
recurrent policy f , and let d be any positive recur-
rent Markov policy with the potential function gd(i),
i ∈ S . Assume that (13) (with the > sign) holds for
J = ηd, r(i) = gd(i), α = f(i), Cf (i) = Cα(i), i.e.,
ηd+gd(i) > Cα(i)+

∑
j∈S

Pα
i,jg

d(j). Then ηd > ηf , i.e.,

ηf = min{ηf , ηd}. By the Poisson equation for d, we
have Cd(i) +

∑
j∈S

P d
i,jg

d(j) > Cf (i) +
∑
j∈S

P f
i,jg

d(j).

Therefore, we have

ηd + gd(i) > min{xCf (i)+
∑
j∈S

P f
i,jg

d(j),

Cd(i) +
∑
j∈S

P d
i,jg

d(j)}. (35)

This is the “optimality inequality” among these t-
wo policies. As explained in Examples 1 and 2, this in-
equality is due to the null recurrency of i and the under-
selectivity of average optimality. In fact, both directions
6 and > are possible in (35). When d is also null recur-
rent, the situation is more complicated because there is
no Poisson equation.

The next specially designed examples illustrates the
application of Theorem 1 to a null recurrent policy. We

need use the zeta function ζ(s) =
∞∑
k=1

1

ks
. It is known

that ζ(1) =∞, ζ(
3

2
) ≈ 2.6124, ζ(2) =

π2

6
≈ 1.6449,

ζ(3) ≈ 1.2021.
Example 4 The structure of the Markov chain

is the same as Example 1. The state space is S = {0,
1, 2, · · · }. At state i > 1, there is a null action with
Pi,i−1 = 1. At state 0, the transition probabilities are
given by P0,i > 0, i > 1. We consider two policies f
and d:

1) For policy f , the transition probabilities at state

0 is P f
0,i = pi, i > 1, with

∞∑
i=1

pi = 1,
∞∑
i=1

ipi =

∞,
∞∑
i=1

√
ipi < ∞. For example, we may take pi =

1

ζ(2)

1

i2
. The cost function is set Cf (i) ≡ 1, for all

i ∈ S .
As shown in Example 1, the Markov chain is null

recurrent, with long-run average ηf = 1.
2) For policy d, the transition probabilities at s-

tate 0 is set to be P d
0,i = qi, i > 1, with

∞∑
i=1

qi =

1,
∞∑
i=1

iqi < ∞,
∞∑
i=1

√
iqi < ∞. For example, we may

take qi =
1

ζ(2.5)

1

i2.5
. So the first passage time τ(0, 0)

is finite and the Markov chain under d is positive recur-
rent.

We define the cost function for d for i > 0 by

Cd(i) =

{
1, if i = k2 for some integer k > 1,

0, otherwise,

and choose a special value for Cd(0) so that ηd = 0.
Let πi be the steady-state probability at state i, i =
0, 1, · · · . Thus, we choose

Cd(0) = −

∞∑
i=1

πiC
d(i)

π0

. (36)

By the structure of the Markov chain, every time it

visits state 0, it has to visit state i,
∞∑
k=i

qk times (i =

1, 2, · · · ). Therefore, πi = (
∞∑
k=i

qk)π0, and thus,

π0 =
1

1 +
∞∑
i=1

∞∑
k=i

qk

=
1

1 +
∞∑
k=1

kqk

> 0.

By (36), we have

Cd(0) = −
∞∑
i=1

(
∞∑
k=i

qk)C
d(i). (37)

Next, we choose z = 0 as the reference state, with
gd(0) = 0. By (2), the potential function at i > 0 is

gd(i) = Ed{
i−1∑
k=0

[Cd(Xd
k )]|Xd

0 = i} =

i∑
k=1

Cd(k) = ⌊
√
i⌋, (38)

where ⌊x⌋ denotes the largest integer less or equal x.
Now, we are ready to check the Poisson equation

(3). At i = k2 for some integer k,

gd(i) = k, gd(i− 1) = k − 1,

P d
i,i−1 = 1, Cd(i) = 1.

(3) is gd(i − 1) − gd(i) + Cd(i) = ηd, or (k − 1) −
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k + 1 = 0, which indeed holds. At i = k2 + 1, it is

gd(k2)− gd(k2 + 1) + Cd(k2 + 1) = ηd,

or k − k + 0 = 0. At i > 0 but not one of the above
two cases,

gd(i) = ⌊
√
i⌋ = ⌊

√
i− 1⌋ = gd(i− 1),

so it is ⌊
√
i− 1⌋ − ⌊

√
i⌋ + 0 = 0. In all these cases

for i > 0, (3) holds. Finally, we verify that (3) holds at
i = 0. Indeed, by (38) and (37), it holds

Adgd(0) =
∞∑
k=1

qkg
d(k)− gd(0) =

∞∑
k=1

[qk
k∑

i=1

Cd(i)] =
∞∑
i=1

[
∞∑
k=i

qkC
d(i)] = −Cd(0).

We have ηd = 0 < 1 = ηf , so d is optimal among
{d, f}. Let us verify the optimality equation (19). First,
we have

H0 := Ef [gd(Xf
1 )|X

f
0 = 0] =

∞∑
i=1

pig
d(i) =

∞∑
i=1

⌊
√
i⌋

ζ(2)i2
<

∞∑
i=1

√
i

i2
=

∞∑
i=1

(
1

i
)

3
2 < ∞. (39)

Thus,

(Afgd)(0) + Cf (0) = H0 + 1 > 0 =

(Adgd)(0) + Cd(0).

Also, it is easy to check that

(P fgd)(i) + Cf (i) = gd(i− 1) + Cf (i) >
gd(i− 1) + Cd(i) = (P dgd)(i) + Cd(i), i > 0.

That is, the optimality equation (19) holds at all s-
tates i ∈ S . So we have ηf > ηd.

It is a bit tedious to check the condition (12). We
briefly discuss it as follows. First, we define a vector
denoted as Wn, n = 0, 1, 2, · · · , whose ith component
is

Ef [gd(Xf
n)|X

f
0 = i], i = 0, 1, · · · .

Thus,

W0=(gd(0) · · · gd(i) · · · )T=(0 1 · · · ⌊
√
i⌋ · · · )T.

By (39) and the structure of P f
i,j , we have W1 =

(H0 0 1 · · · ⌊
√
i⌋ · · · )T = (H0 WT

0 )T. In W1, the
vector W0 shifts by one step towards right. Then

W2 = (H1,W
T
1 )T = (H1,H0,W

T
0 )T,

where

H1 =
∞∑
i=1

⌊
√
i⌋

ζ(2)(i+ 1)2
<

∞∑
i=1

√
i

(i+ 1)2
,

and we have W3 = (H2 H1 H0 W
T
0 )T, where

H2 < H1 +H0 +
∞∑
i=1

√
i

(i+ 2)2
<

2∑
n=0

∞∑
i=1

√
i

(i+ n)2
.

In general, we have

WN = (HN−1 HN−2 · · · H1 H0 W
T
0 )T,

where HN <
N∑

n=0

∞∑
i=1

√
i

(i+ n)2
. Finally, by Stolz theo-

rem, we have

lim
N→∞

HN

N
6 lim

N→∞

N∑
n=0

∞∑
i=1

√
i

(i+ n)2

N
=

lim
N→∞

∞∑
i=1

√
i

(i+N)2
= 0.

Condition (12) is thus proved.

5 Conclusion
We summarize this paper with the following obser-

vations.
1) The optimality inequality (13) is a sufficient con-

dition for average optimal. The strict inequality may
hold at null recurrent states. When the optimal policy
is positive recurrent, the inequality becomes an equali-
ty.

2) A null recurrent Markov chain visits any state
with a probability of zero, so the cost function at such
a state can be changed without changing the value of
long-run average. Thus, any optimality equality or in-
equality involving the cost may not need to hold at such
a state. In other words, the inequality may be in either
direction at a null recurrent state for the optimal policy
(see Examples 1 and 2). This is purely the consequence
of null recurrency and under-selectivity.

3) The existence of average optimal policies of
countable MDPs is mainly derived by the Dynkin’s for-
mula from a view of performance difference. Example 4
shows the application of the main results, which makes
a supplement to the existing literature work.
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