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摘要:在给定一个子集的条件下,本文研究了在状态翻转控制下布尔控制网络的全局镇定问题.对于节点集的给定子
集,状态翻转控制可以将某些节点的值从1 (或0)变成0 (或1).将翻转控制作为控制之一,本文研究了状态翻转控制下的
布尔控制网络.将控制输入和状态翻转控制结合,提出了联合控制对和状态翻转转移矩阵的概念.接着给出了状态翻转
控制下布尔控制网络全局稳定的充要条件.镇定核是最小基数的翻转集合,本文提出了一种寻找镇定核的算法.利用可
达集的概念,给出了一种判断全局镇定和寻找联合控制对序列的方法.此外,如果系统是一个大型网络,则可以利用一
种名为Q学习算法的无模型强化学习方法寻找联合控制对序列.最后给出了一个数值例子来说明本文的理论结果.
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Abstract: In this paper, the global stabilization of Boolean control networks under state-flipped control with respect to a
given subset is addressed. For a given subset of the set of the nodes, the state-flipped control can change the values of some
nodes from 1 or 0 to 0 or 1. Considering the flips as controls, Boolean networks under state-flipped control are studied.
Combining control inputs with state-flipped controls, the concepts of joint control pair and the state-flipped-transition
matrix are proposed. A necessary and sufficient condition is provided to check whether a Boolean control network under
state-flipped control can be globally stabilized. An algorithm is developed to find the stabilizing kernel, which is the flip set
with the minimal cardinal number. By using the reachable set, another method is provided for global stabilization and joint
control pair sequences. Besides, if the system is a large scale network, a model-free reinforcement learning method called
Q-learning algorithm, is used for the joint control pair sequences. A numerical example is given to illustrate the theoretical
results.
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1 Introduction
By modeling the gene as a binary (on-off) device,

Kauffman in 1969 firstly proposed Boolean networks
(BNs) for investigating different metabolic behaviors of
genes [1] that enable to capture the properties of large-

scale complex networks [2]. In order to make the BNs
applicable to more types of biological networks, con-
trol inputs are added into BNs, and they are extend-
ed to Boolean control networks (BCNs). Cheng et al.
proposed the semi-tensor product (STP) [3], which is
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a powerful tool in studying BNs (BCNs). Under the
framework of STP, BCNs are expressed as finite state
discrete time nonlinear dynamic systems with matrix
algebra form. On the basis of the matrix algebra form,
many properties of BCNs have been investigated, such
as stabilization, controllability, observability, fault de-
tection, disturbance decoupling and so on [4–12].

Stabilization problem is an important issue in con-
trol theory. In a BCN, stabilization is defined as finding
feasible control sequences for any initial state to reach a
target fixed point after finite time steps. There are many
interesting results in the stabilization problems of BCN-
s. For example, Li et al. investigated state feedback sta-
bilization for BCNs. Based on the concept of invariant
subsets in [13], several necessary and sufficient condi-
tions for set stabilization of BCNs have been presented.
By using a minimal number of controllers, Lu et al. s-
tudied the pinning stabilization of BCNs in [14].

State-flipped control is a newly control mechanism
with little intervention on the system [15–16]. It works
by changing the value of some nodes in BCNs from 1
to 0, or from 0 to 1, which simulates turning on or off
genes in biological systems. Thanks to its ease of oper-
ation, many researchers have adopted the state-flipped
control. For instance, Rafimanzelat et al. [16] studied
the attractor stabilizability of BNs by flipping some n-
odes of the state in attractors once, after the networks
have passed their transient period in the attractors. Rafi-
manzelat et al. [15] investigated the attractor controlla-
bility of BNs by flipping a subset of nodes in the states
of several attractors as well. Chen et al. provided the
criteria of controllability and stabilization of BCNs by
flipping a subset of nodes in some initial states, rather
than flip the nodes of the attractors after the system has
passed the transient period. More recently, Zhang et al.
have applied the flipping mechanism to the stabilization
and set stabilization of switched BCNs, which consid-
ers flipping a subset of nodes of initial state once [17].
In addition, the weak stabilization of BNs with flip se-
quences is investigated in [18]. Up to now, many re-
searchers have implemented state-flipped control into
stabilization and controllability of BNs (BCNs).

Reinforcement learning (RL) is one of the method-
ologies of machine learning, which is used to describe
and solve the problems that agents use learning strate-
gies to maximize returns or achieve specific goals in
the process of interacting with the environment. As a
breakthrough in reinforcement learning algorithms, Q-
learning (QL) algorithm was first proposed by Watkins
in 1992 [19]. QL algorithm is a model-free RL algo-
rithm, which can be used in the tracking control of au-
tonomous surface vehicles [20], smart grid devices [21],
and intelligent intersection traffic signal control [22]
and so on. QL can be used to judge some proper-
ties of gene regulatory networks, which can reduce the

computational complexity to a certain extent compared
with the traditional STP method. An important concep-
t in QL is the Q table, which is a mapping table be-
tween states-actions and estimated future rewards. Un-
der some conditions, the Q table will converge to a Q∗

table where we can read the optimal policy from. QL
algorithm was applied to probabilistic Boolean control
networks (PBCNs), which shows the advantages of the
algorithm in the case of model-free [23]. It investigated
the feedback stabilization problem of PBCNs, and com-
pared the STP method with the value iteration method.
Acernese et al. [24] also developed a QL algorithm
about self-triggered control co-design for stabilization
of PBCNs.

The existing works in the state-flipped control
mainly consider flipping a subset of nodes just once,
no matter for the initial states or the states in attractors.
In this paper, we consider the joint control pair, which
consists of a state-flipped control and a control input.
When studying the global stabilization of BCN under
state-flipped control, we first give a set of nodes that can
be flipped, and the actual state-flipped control depended
on the subset of the given set. There exist many differ-
ent joint control pairs, hence we propose the concept
of joint control pair sequences. In our joint control pair
sequences, sometimes the obtained state-flipped control
is with respect to an empty set, which means that we do
not need to add state-flipped control for the state and it
is enough to just take a control input, i.e., a normal case
in BCNs. The contributions of this paper are summa-
rized as follows:

• We propose the concept of joint control pair
which consists of a state-flipped control and a
control input, and apply it into BCNs.

• The global stabilization of BCNs under state-
flipped control is studied, and several necessary
and sufficient conditions are presented.

• For stabilizing a BCN under state-flipped con-
trol, a QL algorithm is designed to find the cor-
responding joint control pair sequence for every
initial state.

2 Preliminaries
2.1 Notations

D = {0, 1} and Rp×q denotes the set of p× q-dim
real matrices. [m : n] := {m,m + 1, · · · , n}, where
m,n ∈ N+ with m 6 n. For a matrix A = (aij) ∈
Rp×q (aij is the (i, j)-th entry of A) and c ∈ R, A > c
means aij > c, ∀i ∈ [1 : p], j ∈ [1 : q]. ∆n :=
{δin|1 6 i 6 n}, where δin denotes the i-th column of
identity matrix In. δi1,i2,··· ,ik2n is a Boolean vector which

equals
k∑

j=1

δ
ij
2n . D(δi1,i2,··· ,ik2n ) := {δi12n , δi22n , · · · , δik2n}

denotes a decomposition of vector δi1,i2,··· ,ik2n . kδi,j2n is
a column vector with its i-th and j-th entries being
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k, and the remainders are 0 s. A matrix with the for-
m L = [δi1m δi2m · · · δinm ] is called a logical matrix,
simplified as L = δm[i1 i2 · · · in]. The collection of
logical matrices with dimension m× n is denoted by
Lm×n. |B| denotes the cardinal number of set B, and
PB := {A|A ⊆ B} denotes the power set of B. ⊗
denotes the Kronecker product.

2.2 BCN and its algebraic representation
Consider a BCN as follows:

X i(t+ 1) = fi(X(t), U(t)), (1)

where X i(t) ∈ D, i ∈ [1 : n] denotes the i-th node
of state X(t), and fi : Dm+n 7→ D, i ∈ [1 : n] is a
logical function. X(t) = (X1(t), · · · , Xn(t)) ∈ Dn,
U(t) = (U1(t), · · · , Um(t)) ∈ Dm represent the state
and the control input of the network (1), respectively.
[1 : n] is the superscript set of the set of nodes of BC-
N (1). In this brief, nodes are simply denoted by their
superscripts. In addition, we default that Boolean vari-
able 1 in D is equivalent to the canonical vector δ12 and
Boolean variable 0 in D is equivalent to the canonical
vector δ22 .

Definition 1 [3] For matrices A ∈ Rp×q and B ∈
Rs×t, the semi-tensor product (STP) with symbol “n”
is defined as

AnB = (A⊗ Iα/q)(B ⊗ Iα/s), (2)

where α = l cm(q, s) is the least common multiple of
q and s.

For convenience, the symbol “n” can be omitted
when there is no ambiguity. Using the semi-tensor prod-
uct, state X = (X1, X2, · · · , Xn) ∈ Dn can be
transformed to its equivalent algebraic representation
x := nn

i=1x
i ∈ ∆2n , in which X i ∈ D ∼ xi ∈ ∆2,

i ∈ [1 : n]. Similarly, U = (U1, · · · , Um) ∈ Dm ∼
u := nm

i=1ui ∈ ∆2m .
Next, based on STP and its properties in [3], we can

convert system (1) into its algebraic form as

x(t+ 1) = Gu(t)x(t), (3)

where G ∈ L2n×2m+n is the state transition matrix of
BCN (1). Define G(u(t)) := Gu(t) ∈ L2n×2n as the
control-depending network transition matrix of BCN
(1). If u(t) = δq2m , then we use Gq to represent Gδq2m ,

i.e., Gq = Gδq2m . In addition, let M :=
2m∑
q=1

Gq ∈

R2n×2n . Then, the reachability between any two states
can be obtained by the matrix M and its power [5].

2.3 State-flipped control
This subsection introduces the state-flipped control

and its algebraic representation. Before introducing the
flip function, we need to choose a flip set, which is a
subset of the nodes’ set of a BCN. It can be specified in
random, or it can be a collection of genes that we are
able to control in the practical cases.

Definition 2 Let A := {a1, a2, · · · , ar} ⊆ [1 :
n]. The flip function with respect to A is defined as

η¬
A(X) = (X1, · · · ,¬Xa1 , · · · ,¬Xa2 , · · · ,

¬Xar , · · · , Xn). (4)

The flip function can transform one state to another
state X¬

A = η¬
A(X). According to Definition 2, we can

obtain that X and X¬
A can be converted to each other

by flipping A, i.e., X
η¬
A↔ X¬

A. Here, we call (4) a state-
flipped control, and A is a flip set. Next, based on the
equivalence of the logical representation of the state and
its vector representation, we define the matrix form of
the flip function.

Definition 3 Let A := {a1, a2, · · · , ar} ⊆ [1 :
n]. The algebraic matrix form of η¬

A denoted by HA is
called a flip matrix, which satisfies:

Colj(HA) = δi2n , j ∈ [1 : 2n],

if x = δj2n
η¬
A→ x¬

A = δi2n . (5)

From the definition of HA, we can derive that HA

is a symmetric matrix, and it includes all cases that ev-
ery state in ∆2n is flipped with respect to A. Note that
HA is a 2n × 2n-dim logical matrix, and equation (5)
can be expressed as x¬

A = HAx. In this paper, we call
the transition from state x to state xA as a flip transition.
After introducing flip matrix with respect to a set A, we
can consider the cases that multiple sets of nodes can
be chosen to be flipped. In the following, B represents
a set of nodes that can be flipped, and we can choose a
few of these nodes to flip.

Definition 4 Let B := {b1, b2, · · · , bs} ⊆ [1 :
n]. The combinatorial flip matrix with respect to B is
defined as

(CB)ij =1, if ∃A ∈ PB such that x = δj2n
η¬
A→ x¬

A = δi2n ,

0, otherwise.

Combinatorial flip matrix CB contains flip cases
that each subset of B is flipped. (CB)ij = 1 means that
there exists one subset A ⊆ B such that (HA)ij = 1.
For any initial state x0 = δj2n ∈ ∆2n , when the flip
sets A1, A2 ⊆ B are different, we have δi12n = x¬

A1
̸=

x¬
A2

= δi22n . Therefore, the j-th column of CB does-
n’t have an entry greater than 1. It illustrates that CB

is a Boolean matrix. In order to represent the above in
mathematical notations, we can derive:

CB =
∑

A∈PB

HA ∈ B2n×2n . (6)

In equation (6), CB is the combination of all pos-
sible subsets of B = {b1, b2, · · · , bs} ⊆ [1 : n]
whose corresponding nodes are chosen to be flipped.
Based on Definition 4, we can find that D(Colj(CB)),
j ∈ [1 : 2n] contains all the states that can be reached
from x = δj2n by flipping every subset of B. In this
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paper, we first consider that all states in BCN (3) are
flipped with respect to all subsets of B. The new sys-
tem that all states take one flip transition with respect
to one subset of B and one state transition with control
input is called BCN (3) under B state-flipped control.

Here, we present a brief explanation of two sets A
and B. For a given state, A is the actual flip set, and
every element in A corresponding to the nodes of the
given state has to be flipped. However, B is a combina-
torial flip set, and we select a subset of B denoted by
A to flip. Next, we give a numerical example of a BCN
(3) to illustrate the flip matrix and the combinatorial flip
matrix.

Example 1 Consider a BCN with three nodes,
i.e. n = 3. If a subset B ⊆ [1 : n] is given by B =
{2, 3}, we can find that all possible flip sets are sub-
sets of B, denoted by A1 = ∅, A2 = {2}, A3 =
{3}, A4 = {2, 3}. Then, flip matrices with flip sets
Ai, i = [1 : 4] can be calculated as

HA1
= H∅ = I8 = δ8[1 2 3 4 5 6 7 8],

HA2
= H{2} = δ8[3 4 1 2 7 8 5 6],

HA3
= H{3} = δ8[2 1 4 3 6 5 8 7],

HA4
= H{2,3} = δ8[4 3 2 1 8 7 6 5].

Therefore, we can obtain that the combinatorial flip
matrix CB is

CB =
∑

A∈PB

HA =
4∑

i=1

HAi
=

[δ1,2,3,48 δ1,2,3,48 δ1,2,3,48 δ1,2,3,48

δ5,6,7,88 δ5,6,7,88 δ5,6,7,88 δ5,6,7,88 ].

3 Main results
This section focuses on the stabilization of BCN (3)

under B state-flipped control. Several criteria are pro-
posed to judge the stabilization. Note that the global s-
tate transition space may be changed under state-flipped
control defined in Section 2. Hence, we present a new
type of the state transition matrix, which is called state-
flipped-transition matrix.

Definition 5 Given a matrix A = (aij) ∈
Rm×n, define sgn(A) := (sgn(aij)) with

sgn(aij) =


1, aij > 0,

0, aij = 0,

−1, aij < 0.

Definition 6 Given a subset B ⊆ [1 : n]. The
matrix G̃ ∈ R2n×2n is called the state-flipped-transition
matrix of BCN (3) under B state-flipped control, if

G̃ = MCB. (7)

According to G̃, the new system transformed from

BCN (3) under B state-flipped control is

z(t+ 1) = sgn(G̃z(t)). (8)

Therefore, z(t) is a Boolean vector with several en-
tries equal to 1 and other entries equal to 0. Set z(0)
= x(0) = x0. The state transition between two states
is called a state-flipped transition in BCN (3) under B
state-flipped control with the combined action of a state-
flipped control and a control input. Here, we use nota-
tion (η¬

A, δ
i
2m) which is called the joint control pair to

represent the combined action in one state-flipped tran-
sition step of BCN (3). D(z(t + 1)) represents the set
of all states steered from D(z(t)) after one state-flipped
transition step.

For the state-flipped transitions from δj2n to δi2n ,
we denote the joint control pair sequence composed of
some joint control pairs by

Λ{δj
2n

,δi
2n

} :=

{(η¬
A0
, u0), (η

¬
A1
, u1), · · · , (η¬

Ak−1
, uk−1)},

which is also denoted by Λk, where Aj ⊆ B is a flip
set, and uj ∈ ∆2m is a control input, j ∈ [0 : k − 1].
Using the information in Λ{δj

2n
,δi

2n
}, we can obtain a

state-flipped transition walk as

P = {x0 = δj2n
(η¬

A0
,u0)

−−−−−→ x1 = δp1

2n

(η¬
A1

,u1)
−−−−−→ x2 =

δp2

2n

(η¬
A2

,u2)
−−−−−→ · · ·

(η¬
Ak−1

,uk−1)

−−−−−−−−→ xk = δi2n}.
Remark 1 δd2n ∈ ∆2n is said to be a fixed point

if there exists a state-flipped transition from δd2n to it-
self. {δa1

2n , δ
a2
2n , · · · , δ

aq

2n} ⊆ ∆2n is a cycle with length
q, if it satisfies that there always exists at least one state-
flipped transition from δai

2n to δ
ai+1

2n , i ∈ [1 : q − 1],
and one state-flipped transition from δ

aq

2n to δa1
2n . In BC-

N (3) without flipping, if there exists a control input
such that there is a state x(t) = δj2n can be steered to
x(t + 1) = δi2n , then we say that the in-degree of s-
tate δi2n is greater than 0. In addition, if the in-degree of
a state is 0, then there does not exist any state-flipped
transition to this state. Therefore, in the further consid-
eration of the stabilization problem, we assume that the
in-degree of a given state is greater than 0.

Definition 7 Given a subset B ⊆ [1 : n]. For
an initial state x0 ∈ ∆2n , let x(k;uk, x0) be the state
of BCN (3) at time k, where uk = {u0, u1, · · · , uk−1}
is a control input sequence. Let x(k;Λk, x0) be the s-
tate of BCN (3) under B state-flipped control at time k,
where Λk is the joint control pair sequence with k joint
control pairs.

Theorem 1 For any joint control pair sequence
Λt, assume that x0 ∈ ∆2n is an initial state, then the
state reached from x0 after some state-flipped transi-
tions with joint control pairs is always in D(z(t)), i.e.,
x(t;Λt, x0) ∈ D(z(t)).
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Proof We give the proof by mathematical induc-
tion. For the case t = 1, based on Definition 7, we
can obtain that x(1;Λ1, x0) is a state of BCN from x0

after one state-flipped transition step. Then, x(1; Λ1,
x0) ∈ D(sgn(MCBx0)). Since D(sgn(MCBx0)) =

D(sgn(G̃x0)) =D(sgn(G̃z(0))) =D(z(1)), we have
x(1; Λ1, x0) ∈ D(z(1)). Next, suppose that x(t; Λt,
x0) ∈ D(z(t)) holds for the case t = k. When t =
k + 1, x(k + 1; Λk+1, x0) = x(1; Λ1, xk), where
xk = x(k;Λk, x0) ∈ D(z(k)). Let D(z(k)) = {δi12n ,
δi22n , · · · , δ

ip
2n} and take xk = δik2n . Then, we have that

x(1;Λ1, δ
ik
2n)∈D(sgn(G̃δik2n))⊆D(z(k+1)). Hence,

x(k + 1;Λk+1, x0) ∈D(z(k + 1)).

In Theorem 1, an approach for calculating x(t; Λt,
x0) is given by calculating z(t) first in BCN (3) under
B state-flipped control. Further, we provide the signif-
icance of each component of G̃. Let w(k; δj2n , δ

i
2n) be

the number of the ways to steer BCN (3) under B state-
flipped control from the initial state x0 = δj2n to the des-
tination state xk = δi2n after k state-flipped transition
steps. Next, we derive a theorem to obtain the num-
ber of the ways w(k; δj2n , δ

i
2n) by using state-flipped-

transition matrix G̃.

Theorem 2 Let B := {b1, b2, · · · , bs} ⊆ [1 :

n] and G̃ = MCB be the state-flipped-transition matrix
defined as (7). Then, there is [(G̃)k]ij = w(k; δj2n , δ

i
2n).

Proof According to the definition of state-flipped
transition matrix G̃, we have

(G̃)ij = (MCB)ij =

Rowi(M)Colj(CB) =

Rowi(
2m∑
q=1

Gq)Colj(
∑

A∈PB

HA) =

2m∑
q=1

Rowi(Gq)
∑

A∈PB

Colj(HA) =

2m∑
q=1

∑
A∈PB

Rowi(Gδq2m)(HAδ
j
2n) =

2m∑
q=1

∑
A∈PB

(δi2n)
⊤(Gδq2m)(HAδ

j
2n).

If x(1;Λ1, δ
j
2n) = δi2n with Λ1 = (η¬

A, δ
q
2m), then

we have (δi2n)
⊤(Gδq2m)(HAδ

j
2n) = 1. Therefore, (G̃)ij

=
2m∑
q=1

∑
A∈PB

1 with the condition x(1; Λ1, δ
j
2n) = δi2n .

For the case t = k, we have [(G̃)k]ip = w(k; δp2n , δ
i
2n).

Next, for the case t = k + 1, we can conclude

(G̃)k+1
ij =

2n∑
p=1

[(G̃)k]ipG̃pj =

2n∑
p=1

w(k; δp2n , δ
i
2n)w(1; δ

j
2n , δ

p
2n) =

w(k + 1; δj2n , δ
i
2n).

Thus, (G̃)kij can be used to calculate the number
of ways from state δj2n to state δi2n after k state-flipped
transition steps.

Based on Theorem 2, we can obtain the reachability
between any two states in the BCN (3) under B state-
flipped control based on the calculation of the matrix G̃
and its powers. (G̃)ij > 0 implies that there exists at
least a set A ∈ PB and a control-depending network
transition matrix Gq, such that δi2n = GqHAδ

j
2n .

Now, we give an example to illustrate the validity
of Theorem 2.

Example 2 Given B = {2, 3} as is mentioned
in Example 1. Consider a BCN with three nodes and one
control input, i.e. n = 3,m = 1 in [14]. Its algebraic
representation is

x(t+ 1) = Gu(t)x(t), (9)

where G = δ8[2 1 1 5 5 2 1 7 1 2 1 5 5 1 1 7]. Then,

M =
2∑

q=1

Gq = [δ1,28 δ1,28 2δ18 2δ58 2δ58 δ1,28 2δ18 2δ
7
8].

Recall CB in Example 1, we have

G̃ = MCB = [4δ18 + 2δ2,58 4δ18 + 2δ2,58 4δ18+

2δ2,58 4δ18 + 2δ2,58 3δ18 + δ28 + 2δ5,78 3δ18+

δ28 + 2δ5,78 3δ18 + δ28 + 2δ5,78 3δ18 + δ28 + 2δ5,78 ].

To show the validity of Theorem 2, we can find that
G̃7,5 = 2, which implies that in the BCN (9) under
{2, 3} state-flipped control, there are 2 ways for δ58 to
be steered to δ78 after one state-flipped transition step.
In fact, we can only find (MH{2,3})7,5 = 2. Since
H{2,3}δ

5
8 = δ88 , and G1δ

8
8 = δ78, G2δ

8
8 = δ78 , we get

that the joint control pair from δ58 to δ78 after one state-
flipped transition step is (η¬

{2,3}, δ
1
2) or (η¬

{2,3}, δ
2
2).

Next, after introducing matrix G̃, we are able to ad-
dress the global stabilization of BCN (3) under B state-
flipped control based on G̃. We derive the definition of
xd stabilizable for a BCN (3) under B state-flipped con-
trol as follows, where the in-degree of the state xd is
greater than 0.

Definition 8 For a given target state xd = δd2n ∈
∆2n , BCN (3) under B state-flipped control is said to be
globally stabilizable to xd, if for any x0 ∈ ∆2n , there
exists a joint control pair sequence Λt and a positive
integer N , such that for any t > N ,

x(t;Λt, x0) = xd. (10)

If BCN (3) under B state-flipped control can
achieve global stabilization, we call the set B stabiliz-
ing set.

In Definition 8, we need to find proper Λt for the
global stabilization. The result of Theorem 2 implies
that the reachability between two states can be calcu-
lated by G̃. Therefore, we propose Theorem 3 as a prior
condition to judge the global stabilizaion of BCN (3)
under B state-flipped control. If the global stabilization
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under state-flipped control cannot be achieved by a sub-
set B ⊆ [1 : n] in Theorem 3, then we need to choose
another set to replace B.

Theorem 3 For a given subset B ⊆ [1 : n] and
a state xd = δd2n , BCN (3) under B state-flipped control
is globally stabilizable to xd if and only if the following
two statements hold:

1) (G̃)dd > 0;
2) There exists a positive integer k ∈ [1 : 2n − 1],

such that Rowd((G̃)k) > 0.

Proof [Sufficiency] Owing to Theorem 2, if there
exists an integer k0 ∈ [1 : 2n − 1] such that
Rowd((G̃)k0) > 0, δd2n can be achieved from δj2n , j ∈
[1 : 2n] after k0 state-flipped transition steps. Moreover,
(G̃)dd > 0 shows that xd = δd2n is a fixed point. There-
fore, we can find the positive integer N = k0, and there
exists a joint control pair sequence Λt, such that for all
t > k0, x(t;Λt, x0) = xd, ∀x0 ∈ ∆2n .

(Necessity) Since BCN (3) under B state-flipped
control is globally stabilizable to xd, for all x0, there
exist a joint control pair sequence Λt and a positive in-
teger N , such that for all t > N,x(t;Λt, x0) = xd.
Taking t = N into consideration, for any initial state
x0, we have x(N ;ΛN , x0) = xd. Similarly, it hold-
s that x(N + 1;ΛN+1, x0) = xd. Hence, there exists
at least one walk with length N from x0 to xd in BCN
(3) under B state-flipped control, and another walk with
length N+1 from x0 to xd. Therefore, we can conclude
that there exists a way in BCN (3) under B state-flipped
control from xd to xd after one state-flipped transition
step. Based on Theorem 2, we have (G̃)dd > 0. Be-
sides, according to Definition 8, there always exists at
least one walk from any state δj2n , j ∈ [1 : 2n] to δd2n .
Denote the walk by Pj . Let kj1 represent the length of
the walk. It is obvious that kj1 > 1. Then, we need
to prove that kj1 6 2n. If kj1 > 2n, considering that
there are 2n states in the state space, there must be some
cycles in the walk Pj . Remove all cycles in Pj , then
we can obtain a simple path from δj2n to δd2n with its
length less than or equal to 2n − 1. The length of sim-
ple path from δj2n to δd2n is denoted by kj . Then, take
k = max{k1, k2, · · · , k2n} ∈ [1 : 2n − 1]. Due to
the arbitrary of x0 = δj2n , combining ((G̃)k)dj , we can
obtain that Rowd((G̃)k) > 0.

If we have verified that BCN (3) under B state-
flipped control is globally stabilizable to xd, then BCN
(3) can be also globally stabilizable to xd under state-
flipped control for any superset of B. In order to re-
duce the control cost, we always expect that the car-
dinal number of B achieving global stabilization is as
small as possible. A stabilizing set B with minimal car-
dinal number is said to be a stabilizing kernel of BCN
(3) under B state-flipped control, and the corresponding
minimal “N” in Definition 8 is called stabilizing step.

Since the subset B is given in advance, it is used to pre-
judge whether BCN (3) under B state-flipped control
can achieve global stabilization to a given state. How-
ever, it is possible that a subset of B might be a better
stabilizing set with smaller cardinal number. Hence, it
inspires us to find a stabilizing kernel, which is a sub-
set of B, to give the state-flipped control. Algorithm 1
is developed to obtain a stabilizing kernel based on the
given B.

Algorithm 1 An algorithm for finding a stabilizing k-
ernel and the corresponding stabilizing step of BCN (3)
based on a given set B to achieve global stabilization to
δd2n

Input: M,B

Output: Bγi , k

1: Initialization
2: γ = 1

3: i = 1

4: Initialize θ and Cγ
θ

5: If (MCBγi
)dd > 0, go to step 6

6: k = 1

7: If Rowd[(MCBγi
)k] > 0,

8: return Bγi , k, end
9: else k ← k + 1

10: If k 6 2n − 1, go to step 7
11: else i← i+ 1

12: If i 6 Cγ
θ , go to step 5

13: else go to step 14
14: If output is empty, γ ← γ + 1

15: If γ 6 θ, go to step 3
16: else end
17: else end
18: else i← i+ 1

19: If i 6 Cγ
θ , go to step 5

20: else γ ← γ + 1

21: If γ 6 θ, go to step 3
22: else end

Now, we give several explanations of the notation-
s using in Algorithm 1. The cardinal number of given
subset B is θ, i.e. |B| = θ. Bγi

is a subset of B with
cardinal number being γ. Cγ

θ is a combinatorial num-
ber. If Bγi

and k are returned, then Bγi
is a stabilizing

kernel and k is its corresponding stabilizing step.
Based on the above analysis, for a traditional BCN

(3), if it cannot achieve global stabilization to any s-
tate, we can consider adding some state-flipped control-
s. Given a subset B ⊆ [1 : n], the global stabilization
with respect to xd can be checked by Theorem 3 un-
der B state-flipped control. Then, Algorithm 1 presents
a method for calculating the stabilizing kernel and the
stabilizing step. In practical problems, we not only need
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to judge whether the network can be globally stabiliz-
able, but also need to find the corresponding joint con-
trol pair sequences for each state. Thus, another method
about reachable set for global stabilization is provided.

Definition 9 For a given target state xd = δd2n .
In a BCN (3) under B state-flipped control, the k step
reachable set of xd denoted by Ek(d), is defined as:

i) E1(d) = {x0|∃Λ1, such that x(1;Λ1, x0) =
xd},

ii) Ek+1(d) = {x0 ∈ Ek(d)
c
| ∃Λ1 such that x(1;

Λ1, x0) ∈ Ek(d)}, where Ek(d) =
k∪

i=1

Ei(d), Ek(d)
c

=∆2n\Ek(d).

In the construction of k step reachable set, we can
obatin that Ei(d) ∩ Ej(d) = ∅ for any positive inte-
gers i and j satisfying 1 6 i ̸= j 6 2n − 1. Next,
we can calculate the k step reachable set of xd to deter-
mine whether BCN (3) under B state-flipped control is
globally stabilizable to xd.

Theorem 4 Given a target state xd = δd2n ∈
∆2n . BCN (3) under B state-flipped control is global-
ly stabilizable to xd, if and only if the following two
statements hold:

1) xd ∈ E1(d);
2) There exists a positive integer N ∈ [1 : 2n − 1]

such that
N∪

k=1

Ek(d) = ∆2n .

proof If xd ∈ E1(d), then there exists a joint con-
trol pair sequence Λ1 such that x(1;Λ1, xd) = xd.
It is equal to the first condition in Theorem 3 that
(G̃)dd > 0 implies xd is a fixed point in BCN (3) under
B state-flipped control. If there exists a positive inte-

ger N ∈ [1 : 2n − 1] such that
N∪

k=1

Ek(d) = ∆2n ,

then for any initial state x0 = δj2n ∈ ∆2n , there ex-
ists a k steps state-flipped transition to steer x0 to xd,
k ∈ [1 : N ]. Equivalently, it means that we can find N ,
such that Rowd((G̃)N) > 0. According to Theorem 3,
we can obtain that BCN (3) under B state-flipped con-
trol is globally stabilizable to xd. From the above anal-
ysis, it shows the conditions in Theorem 4 are equal to
the conditions in Theorem 3.

Next, we present Algorithm 2 for calculating the
joint control pair sequence we want, which can steer the
network from an initial state to the given state. Suppose
that we have found the stabilizing kernel is B and |B| =
θ. All subsets of B are denoted by A1, A2, · · · , A2θ .
For the state-flipped transitions from δj2n to δi2n , accord-
ing to the state-flipped-transition matrix G̃, we can find
a state-flipped transition path P = {x0 = δj2n → x1 =
δp1

2n → x2 = δp2

2n → · · · → xk = δi2n}, where xp

is in the k − p step reachable set of xk. For conve-
nience, suppose that δp0

2n = δj2n , δ
pk

2n = δi2n . After we

find the path from δj2n to δi2n , there are several different
joint control pair sequences which are feasible. We can
calculate (MHArt

)pt+1,pt
> 0 to find the state-flipped

control with the flip set Art to help steer xt to xt+1,
where r ∈ [1 : 2θ], t ∈ [0 : k − 1]. Then, after finding
the state-flipped control, one needs to find a control-
depending network transition matrix Gqt of BCN (3) to
obtain the control input ut = δqt2m for xt. Therefore, a
joint control pair (η¬

Art
, ut) can be found for each state-

flipped transition step from xt to xt+1, t ∈ [0 : k − 1].
Finally, a joint control pair sequence for δj2n to go to δi2n
is acquired. Since there may have several different join-
t control pair sequences, note that in this paper we are
only interested in the existence of the joint control pair
sequences.

Algorithm 2 An algorithm for finding a joint control
pair sequence to steer δj2n to δi2n

Intput: δj2n , δ
i
2n

Output: Λ{δj2n ,δi2n}
1: Initialization
2: k = 1

3: If k 6 2n − 1, do step 5
4: else end
5: If [(G̃)k]ij > 0, then let k∗ = k, do step 7
6: else k ← k + 1, do step 3
7: Calculate Em(i),m ∈ [1 : k∗]

8: Find a path P = {x0 = δj2n → x1 = δp1

2n → x2 = δp2

2n →
· · · → xk∗ = δi2n}

9: Calculate MHAr
, r ∈ [1 : 2θ]

10: Find (MHArt
)pt+1,pt > 0, then the state-flipped control

for xt is η¬Art
, where t ∈ [0 : k∗ − 1], rt ∈ [1 : 2θ]

11: Find (GqtHArt
)pt+1,pt = 1, then the control input for xt

is ut = δqt2m , where t ∈ [0 : k∗ − 1], qt ∈ [1 : 2m]

12: Λ{δj2n ,δi2n} = {(η¬Ar0
, u0), (η

¬
Ar1

, u1), · · · , (η¬Ark∗−1
,

uk∗−1)}
13: end

If we use BCNs to model large-scale gene regula-
tory networks, the STP-based approach will have high
computational complexity. To this end, we present a QL
algorithm, which can be applied in model-free cases and
reduces computational complexity, to check whether a
BCN (3) under B state-flipped control is globally stabi-
lizable to a given state.

QL algorithm is a type of model-free reinforcement
learning algorithm involving Markov decision process-
es (MDPs), and especially in this paper we only consid-
er the case without any probability [23–24]. As a rein-
forcement learning method, QL algorithm can achieve
goals through interactive learning and training between
agents and the environment. Agents can be sensors,
drones, power stations in smart grids, gene nodes in bi-
ological networks, and so on. The environment repre-
senting everything outside the subject can interact with
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and impact on the agents. Specifically, the agents and
the environment constantly interact. The agents select
actions, and in turn, the environment responds to those
actions and provides new information to the agents. In
the process of interaction, the environment generates re-
wards, namely specific values, which can reflects the
quality of the current action. The essence of reinforce-
ment learning is to find a series of actions that maximize
the long-term rewards (return) to achieve a given goal.
Besides, a policy is a mapping from states to the proba-
bility of choosing each possible action. Simply, a policy
can be regarded as a choice of actions for a state at each
step.

In this paper, we regard a controller as an agent and
the unknown system (the BCN) as the environment. A
joint control pair is regarded as an action. The reward is
set artificially based on a given goal, and the return is
the sum of the rewards. After the qualitative introduc-
tion, we introduce some specific notations and neces-
sary explanations for the QL algorithm.

In BCN (1) under B state-flipped control, Xt ∈ Dn

denotes the state at t after t state-flipped transition step-
s. Xd ∈ Dn denotes a given target state. Since both
state-flipped control η¬

At
and control input Ut ∈ Dm

are adopted, now we recall joint control pair (η¬
At
, Ut)

denoted by Jt for the sake of convenience.
For the QL algorithm, some basic notations are in-

troduced. Λ∗(Xt, Xd) denotes the optimal policy (i.e.
a joint control pair sequence achieving the given target
state with maximal return) from Xt to Xd. rt denotes
the reward used to calculate the immediate return value
received by the agent, after the agent selects an action
from the current state and moves to the next state. The
reward function is set in advance according to our goals.
With target of steering the BCN under B state-flipped
control to be globally stabilizable to Xd, we give the
setting of the reward rt+1 as follows:

rt+1 =

100, Xt+1 = Xd,

0, Xt+1 = Xi ̸= Xd,
(11)

where X i ∈ Dn with i ∈ [1 : 2n].
Based on the above settings, Algorithm 3 is pro-

posed using QL method to check the global stabiliza-
tion of BCN under B state-flipped control as follows.

In Algorithm 3, γ ∈ (0, 1) is the discount factor,
which is used to determine the relative ratio of the de-
layed return to immediate return. αt denotes the learn-
ing rate. When the following two conditions are sat-
isfied, the convergence of Algorithm 3 is guaranteed:

i)
∞∑
t=0

αt = ∞; ii)
∞∑
t=0

α2
t < ∞, see in [25]. Actually,

i) guarantees that the step size is large enough to finally
overcome any initial conditions. ii) guarantees that the
final step size is small enough to ensure convergence. In
this paper, we set αt = 1/(t + 1)ω with 0.5 < ω 6 1.

It can be easily proved that αt = 1/(t + 1)ω satisfies
conditions i) and ii). The greater the learning rate αt is,
the less the effect of previous training becomes.

Now, we give the origin of Q table in Algorithm
3. We set π to be the policy. vπ(Xt) denotes the value
function for Xt, which can estimate the long-term dis-
counted return to show the performance of agent at Xt

and under policy π thereafter, namely:

vπ(Xt) = Eπ[
∞∑

i=t+1

γi−t−1ri|Xt], ∀Xt.

Algorithm 3 Global stabilization of BCN under B

state-flipped control using QL method
Intput: Xd, N, T, τ, ϵ-greedy, ω
Output: Λ∗(Xt, Xd), if BCN under B state-flipped
control is globally Xd stabilizable

1: Initialization: Q0(Xt,J t, Xd) ← 0, ∀Xt,∀Jt, Eτ (Xd)

← ∅
2: For ρ = 0, 1, · · · , N − 1 do
3: Xρ ← rand(Dn)

4: αρ ← 1/(ρ+ 1)ω, t← 0, Xt ← Xρ

5: While (t < T ) ∧ (Xt ̸= Xd) do
6: Choose Jt using ϵ-greedy
7: apply(Jt), read(Xt+1), read(rt+1)

8: Qt+1(Xt,Jt, Xd)← Qt(Xt,Jt, Xd) + αρ[rt+1+

9: γmax
J

Qt(Xt+1,J , Xd)−Qt(Xt,Jt, Xd)]

10: If (Xt+1 == Xd) ∧ (t < τ) then
11: Eτ (Xd)← Eτ (Xd) ∪Xρ

12: end if
13: t← t+ 1

14: end While
15: Q0(Xt,Jt, Xd)← Qt(Xt,Jt, Xd),∀Xt, ∀Jt
16: end for
17: If Eτ (Xd) == Dn then
18: Q∗(Xt,Jt,Xd)← Qt(Xt,Jt,Xd), ∀Xt,∀Jt
19: Λ∗(Xt,Xd)← argmax

J
Q∗(Xt,J ,Xd), ∀Xt

20: else BCN under B state-flipped control is not globally sta-
bilizable to Xd and discard Qt(Xt,Jt, Xd)

21: end if

The optimal policy π∗ is the policy maximizing the
value function at any initial state, i.e., π∗(Xt,Jt) =
argmax

π∈Π
vπ(Xt), where Π the set of all policies. Un-

der the optimal policy π∗, the value function is denoted
as v∗(Xt) = vπ(Xt). In [25], vπ(·) satisfies the Bell-
man optimality equation as follows:

v∗(Xt) = max
J

∑
X

P{X|Xt,J }[E[rt+1|Xt,J ]+

γv∗(X)],

where P{X|Xt,J } is the conditional probability for
Xt to X by taking the joint control pair J . Similar-
ly, we set the action-value function qπ(Xt,Jt) to be
the expected return from Xt, under Jt based on policy
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π, i.e., qπ(Xt,Jt) = Eπ[rt+1 + γvπ(Xt+1)]. Accord-
ingly, the optimal action-value function is defined as
q∗(Xt,Jt) := qπ∗(Xt,Jt),∀Xt,Jt. Since v∗(Xt) =
max
J

q∗(Xt,J ), according to the Bellman optimality e-

quation of v∗(Xt), we can obtain that

q∗(Xt,Jt) =
∑
X

P{X|Xt,J }[E[rt+1|Xt,Jt]+

γmax
J

q∗(X,J )]. (12)

π is called deterministic policy if it allows only one
action for each state, i.e., with the form λ(Xt), that
maps states Xt into actions Jt = λ(Xt),∀Xt. Further,
for any MDP, there exists an optimal policy which is not
worse than any other policy [25], and under the optimal
policy, the actions λ∗(Xt) can be derived as

λ∗(Xt) = argmax
J

q∗(Xt,J ), ∀Xt.

In [19], temporal difference (TD) learning is in-
troduced to tackle (12), and Q factor is introduced to
be an estimation of qπ(Xt,Jt). Its iterative equation
is Qπ(Xt,Jt) = rt+1 + γQπ(Xt+1, λ(Xt+1)). The
learned action-value function Q can be used to esti-
mate the optimal action-value function q∗ directly. It
dramatically simplifies the analysis of the algorithm
and obtains the proofs of convergence of the algorith-
m. Then, we define TD error as TDt+1 = rt+1 +
γQπ(Xt+1, λ(Xt+1)) − Qπ(Xt,Jt). Next, Q can up-
date with the rule in the following:

Qt+1(Xt,Jt, Xd) = Qt(Xt,Jt, Xd) + αt[TDt+1],

TDt+1 = rt+1 + γmax
J

Qt(Xt+1,J , Xd)−

Qt(Xt,Jt, Xd),

where Q table is in R2n×2n . Recalling conditions i) and
ii), Q table is convergent and converges to Q∗ table.
Thus, for any initial state X0, we can use Q∗ table to
estimate q∗, and hence we can find the optimal state-
flipped transitions to Xd. Finally, we can obtain the op-
timal joint control pair sequence Λ∗(X0, Xd).

After introducing the update rule of Q factor, we
continue to introduce other necessary notations in Al-
gorithm 3: Each episode ρ ∈ [0, N − 1] is a complete
training process from any initial state X0 to the target
state Xd, where N is the maximal number of episodes
we consider. ϵ-greedy strategy is a common algorith-
mic idea, which refers to choosing the action Jt with
the largest Qt in the current view by probability 1 − ϵ,
i.e. Jt = argmaxQt. With probability ϵ, the choice of
the action is random. In each episode ρ, we denote T
as the maximum of actions taken by the agent. We set
τ = 2n−1 and T ≫ τ . In addition, we denote Eτ (Xd)
as the set of states which arrive to Xd after (within) τ
state-flipped transition steps.

4 Simulations
In this section, a simple BCN is used to demonstrate

the obtained theoretical results.

Example 3 Reconsider BCN (1), the state tran-
sition matrix of BCN (9) is given by

G = δ8[2 1 1 5 5 2 1 7 1 2 1 5 5 1 1 7].

Then, we can obtain that

M=
2∑

q=1

Gq=[δ1,28 δ1,28 2δ18 2δ
5
8 2δ

5
8 δ

1,2
8 2δ18 2δ

7
8].

There are 3 fixed points δ18, δ
2
8, δ

5
8 in traditional BC-

N (9) without state-flipped control. However, by calcu-
lating M8, we can obtain that M8 = [128δ1,28 128δ1,28

128δ1,28 256δ58 256δ58 128δ1,28 128δ1,28 128δ1,28 ],
which means that BCN (9) cannot achieve global sta-
bilization only by free control sequences. Fig. 1 depict-
s the state transition graph of BCN (9). Now, we con-
sider whether some state-flipped controls can be added
for stabilization. Let the target state be xd = δ78 . Re-
gardless of the reality constraint, give the initial flip set
B = {1, 2, 3}. Using Algorithm 1, we can obtain that
(MC{2,3})7,7 = 2 > 0 and Row7(MC{2,3})

2 > 0.
Based on Theorem 3, BCN (9) under {2, 3} state-
flipped control is globally stabilizable to δ78 . It also im-
plies that the stabilizing kernel is Bγi

= B23 = {2, 3},
and the corresponding stabilizing step is 2. Based on
the Definition 9 of k step reachable set, using G̃ =

MC{2,3}, we can obtain that E1(δ
7
8) = {δ58 , δ68, δ78,

δ88}, E1(δ
7
8) = {δ18, δ28, δ38, δ48}. There exists N =

2,
2∪

k=1

Ek(xd) = ∆8. Hence, Theorem 4 can be also

used to check stabilization.

1=δ
1

2

2=δ
2

2

1 or 2

δ
8

8
δ

7

8

δ
6

8

δ
2

8

δ
4

8

δ
3

8

δ
1

8

δ
5

8

Fig. 1 The state transition graph of BCN (9)

Next, we adopt the QL Algorithm 3 to find the join-
t control pair sequences to steer the BCN under {2, 3}
state-flipped transition to achieve global stabilization to
xd = δ78 . Set the reward by (11), and let N = 500000,
ω = 0.51, ϵ = 0.3. The converged Q∗ table can be ob-
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tained:

Q∗ =



64 64 64 64 64 64 80 80

64 64 80 80 64 64 64 64

64 64 64 64 80 80 64 64

80 80 64 64 64 64 64 64

80 80 64 64 64 64 100 100

64 64 100 100 80 80 64 64

0 0 0 0 0 0 0 0

100 100 64 64 64 64 80 80


,

(13)

where each column in the Q table represents the join-

t control pair, which is (η¬
∅ , δ

1
2), (η

¬
∅ , δ

2
2), (η

¬
{2}, δ

1
2),

(η¬
{2}, δ

2
2), (η

¬
{3}, δ

1
2), (η

¬
{3}, δ

2
2), (η

¬
{2,3}, δ

1
2), (η

¬
{2,3},

δ22) from left to right, respectively. Then, based on (13),

we have the optimal policy Λ∗ (joint control pair se-

quence) for any initial state. To improve readability, we

denote them by paths:

P1={x0=δ18
(η¬

{2,3},δ
1
2)−−−−−−→

(η¬
{2,3},δ

2
2)

x1=δ58
(η¬

{2,3},δ
1
2)−−−−−−→

(η¬
{2,3},δ

2
2)

x2=δ78},

P2 = {x0=δ28
(η¬

{2},δ
1
2)−−−−−→

(η¬
{2},δ

2
2)

x1=δ58
(η¬

{2,3},δ
1
2)−−−−−−→

(η¬
{2,3},δ

2
2)

x2=δ78},

P3 = {x0=δ38
(η¬

{3},δ
1
2)−−−−−→

(η¬
{3},δ

2
2)

x1 = δ58
(η¬

{2,3},δ
1
2)−−−−−−→

(η¬
{2,3},δ

2
2)

x2=δ78},

P4 = {x0 = δ48
(η¬

∅ ,δ12)−−−−→
(η¬

∅ ,δ22)
x1 = δ58

(η¬
{2,3},δ

1
2)−−−−−−→

(η¬
{2,3},δ

2
2)

x2 = δ78},

P5 = {x0 = δ58
(η¬

{2,3},δ
1
2)−−−−−−→

(η¬
{2,3},δ

2
2)

x1 = δ78},

P6 = {x0 = δ68
(η¬

{2},δ
1
2)−−−−−→

(η¬
{2},δ

2
2)

x1 = δ78},

P7 = {x0 = δ78
(η¬

{3},δ
1
2)−−−−−→

(η¬
{3},δ

2
2)

x1 = δ78},

P8 = {x0 = δ88
(η¬

∅ ,δ12)−−−−→
(η¬

∅ ,δ22)
x1 = δ78}.

The joint control pairs above and below the arrow

are both allowed in the state-flipped transition between

two states. Fig. 2 shows the state-flipped transition-

s considering all joint control pairs of BCN (9) under

{2, 3} state-flipped transition. For two states, we take

any feasible joint control pair composing a state-flipped

transition graph of BCN (9) under {2, 3} state-flipped

control, which is shown in Fig. 3. Comparing Fig. 1 and

Fig. 3, note that although BCN (9) is not globally stabi-

lizable by free control sequences, BCN (9) under {2, 3}
state-flipped control is globally stabilizable to the target

state δ78 after adding state-flipped control.

8

7

6

5

4

3

2

1
0 1 2 3 4 5

time step

{empty set, δ
1

2
}

{empty set, δ
2

2
}

{{2}, δ
2

2
}

{{2}, δ
1

2
}

{{3}, δ
2

2
}

{{3}, δ
1

2
}

{{2,3}, δ
2

2
}

{{2,3}, δ
1

2
}

0=δ
1

8

0=δ
2

8

0=δ
3

8

0=δ
4

8

0=δ
5

8

0=δ
6

8

0=δ
7

8

0=δ
8

8

st
at

e 
δ

8 ,
 
∈

 [
1
,8

]

Fig. 2 All paths about state-flipped transitions of BCN
(9) under {2, 3} state-flipped control
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Fig. 3 One of the state-flipped transition graphs of
BCN (9) under {2, 3} state-flipped control

5 Conclusion
This paper addresses the global stabilization of

BCNs under state-flipped control. We propose a BC-
N added with state-flipped control, called BCN under
state-flipped control. The state-flipped-transition matrix
is given to judge the reachability of states. Based on
the state-flipped-transition matrix, several criteria are
proposed for the global stabilization. We design an al-
gorithm for finding a stabilizing kernel and the corre-
sponding stabilizing step. Moreover, a QL algorithm
is given for finding the joint control pair sequences to
achieve global stabilization. Finally, an example is pro-
vided to illustrate the main results.
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