8 11 w4 2R 5 E

5 39 B Vol. 39 No. 8
2022 4 8 H Control Theory & Applications Aug. 2022

—RIRL M R G H & RLHUI R R ()5 R B E
W, i

(ZWeREE: RS HGeIRER, Wt 5 &
FEE: AT L —RARLNE R GER) B TG REATII R  75 R S B UE )

443002)

. BT RIAR R R Gt A7 AR IR HL

A TR S . ARLPE I (I3 3 — AR KR Kl A H PO B0 B30n i A I i L FOREBR B8 5, TER— MR
RN, LU, BETH A 3NN A O S It i s, 4t AR A FIE R, SRS, M3 24 Lyapunov-Kraso-

vskiilZ B, 45 A OR AR R GEATIEASE 78 70 2. B, (17 SR AR A2 T I R R AT AT 2.

RBEIR): B QIENEUE ; AR RSE: I it Seist

St AR, L. —SRARZ M R G B IS MBI LGRS Bt S B UE . 1 HIEIR S AT, 2022, 39(8): 1460
- 1470

DOI: 10.7641/CTA.2022.10773
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nonlinear systems via output feedback
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Abstract: In this paper, we study adaptive anti-measurement-disturbance stabilization for a class of nonlinear systems
via output feedback. In the output of the systems, there exist multiplicative noises which are assumed to be positive and
have known upper and lower bounds. The growth rate of the nonlinear terms has an unknown constant multiplied by a
power function of the output and a power function of the output with time delay. Firstly, a matrix inequality is developed.
Secondly, we design an output feedback stabilizer with three time-varying gains, and give adaptive laws of the gains as well.
Then, a Lyapunov-Krasovskii functional is constructed, and sufficient conditions are derived to ensure that the closed-loop
system is asymptotically stable. Finally, numerical simulations are provided to verify the feasibility and effectiveness of the

design method.
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1 Introduction

The problem of stabilization has been well stud-
ied for nonlinear systems via output feedback in the
past few decades. Most of the results are derived under
the condition that the output can be measured precise-
ly [1-4]. However, since the influence of disturbance
or sensor error, sometimes, we cannot get the accurate
values of the output. For this reason, the synthesis prob-
lem has been studied for nonlinear systems with output
containing disturbance, such as y = x; 4+ p, where p
denotes disturbance. For instance, an adaptation-gain
observer was designed for a class of nonlinear sys-
tems with measurement noises [5]. The authors in [6]
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addressed an L; adaptive output-feedback descriptor
for multi-variable nonlinear systems with measurement
disturbances.

However, sometimes the error in the output is not
related to time, but related to the states. Therefore, re-
searchers proposed the assumption y = ¢(z1) [7-9],
where ¢(+) is a function with respect to 2. In order to
stabilize this type of systems, it is usually needed to as-
sume that y is differentiable. For example, the authors
in [8] studied output feedback stabilization for uncertain
nonlinear systems with unknown growth rate and un-
known output function. A design method was proposed
to solve the problem of sampled-data output feedback
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stabilization for nonlinear systems with unknown out-
put function [9].

Recently, a new output function error model like
y = 0O(t)x; has been proposed, where 6(t) is a func-
tion with respect to time. Compared with the previous
model, it is not necessary to assume that the function
1 is derivable when considering the stabilization prob-
lem for this kind of nonlinear systems. In fact, it is only
assumed that 6(t) is a bounded function [10-12]. The
authors in [10] proposed a dual-domination approach to
copy with the problem of output-feedback stabilization
for nonlinear systems with unknown measurement sen-
sitivity. More specifically, in [11], the authors develope-
d a new stochastic adaptive dual-domination approach
to deal with the problem of stabilization for stochas-
tic strict-feedback systems with sensor uncertainty. A
large bound of measurement sensitivity was allowed to
achieve the regulation of nonlinear systems with un-
known growth constant rate [12]. However, in prac-
tice, nonlinear systems with time-varying growth rate
are usually applied to model the circuits with nonlin-
ear resistance [13—14] and business cycles [15]. There-
fore, it is interesting to research the problem of anti-
measurement-disturbance output feedback stabilization
for a class of nonlinear systems with multiplicative
noises and with time-varying, time-delay growth rate.

In this paper, we study the problem of output feed-
back stabilization for nonlinear systems with unknown
measurement sensitivity. The growth rate of the non-
linear terms has an unknown constant multiplied by a
power function of the output and a power function of
the output with time delay. Firstly, we present a matrix
inequality. Then, based on this matrix inequality, an out-
put feedback controller is constructed with three time-
varying gains to stabilize the nonlinear system. At last,
a Lyapunov-Krasovskii functional is proposed and suf-
ficient conditions are derived to ensure that the closed-
loop system is asymptotically stable. Our major contri-
butions include: 1) A useful matrix inequality is pro-
posed. 2) Compared with the results in [16-17], the
boundedness of the measurement disturbances 6(t) is
enlarged as 0 < 6(t) < +oo, and the growth rate of
the nonlinear terms is time-varying and dependent on
the output.

The remainder of this paper is organized as follows.
In Section 2, we present some useful lemmas and prob-
lem description. In Section 3, an output feedback con-
troller is designed based on a specially constructed ob-
server and three time-varying gains. In Section 4, we
give our main results: sufficient conditions are proposed
to ensure asymptotical stability of the closed-loop sys-
tem. Numerical simulations are provided to illustrate
the validity of the proposed design methods in Sec-
tion 5. This paper is concluded in Section 6.

2 Preliminaries and problem description

In this paper, we consider an n-order (n > 2)
single-input single-output (SISO) uncertain nonlinear
system

=z + filt,T), i =1, n— 1,
T =u+ fult,T,), (D
y=0(t)z,

where 7; = (1, r))T € R, ueRandy € Rare
the system state, control input and measurement out-
put, respectively. The sensor sensitivity #(t) (t € RT)
is an unknown continuous function. The functions f;:
R* x R™ — R are continuous and satisfy the following
assumptions.

Assumption 138 There exists a known real

number p > 0 and an unknown constant ¢ > 0 such
that

| fi(t,z;)] <

1+ ) 3 a0+

c(1+ | (t —7(2)[") J; it — 7(1))];

where 7(t) represents time-delay and satisfies that 0 <
7(t) < 7 < 1, 7 is a known constant.

Remark 1 Different from [11-12], the growth
rate is a time-varying function in this paper. When
p = 0, the time-varying growth rate is reduced to a con-
stant growth rate. Therefore, the constant growth rate
can be regarded as a special case of the time-varying
growth rate. Moreover, unlike [10, 17], the constant ¢
of the growth rate is unknown. With the introduction of
unknown constant, time-delay and sensor sensitivity, it
is more difficult to design a stabilizer for the nonlinear
system (1).

Remark 2  In practice, the nonlinear system with
time-varying growth rate satisfied Assumption 1 is usu-
ally applied to model the circuits with nonlinear resis-
tance [13-14] and business cycles [15]. The dynamical
equation called the forced van der Pol equation [19-20]
is given as follows:

I+ p(1 =90+ 9 = u, )
where p is an unknown constant. The authors in [20]
discussed in detail how an actual nonlinear RLC series
circuit was transformed into the equation (2).
Suppose that only ¥ is measurable. Under the coor-
dinate transformation x; = 9, 9 = 19, we have

i‘l = T2,
o =u—x — p(l — %)y, 3)
Yy=2=i.
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Ifletec = = 2, then the condition in i =2,---,N,byy1 = 0, by = 0, Kk is a positive
Assumption 1 holds. Thus, the system (3) has the form constant, and
of the system (1). _ 1 N=1 _ 1 m m
. . bi== Y (bm+—+—=)" [I bi+
Assumption 2 As in [12], the sensor sensitivity 2 S K 27 jmit1

6(t) is assumed to be unknown, continuous and bound-
ed. Moreover, there exists positive constants 0 < 6; <
land 1 < 6, < oo such that ; < 6(¢t) < 6, for all
t>0.

Remark 3  In this paper, 6(¢) is assumed to be
an unknown continuous function with known upper and
lower bounds, but does not need to be derivable. In fact,
there always exists a multiplicative noise 6(¢). For in-
stance, in [21], the authors pointed out that the magnetic
displacement sensor of the bearing suspension system
has a sensor error of + 10%, which means () is a
bounded time-varying function ranging from 0.9 to 1.1.
Because of its unique properties, it has been widely s-
tudied [10-12,16].

Compared with [11,16], in this paper, the allowable
measurement error range is enlarged from 0 to 4-oc0.
Thus, the proposed method can be applied to nonlinear
systems not only with a multiplicative noise 6(t) close
to 1, but also with a multiplicative noise in the interval
(0, +00).

We also need the following inequalities to derive
our main results.

Lemma 1?2 For (z y)T
Young’s inequality holds:

€ R?, the following

P 1
zy < |zl + — 1yl
D qui
where v > 0, the constants p > 1 and ¢ > 1 satisfy
p-1D(—-1) =1

Lemma 2! For p € [1,400) and any z; €
R,7=1,---,n, the following inequality holds:

(Jzal+ -+ za)P <P (|27 4 -+ 2 7).

Lemma 32! Under Assumption 2, let

1
l1:b2+§+l07

i i+1
li:bili—l_binbk+ku,i:27"~7N7
k=2

k=2
where [, is a positive constant, [} satisfies

156t
o1 — o)~ 0 <o,
and the following inequalities for i = 2,--- | N,
2 150(t)
—p(1—=06(t)))—
(g =0
(1=0()*p; >0,

1 i+1
p1=bz+§,m bi ku* H b,
S
bi:bi+1+£+*+bia

2 K

L, & o .

W Il =20 N1
k=i+1

Let A;, be an N x N matrix and P, = PP, is a

positive definite matrix as

—LO(t) 1 0 0
—L,A(t) 0 1 0
A = : Do e
—In_10(t) 0 0 1
—In0(t) 0 0 0
1 o o0 --- 0
—b, 1 0 --- 0
Pl = . . . .
0 --- 0 —by 1

Then, for [y > [}, we have the following inequality:

ALP, + PLAL < —0uld,
1
where 0y = Ao (PL) min{lo6;, —}, Iisan N x N
K
identity matrix.

Remark 4  The different between Lemma 3 and
Lemma 1 in [12] is that a parameter & is introduced. But
the proof process is similar and is omitted here. This pa-
rameter x can bring flexibility when designing the out-
put feedback stabilizer.

Lemma 4  Suppose that the conditions of Lem-
ma 3 hold. For an N x N matrix D = diag{o,1 +
o,--+,N — 1+ o}, there exists an appropriate posi-
tive constant o*, such that when ¢ > o¢*, we have the
following matrix inequality:

DP,+P.D >

where 7; > 0 is a real constant.

771PL1

Proof Consider a system n = Dn with n =

[771 Ny -+ 77N]T. Using a transformation §& = P,
we have
= 517
&+Z§] 1‘[ b, i=2,---,N.
=1 k=j+1

Then, that is,

é:Pan7
51—051,
& =—bi(i—2+0)(&- 1+Z€J H bi)+
j=1  k=j+1
(z—1+0)(§z+2§ H bi) =
j=1  k=j+1
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1—1 [ —
(i—1+0)&+ > & II bi Ls(0) =1, )
g=1 k=gt where
1=2,---,N. < min{ 1 1 ) @)
o < min , ,
N h S 1, 1, db Li— T1 Amin (L) T2 Amin (@)
ote that gié‘j = _567, - igj’ and 0; > 1,7 = and
2,---, N. Therefore,
N o N , B =
Zl&&:zl(z—ua)&ﬁ max{ 27
i= i= X = ,
N i1 i (1 - 7')7T1>\min(PL)
/;gi;é‘jk_nlbk> 1 1 )
l; . a (1 - 7A’)7T2)\min(Q)7 (1 - %)WlAmin(PL) ’
> (0 —0")E, ©)
=l and
where ¢* is an appropriate positive constant and related
N > 0" 10
to by. If 0 > o*, then, we get > ;& > 0. Note that Tz (10)
i=1 and
Moo 1d(E7¢) 1
&= = = —. 11
;56 T p< (1D)
5 (" PT Py + 0T PYPy) = The controller Z,(t) is given by
1 u=— > (a;(LiLyL3)" "™, (12)
5 (" DPn -+ 4" PLDy) > 0, Z@llaLala)™)
where a; > 0 (i = 1,--- ,n) are coefficients of the

Thus, the conclusion holds. O

Remark 5 Note that o* increases with the in-
crease of b,. We can select a larger value of x to
make b, and o* small. For example, when N = 2,
k = 10, we have by = 1.1. Choose 0 = (.25, then
DP;, + P, D > 0. If we choose x = 1 like [12], when
N = 2, we have b, = 2. With the same parameter
o = 0.25, we get Apin (DPL, + PLD) < 0.

3 Output feedback controller design

In this section, an output feedback controller is con-
structed for the nonlinear system (1) with unknown sen-
sor sensitivity #(¢) and the time-varying growth rate
shown in Assumption 1.

Firstly, construct the following observer:

;= &ip1 + (L1 Ls) (y — 31),
izl?"'>n_17 4)
Ty = u+ Lo (L1Ls)"(y — &1),

where & = (&, --- &,)" € R™ is observer state, the
dynamic gains Lq, L, and L3 are updated by

2 ~2 2n—3
: Y+ L +1
Ly = 2 1A2( - 2n—3 201)7 Li(0) =1,
1+y2+27 (L1 L) L3
)
2 ~2
L, = , Ly(0) =1,
’ 1+y2+§:§((L1L2)2n—3L§”1) 2(0)
(6)

and
|y

Ls = max{—aL? + 8L, (1 + (97),,)27 0},
I

Hurwitz polynomial h;(s) = s"™! + a;s™ + -+ +
a,S + a,.

Introduce the following change of coordinates:

T — A .

ei:W,Z:L'“,TL, (13)
1 3

%= i i=1,-- 0. (14)

(L1L2)i71L§;1+61 ’
From (1) (4) (13) and (14), we have

&= LngALG + (]. — 9(t))L1L3Lzl + F—

L L.
fiDQ@ — szle, (15)
and
. Ly
zZ = LleLgBZ + L1L39(t)ML€1 — fDlz—
3
L, L
LiLs(1 — 0(t))MLz — (22 + Z2)Dyz, (16)
Ly L,
where
e = (61 en)T7

D, = diag{oy1,14+ 04, - ,n—1+ 01},

D, = diag{0,1,--- ,n— 1},

L=y 1ly - )" 2= (2 --
—L,6t) 1 -+ 0

z)",

16 0 - 1
1,00 0 - 0
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f1
L 0 1 0
fo .
F=| LI | B= :
: 0 0 1
f:n —a1 —Qz *:r —an
Wg—l—i—m
and M = dlag{l C,—
Ly’ Ly

Then, by Lemma 1 in [24], there exists a positive
definite matrix () satisfying

B'Q+QB< -1,
D\Q + QD; > m(Q, 17

where w9 > 0 is a real constant.

4 Main results

In this section, we construct a Lypunov-Krasovskii
functional to derive sufficient conditions to guarantee
that the closed-loop system (15)—(16) is asymptotically
stable.

Theorem 1  For the system (1) with the Assump-
tions 1 and 2, if the parameters «, 3, o1, p satisfy the
conditions (8)—(11), then, under the output feedback
controller (4)—(7), and (12), the system (1) converges to
the equilibrium at origin, which means that lim x(¢)

t—+oo
=0, tLlinoox( ) =0.

Proof The derivative of the function Vi(t) =
eT P e is given by

‘/vl(t) < L1L36T(AEPL + PLAL)€+
2L, Ls|1 = 0| LI Pl llelll [+

L
2[lell I 2Ll + QﬁHD2HHPL”H€H2_

Z2eT(Dy Py + PLD e (18)
From Lemma 1, Assumption 1, (13) and (14), we
get
1F] < |1 Fllx

i

<
o1+ ") 3 Sllel + 24721+

(1 [aa(t = 7)) 32 3 eyt — 7(0) |+

Ly (t = 7())]2(t = 7(1))]) <
c(1+ |z [")nv/n(llell + Ly~ "||=])+
e(L+ [a1(t — T(E)P)ny/a(le(t — (1)) +
Ly (¢ — (0|12t — 7).
From (5) and (6), it follows that
Ly<2, L,<1

Vol. 39
and

Ll - (Lgni?)[‘/g + LQ) 2 LgniSLQ. (19)

Then,
1 2(n—1
Ly—1 L 1
1 2(n — 1) ( 2 )’

2(n— 1)L, > L2

Thus,
2llell[[ PN EN <

1
L= (L + ") [lel*+
3
(3+2(n — 1)) Lyc™n® || PL|*[le]|*+

4(n — 1) Lsc®n® Ly || P[] 2>+
1
fs(l + [z (t =7 () P)?le(t — 7(1)) I+
1
L0t fanle = )P
3
() ||z(t — 7 ()]1*. (20)
Note that (1 + (|é/|)p)2 > (14 |z4|P)%, D1 P+
l .
P.D; > m P, > mAmin(PL)], Ly > 0,and Ly > 1.
From Lemma 4 and (7)-(9), we obtain
— —€ <D1PL + PLD1)€ <
aﬂlAmin(PL)L3||eH2—
1
B (POL— (1 + (e <
L 0;

1
Ls]le]® — Lip (14 |21 ]7)?[lel*~

1 1 |y 2
L 21
L 0+ GOl e
Substituting (20) and (21) into (18), from Lemma 3,
we have
Vi(t) <

— 9ML1L3||€||2 + ClLng‘l—
O()|llellllzll + erLallel|* + e1 L Ly 2>+

Ll?,(l + |zt = 7)) [le(t — () ]*+

1 (U b = )PP Lalt = (e (e

2 Y| 2
T = gzl 0+ G ))H [
where ¢; = max{2||PL||||LH,4(n —1)c*n?|| P, (3

+2(n —1))*n®||PL||* + 1 + 4|| D2 ||| Pl }-
The derivative of V5(t) =

2TQz along the sys-
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tem (16) is given as follows:

. L
Va(t) < —LyLyLs||2||> — f?’ 2T (D1Q + QD;)z+
3

2L, L0 () [ M| L[| Q1 el =]+
2L, Lg|1 = 0(&)| [ M| LI Q| 2]*+
Ll LZ 2
— 4+ 3)||D .
=+ PIDadllz]
Similar to (21), we have

L
- ngT(DlQ +QD1)z <
3

Ls|lz|* -

2(

|y 2
LIL 1+ ))H 1%,

I|L||- From(17), we have
< —LiLoLs|z]* + 2 La LsO(t)lell]| ]|+
c2LnLs|L = 0(t)|[|2]|* + e2 L] 2*—
1 1 || 2
Ly— 23
on s W, e

= max{2[|Q|[| ]|, 1 + 6[| D[ [|QI]}-
Consider the following Lyapunov-Krasovskii func-

Note that ||ML|| <
Va(t)

where ¢,

tional:
V(t) = Vi(t) + Va(t) + Va(t) + Va(d),
where
I S A 9
Vi) = 157 ), M) ()ds,

1 1 & gt )
Y Jo oy B ()22 (5)ds,

Vi(t) =

(e

1-—
Note that Ls > 1, 1-77

and h(s) =

> 1and L3 0. Then,

Va(t) < :
e e - 2o -
1_2@+W“;(mwww—ﬂmW<
i (e
;<+mw—ﬂ»mnm—

Similar to (24), we have

T(t)]*. (24)

y 1 1 ly| 2

Vi(t) < 1 _%Llfg( ( ) 2l201* -
m<+wm—ﬂmm%w—
T())||2(t — (). (25)

From (22)—(25), it follows that

V(t) = Vi(t) + Va(t) + Va(t) + Va(t) <

— 0L Ls|le]|” + e1 Ly Ls|1 — 0(t)|[le]| || ]|+
c1Lgllell* + ei Ly Ly 2]|* — Ly Lo Ls| 2[*+
coLi Ls0(t)|le]| || 2| + c2La Ls|1—

0()[121* + caLs]|z||*.

Then,
V(t) <
- Dl il e
L 9
Ly(=p = e el
LL
Ls( lzfﬁL«f@mu*ﬂ@nf@wAPf
L6
~1YM H(t)
e |7 lel
1)z LiLs | ||2])] (20
1I(t) 714 21 U=

where IT(t) = —%(C1L1|1 _0(t)] + e La6(L)).

Note that |1 —6(¢)], 6(t) are bounded and ¢;, ¢, are
two positive constants. The rest proof will be discussed
on the following two cases.

Case 1 There exist three positive constants ﬁl, ﬁg
and t*, such that if L,(t) > L, Ly(t) > Lo, t > t,
the following conditions hold:

L6\

4 2617
L,L
I 2> 1Ly + Ly |1 — 0(t)]| + e, (27)
L6y L1 L
IT%(t), vVt € [t* .
Case2 L, (t) < Ly or Ly(t) < Ly, Vt € [0, +00).

Firstly, we consider the conditions in Case 1 hold.
From (26) and (27), it follows that
L L30M le|2 - L L2L3

Obviously, we can get

lim |[|z]]? = 0.
t—+oo

According to (28), we can obtain
V < —es(llell* + 112117,
where c3 is an appropriate positive constant.
Thus,

t
I, Ulell? + 11=]%)at <

V<— S22 @8)

hm lel* = 0 and
t—+4o00

1 V(0
——(V(t) = V(0)) < Vo < 400
C3 C3
From (6), it follows that
y? + 22 1

2 = X

1 -+ y2 + jf% (L1L2>2n—3L§0'1
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y? + 47 2 2 2 24 S
5o < Ou(er+21)" + 21 < —IPLllvn Y ail}, (33)
L3™ Om i=1
(202 + 1) (€2 + 22). L3 > Ly(+00). (34)
Then, From (1) (4) (31) and (32), we have
t . * *
LQ -1 < (295 + 1) J;) (||€||2 + ||Z||2)dt < +00, g = L1L3AL€ + L1L30(t)L€1 — L1L30(t)FL51—

which means that L, is bounded.
From (19), we have

1 2(n—1)
L —
20n—1)?

1

Li—1= —
! 2(n—1)

+ Ly —

(29)

Note that L, is bounded. Thus, L is also bounded.

lim e;(t) = 0 and lim 2z (t)
t——+o0

t—+o0
ly| = 6(t) L5 |e1 + 21| < C1L5*, where C is an ap-
propriate positive constant. Due to L3 > 0, Lz > 1,
po; < 1 and L, is bounded, there exists t3 > 0 such
that

= 0 imply that

—al?+ BLy (1+(’§l‘)> <

— L2+ Cy,L37 + 281, <0,
Yt € [ts, +00), (30)

where C, is an appropriate positive constant. Then,

we can obtain that Ly = 0,V¢ € [t3,+00) and

L5 is bounded. Therefore, we have tliin z(t) = 0,
—+00

lim Z(t) = 0. Note that L;, Ly and L3 are bound-

t——+oo
ed and lim #(¢t) = 0. From (12),

t—+oo

lim wu(t) =0.

t——+oo
Secondly, we proceed our discussion on Case 2.
From (29), we know that whatever L, (t) or Lo(t)
is bounded, the other is also bounded.

it follows that

According to (6), we have
oo > L2 —1>
: 1 t P42t 1
lim — f 5 o
t=to0 (L (+00) La(+00))?" =% Jo 1+y2 +07 L™
By the Barbalat’s Lemma [25], we can get

2 j}2
lim —— =0, lim 21 =0.
t—+o00 L o1 t—+oo [59

Introduce the following change of coordinates:

T — T .
=TT g, 31
LTz—1L§—1+Jl ( )
gi = T = 17 y 1y (32)

: — 7
(LiL5) Ty
where L] and L} are two positive constants satisfying

24
L} > max{L;(+0), ' g€ 2n3|| P2 LY,
M

12
L*2 n—1) + 3)

12
Om I

BHPL||2’977

L L La(l— 6(t)CLE + F*, (35)

Ly

and
§ = LiLyLsALé + L] Ly L0(t) L&+
u _Z/g
D — D, 36
G S e

where

€= (51 5n)T> 5 = (51 : gn)Ta

= LiLy™

fn

Ly

The derivative of the function V;(t) = €™ P.e is
given by

Va(t) <

LiLse™ (AT Py + PLAL)e+

2L L |0 LA Pl lea |+

2Ly L[0T HILAN Pl lelle |+

2Ly Ls[1 = O@)[[IHILAPLl el 1€l —

L3 T
Ly

7
— EHML*1L3||5||2 + C4L*L3‘9(t)‘2|51|2+

(D1PL+ PLDy)e + 2| B[l F7] <

C4LTL§L3|1 - 9( )‘ |§1|2 L L; Ls”f” +
()l +
fg(l + o (t = 7(8)1) Lo (t — 7(8))I|€(t—

) - L+ (Y

1—7 "L, 0,

LZ( ———

PNl 37
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where ¢, =

24
g ILIPI AL
M
Calculate the derivative of the function Vg(t) =
ET P&, Then,

Vs(t) <

LiL5Ls€" (AL Py + PLAL)E+

2L L3 L |0 O)[ | L[ Pr [ I€] 1€ 1+

2L Ls |0 T BN LI PIEN e [+

2L Ls|L = 6@)[[| I E LI Pl IE [+

u
26T P.D -
STy

L
fng(DlpL + PL.D1)E <
3

7
— oM LILSLslIE]” + o LT3 Lo 0(6) €1 [*+

el L3 Ls|0(t) | |er )+
cs Ly Ly Lyl — 0(1))* |6 [P —

1 1 lyl 2
Li— 38
L 0+ el 38)
Consider the followmg Lyapunov-Krasovskii func-
tional:
Vo(t) = V5(t) + Ve(t) + Va(t) + Vs(t),
where
Valt) = %f ; L T(t) s)ds,
1 n
Vs(t) = — ;
)= 1 ;jr(t) 1(5)€2 (s)ds
Note that L3 > 1, 1 > 1 and Ls > 0. Similar
-7
to (24), it follows that
y 1 1 lyl 2
Va(t) < ~L1—(1+
H(8) < T3 Lap(L+ (G P)Plel -

)l
(39)

1t~ PG~

Similar to (39), we have

o+ Wy

1 "2
7, (Lt et = r@)F) La(t-

T(O)lIE — T()]*. (40)
Based on (37)-(40), we obtain
Vy(t) =
Vs () + Vs () + V() + Va(t) <

7
- EeML’;LgHeH2 + ey LT Ls|0(t) | |e1|*+

Va(t) <

caLiLy Ls|L = 0() "6 + L L3 Ls|1€)1*~

7 * T ok * T %
EGML1L2L3H€H2 + C4L1L2L3‘9(t)‘2|€1|2+
ca LT L Ls|0(t)|?|e1]*+
el Ly Ly Ls|1 — 0(t)]? (6 <

1 1
- §9ML*L3H€H2 - §9ML*1L§L3H§H2—

L0
LiLs(~ llel® = esl 0t Pler |-

caL3|0(t)P|eq|*) —

2c4[1 = O()P161]* — calO(O)*[&1]*). (41)
Note that |6(t)|, |1 — 6(¢)| are bounded. There exist

appropriate positive constants Cs, Cy, Cs such that (41)
can be rewritten as

Vo(t) <
— CsLs([le]” + 1I€11*) -
Ls(Cy(llell” + 1€]1*) — Cs(lerf* + 1&11%)).

° + &)%), we
‘ el + 16 f), w
have Vo < 0. ||g||* + ||€]? is ultimately bounded by
=2 (le|? + |€1]?). Due to

Cy

* T % 9
LiL5Lo(S3 €11

Thus, if [le]|* + [I€]* >

2 52

x By
lim 22 = lim 2(17 =0,
t——+oco L 1 t—+o0 L 1
we have lim |e;|> =0, lim |£]|* = 0. Itis obvious
t—+oo t——+oo

that the ultimate bound of ||| + ||£]|* becomes to 0 as
t — +00.
Therefore, we have lim ||| =0, lim |[|£]| = 0.
t—-+o0 t—-+o0
Similar to (30), we known that L3 is bounded. Then,
lim z(t) = lim z(¢) = 0. Note that Ly, L, and L
t——+o0 t——+oo
are bounded and | 1i£rn Z(t) = 0. According to (12), it
— 400
follows that lim w(t) = 0. O
t—+o0

S Numerical simulations
In this section, we use two simulation examples
to demonstrate the effectiveness of our adaptive anti-
measurement-disturbance controller design for nonlin-
ear systems with time-varying, time-delay growth rate.
In addition, the third example is applied to compare the
performance of our method with the method proposed
in [12].
Example1 Consider the following SISO nonlin-
ear system (3) with sensor uncertainty:
T 1 = T2,
Ty =u—x; — p(l —2})zy, (42)

y=0(t)xy,
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where 4 is an unknown constant. In this example, we
select O(t) = 1+ 0.5sint and 6(t) = 1.4 + sint. It
is obvious that system (42) satisfies Assumption 1 with
p = 2, ¢ = max{l, |u|}, 7(t) = 0 and Assumption 2
with 6, = 0.4, 0, = 2.6. Compared with the exam-
ples in literatures [10] and [11], the growth rate of our
nonlinear system is no longer a known or an unknown
constant, but a time-varying function related to the out-
put. Meanwhile, the range of 6() is not in the vicinity
of 1 asin [11], but has been greatly enlarged.

According to Lemma 3, we choose x = 10. Thus,
b2 = 11, P1 = 16, P2 = 1.21. Then, let lo = 150, ll =
151.6 and [, = 165.55. Based on Theorem 1, set a; =
4, a5 =4, 0y = 0.45. From (17), we get

0= 1.125 0.125
~10.125 0.1563]°

Then, m = 0.4, m = 0.8, Anin(PL) = 0.3496,
Amin (@) = 0.1404, 7 = 0. According to (8) and (9),
we choose o = 7, 8 = 30. Construct the following con-
troller for the system (42):

Ty = &y + 151.6 Ly Ly(y — &),
Ty = u+ 165.55(L1 Ls)%(y — &),
u = —4(L1L2L3)2jﬁ'1 — 4L1L2L3£’2,
2 | A2
. y —|— .ZUI L2 + 1
L, = L,(0) =1
YTy 4 #] DL LYY O=1" 4
2 | A2
. T 1
L, = Ly(0) =1
* T 14 g2+ 22 L L,L3Y 200)=1,
2
Ly = max{—7L2 + 30L, (1 + (&))2, 0},
The initial conditions are given as z1(0) = 1,

112(0) = 27 12'1(0) = 2’ i'2(0) = 1’ Ll(o) = 1,
L5(0) = 1, L3(0) = 1 and the parameter u = 3. The
simulation results are shown in Fig. 1, which verifies
that the proposed method is correct and effective.

30 T T T T T T T T T
" —— x,(t) obtained with 6(¢) € [0.5, 1.5]
£ 20F  _ _ (¢ obtained with 6(¢) € [0.5, 1.5]
E ------ ,(t) obtained with A(t) € [0.4, 2.4]
g 107 ___ 4 (1) obtained with () € [0.4, 2.4] ]
>
W
S 0 E:"\'"";;- =
3 T ar
3 b/
g -10 I 7
S [
5} H ,’
£ 200 1
N 00 01 02 03 04 05 06 07 08 09 1.0

t/s

Fig. 1 The trajectories of the states of the closed-loop
system with different measurement disturbance

Example 2  In order to verify that our method is
still effective in the presence of time delay, we consider
a two-stage chemical reactor system [26] as follows:

1Ry 1

i1 Va Ty — a$1 - Kaﬂﬁh
E, 1
Lo = —U — —To — Kglo+
TV Gt (44)
R, R
le(t —7(t) + 75:;;2@ —7(t)),
Yy = H(t)xlv

where x; and x, are the compositions, u and y are
the input and output, i, and I3 are the recycle flow
rates, C, and Cj are the reactor residence times, E,, is
the feed rate, V,, and Vj are the reactor volumes, K,
and K are the reaction functions. So as to facilitate
the simulation, we choose the following parameters as
Ra == Rﬁ == 05, Ka == Kﬁ == 05, Va == Vﬁ == 05,
C, = Cs = 2, E, = 0.5. Then, the system (44) can
be transformed into

Ty = X9 — Ty,

To=u— Ty +x1(t —7(1)) + 22(t — 7(t)),

y = 0(t)z.

(45)

In this example, we choose a non-directed 0(t) =
0.4 4 1.6| cost|. It is easy to verify that system (45)
satisfies Assumption 1 with p = 2, ¢ = 1 and Assump-
tion 2 with 8, = 0.4, 6, = 2. According to Lemma 3,
we choose k = 10, thus, by = 1.1, p; = 1.6, po = 1.21.
Then, let [ = 40, [, = 41.6 and [, = 44.55.

Based on Theorem 1, set a; = 4, ay = 4, 01 =
0.45, 7(t) = 0.8. From (17), we get

0= 1.125 0.125
~10.125 0.1563]°

Then, m = 0.4, m = 0.8, Anin(Pr) = 0.3496,
Amin (@) = 0.1404, 7 = 0. From (8) and (9), we choose
a =17, 8 = 20. Construct the following controller:

&y = &o +41.6L, Ly(y — &1),
Ty = u—+44.55(L1L3)2(y — &1),
u = —4(L1L2L3)2£1 - 4L1L2L3£’27

2 ~2
; Y +$1 Ly+1
L, = L:(0)=1
F T2+ DL LYY (0 =1
X 2 2 1
L2 — y +x1 LQ(O) — ].,

1 + y2 + i’% LngLg'g ’
P 2 Y
L3 = maX{—7L3 + 20L1(1 + @
Ly(0) = 1.

2

), 0},

(46)
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The initial conditions are given as z; (0) = 1, 25(0)
=1, 21(0) = 0, 2:(0) = 0, L1(0) = 1, L»(0) =
1, L3(0) = 1 and the parameter 4 = 3. The simula-
tion results are shown in Fig. 2. Obviously, our pro-
posed method is also effective for nonlinear systems
with time-delay.

30 T T T T T T T T T

20 —x@® A
] — —x(t
£ 1()] 5(1)
n \
= ol\
g _ o A
3 10'
175}
& 20} i
2 300 .
e
2 40l 1
o
= |
o —S50F
= |

60 k ]

70 1 1 1 1 1 1 1 1 1
00 02 04 06 08 10 12 14 16 18 20

t/s

Fig. 2 The trajectories of the states of the closed-loop system

Example 3
of our method with the method proposed in [12], we
consider the following nonlinear system [12]:

In order to compare the effectiveness

T1 = Ty + d; sinxy,
Ty = u+ dyIn(1 + 22), 47)

y = (1.5+ 1.1sint)xy,

where d;, dy are two unknown bounded time-varying
functions and 6(t) = 1.5 + 1.1sint. As in [12], the
following output feedback controller is constructed:

3;5’1 = Lf?g + 1515L1(y — i']_),
Ty =u+299L%(y — i),
u= —4(L1Ly)*%, — 4L, Loy,

; |yl + |&1] + |Z2] Lo+1
Ly = |+ 2] Ly(0) = 1,
VS T T T ] Lok )
: ly| + |&1| + 22| 1
Ly = B L Ly(0) = 1.
2= T4 [yl + o] + 2] LuLy 2O
48)

The initial conditions are given as x;(0) = 1, z5(0)
=2, 2,(0) = 2, 25(0) = 1, L (0) = 1, Ls(0) = 1,
L;(0) = 1 and the parameters d; = 1 + cost, dy = 2
— sin(20¢). The simulation results are shown in Fig. 3.
It can be seen that the system (47) under our presented
output feedback controller has a faster convergent speed
than that under the controller (48).

1469
10 T T T T T T T

g Sr |
5
= 0 &C """""" s
2 K.
% /
§- =5 [' —— a,(¢) obtained by our method )
= Il — — x,(t) obtained by our method
08) -10 IJ ...... x,(t) obtained by the method in [12] 7
E |' —-— x,(t) obtained by the method in [12]
<= 15y )
= |

-20 I | I 1 1 L L

00 05 10 15 20 25 30 35 40

Fig. 3 The trajectories of the states of the closed-loop
system with different methods

6 Conclusion

In this paper, we studied anti-measurement-
disturbance stabilization for a class of nonlinear system-
s with unknown growth rate, unknown measurement un-
certainty, and time-delay. First, a useful matrix inequal-
ity was developed. Then, by using three time-varying
gains, an output feedback controller was designed to
stabilize the nonlinear system. Based on the obtained
matrix inequality and a specially constructed Lyapunov-
Krasovskii functional, we derived sufficient condition-
s to ensure the closed-loop system was asymptotically
stable. Finally, numerical simulations were applied to
verify the correctness of our theoretic results.
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