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摘要:本文提出了一种基于主动学习的增强模型预测控制方法.该方案克服了大多数基于学习的方法的缺点,即只能
被动地利用可获得的系统数据并导致学习缓慢.首先应用高斯过程来评估残差模型的不确定性并构建多步预测模型.然
后提出了一个两阶段主动学习策略,通过在优化问题中引入信息增益作为对偶目标来激励系统探测.最后,基于鲁棒不
变集定义了安全控制输入集保证了状态约束满足与系统安全性.本文提出的方法在保证系统安全的情况下提高了学习
能力和闭环控制性能,实验说明了本文方案的优越性.
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Abstract: This paper proposes an active learning-based MPC scheme that overcomes the shortcomings of most learning-
based methods which passively leverage the available system data and result in slow learning. We first apply Gaussian
process regression to assess the residual model uncertainty and construct multi-step predictive model. Then we propose a
two-step active learning strategy and reward the system probing by introducing information gain as dual objective in the
optimization problem. Finally, the safe control input set is defined based on robust admissible input set to robustly guarantee
state constraint satisfaction. The proposed method improves the learning ability and closed-loop performance with safety
guarantees. The advantages of our proposed active learning-based MPC scheme are illustrated in the experiments.
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1 Introduction
Model predictive control (MPC) [1–2], as the main

control method to systematically deal with system con-
straints, has achieved remarkable success in many dif-
ferent fields, such as process control [3], autonomous
driving [4–6] and robotics [7]. MPC relies heavily on a
suitable and sufficiently accurate model that describes
the dynamics of the system. However, in many practi-
cal scenarios, models based on principles or data-driven
approaches are subject to certain uncertainties due to in-
complete knowledge of the system and changes in the
dynamics over time, which can potentially lead to con-
straint violation, performance deterioration, as well as
instability [8–9].

In the last few years, learning-based model predic-
tive control (LB-MPC) [10–14] has become an active
research topic, one direction of which considers the
automatic adjustment of the system model, whether it
is during operation or between different operation in-
stances. Most researches on learning-based MPC fo-
cus on the automatic correction or uncertainty descrip-
tion of predictive models based on data, which is the
most obvious component that affects the performance of
MPC. Aswani et al. [10] firstly proposed a framework of
LB-MPC which decoupled the safety and performance
using two models: a model with bounds on its uncer-
tainty and a model updated by statistical methods. This
LB-MPC scheme improved the system performance
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through learning model while ensuring the robustness.
Terzi et al. [12] constructed a multi-step predictive mod-
el with model uncertainties using set-membership, and
proposed a robust MPC law in the control design phase.
The authors in [13] obtained the predictive model using
a nonparametric machine learning technique and then
proposed a novel stabilizing robust predictive controller
without terminal constraint. These studies require a pri-
or strict bound on uncertainty, which is conservative in
practice. To reduce conservatism, Di Cairano et al. [14]
proposed a learning-based stochastic MPC for automo-
tive controls using Markov chains. Cautious MPC was
proposed in [15] that applied Gaussian process re-
gression (GPR) to learn the model error between the
true dynamic and prior model. To solve the problem of
constraints, the author used chance constraints on both
states and inputs. Based on this, Hewing et al. [4] ap-
plied GPR in the control of autonomous race cars which
showed significant improvement on the performance in
varying racing tasks. In [16], the authors reviewed these
LB-MPC methods in detail and divided them into three
categories: model learning, controller learning and safe
MPC. As far as we are aware of, most LB-MPC tech-
niques are passive learning methods. They account for
the modeling challenge only by passively relying on
available history process data, which cannot provide ef-
fective information as well as directly incentivizing any
form of learning. In this work, we try to solve this prob-
lem by introducing the notion of active learning.

On the other hand, active learning or dual effect
in control was first proposed by Feldbaum [17]
that control inputs must have a probing effect that
generates informative closed-loop data. [18–22] consid-
ered simultaneous identification and control of uncer-
tain systems through dual MPC. Mesbah and Ali [19]
summarized MPC with active learning and dual con-
trol. This article divided dual control into implicit and
explicit methods: in implicit dual control, the optimal
control problem is solved approximately; in the explicit
one, the probing effect of the controller is directly taken
into account in the control scheme in the form of addi-
tive cost function or persistent excitation. Heirung [20]
presented two approaches to dual MPC, in which the
controller is calculated based on minimization of pa-
rameter estimate variance and maximization of infor-
mation. In [21], the authors not only considered MPC
with active learning for systems with parametric un-
certainty, but also dealt with the problem with model-
structure uncertainty. In terms of robust research, A
robust dual MPC with constraint satisfaction was pro-
posed for linear systems subject to parametric and ad-
ditive uncertainty in [22]. In [23], the controller’s ro-
bustness was achieved through the multi-stage approach
which uses a scenario-tree representation of the prop-
agation of the uncertainties over the prediction hori-
zon. A new development in dual MPC is the emergence

of control-oriented methods to obtain model uncertain-
ty descriptions related to pre-specified control perfor-
mance [24–25], and we will not go into details in this
work. However, these state-of-the-art approaches are
limited to simple linear system dynamics which can-
not be applied in complex systems, and most of them
also fail to provide theoretical guarantees on safety and
closed-loop performance.

In this paper, with the aim to improve the infor-
mation quality of system operating data and enhance
learning ability, we propose an active learning-based
MPC (ALB-MPC) scheme based on information mea-
sures with safety guarantees. Contributions of our work
are as follows: Firstly, the GPR mean function is used
to learn the model error and construct the conventional
LB-MPC scheme. Secondly, the state constraint sat-
isfaction is robustly guaranteed by selecting control
inputs from safety input set. Thirdly, we introduce in-
formation gain as dual objective in the optimal control
problem and propose a two-stage procedure for ALB-
MPC. The next section presents the problem formula-
tion and GPR method. Section 3 presents the common
learning-based approach based on GPR and gives the
notions of safety guarantee. Section 4 provides the def-
initions of relevant information measures and the two-
step active learning control scheme. Finally, we illus-
trate the results with some numerical examples in Sec-
tion 5 and end with the concluding remarks in Section 6.

2 Preliminaries
In this section, we define the notation, problem for-

mulation and the basic content of Gaussian process re-
gression.
2.1 Notation

A normally distributed vector y with mean µ and
variance Σ is given by y ∼ N(µ,Σ) and so a GP of
y is represented by y ∼ gp(). k∗∗ is short for k(z∗, z∗)
and [K]ij means the i-th row and j-th column elemen-
t of matrix K. The superscript d of mb means that m
have d elements. xi|k represents the i-step-ahead pre-
diction of the state at the time step k. ProjX(S) means
the orthogonal projection of the set S onto X . A\B is
the set difference between A and B. I(z;D) denotes
the information content of data set D after adding new
data z. H(D) is the entropy of data set D and H(z,D)
means the differential entropy at any data point z.
2.2 Problem formulation

In this paper, we consider a discrete-time, nonlinear
dynamical system

xk+1 = f(xk, uk) = h(xk, uk) + g(xk, uk), (1)

with observable system state xk ∈ Rnx and control in-
put uk ∈ Rnu at time step k ∈ N, where nx, nu is the
dimension of the state and input. We assume that the
true system f is not exactly known and use the sum of
a prior nominal model and a learned model to represent
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it. Here, h(xk, uk) is a simple and fixed nominal linear
model that could be achieved by first principles or peo-
ple’s prior knowledge. g(xk, uk) is a learned part that
represents the model error between the true behavior of
the system and the prior model. We can use machine
learning methods to model the learned part by collect-
ing observations from the system during operation.Note
that both the state and input are required to satisfy the
following mixed constraints:

(x, u) ∈ Z ⊂ X × U. (2)

2.3 Gaussian process regression
Gaussian process regression (GPR) provides an ex-

plicit estimate of the model uncertainty that is used to
derive probabilistic bounds in control settings. In this
section, we will briefly introduce the concept of GPR
and use it to learn the model g. Gaussian process can be
viewed as a collection of random variables with a joint
Gaussian distribution for any finite subset. Given noisy
observations y of function g : Rnz 7→ Rnd

y = g(z) + ε,

where nz = nx +nu and nd is the dimension of output
of g. ε ∼ N(0, σ2

ng
) is Gaussian noise with zero mean

and diagonal variance σ2
ng

. A GP of y is fully described
by its mean function m(z) and covariance function
k(z, z′), denoted by y ∼ gp(m(z), k(z, z′)). Given a
set of m input vectors Z = [zT0 · · · zTm−1] ∈ Rm×nz

and the corresponding output Y = [yT
0 · · · yT

m−1] ∈
Rm×nd , then we define the training data by D =
(Z, Y ). We assume that each output dimension a ∈
{1, · · · , nd} is independent and the posterior distribu-
tion in a at a test point z∗ is Gaussian with mean and
variance given by

ma(z∗) = ka
∗(K

a + Iσ2
a)

−1Y a, (3)

Σa(z∗) = ka
∗∗ − ka

∗(K
a + Iσ2

a)
−1ka

∗
T, (4)

where ka
∗∗ = k(z∗, z∗) ∈ R, ka

∗ = k(z∗, Z) ∈ Rm,
K is the covariance matrix with elements [K]ij =
ka(zi, zj) and I is the identity matrix, Y a is the out-
put at each dimension a. In this model, we consider the
squared exponential kernel

ka(z, z) = σ2
f,a exp(−(z − z)TLa(z − z)),

here σ2
f,a denotes the squared signal variance and La ∈

Rnz×nz is a positive diagonal length scale matrix, which
can be achieved by maximizing the Marginal Log-
likelihood. The resulting GP approximation of the func-
tion g is given by

g(z) ∼ N(md(z), Σd(z)), (5)

with md = [md
1 · · · md

nd
] and Σd = diag{[Σd

1 · · ·
Σd

nd
]}.
Note that when GPR is applied in control, many

research consider the propagation of uncertainty. In
this paper, however, we employ the mean function to

perform multi-step ahead predictions without consider-
ing the propagation of uncertainty for simplicity. Also,
sparse Gaussian processes can reduce computation, but
here we do not consider this method. For more spe-
cific knowledge about GPR, readers can refer to liter-
ature [26–27].

3 Learning-based MPC and safety guaran-
tees
In this section, we apply GPR mentioned above to

learn the model error and combine it with the prior nom-
inal model to design learning-based MPC scheme. Also,
we introduce the concept of robust control invariant set
and safe control input set which guarantee the safety of
the system.
3.1 Model learning and LB-MPC

The training data yk is generated from the mismatch
between measurements of xk+1 and the prior nominal
model during operation

yk = xk+1 − h(xk, uk) = g(zk), (6)

where zk = [xk uk]
T. We then denote the recorded data

set including all past control inputs and states available
at time step k

Dk = {(xk, zk−1), (xk−1, zk−2), · · · , (x1, z0)}.
We use the data set Dk to update the GPR model

and make multi-step prediction combined with the nom-
inal model at every time step. The model constructed is
assumed to be equivalent to the true dynamics of the
system. Then, the control inputs are determined know-
ing that the best prediction is available given the current
system information. This method is a kind of certainty-
equivalence approaches and the learning here is passive.

GPR mean function is used in the passively
learning-based MPC approach. From equations (3)–(6)
and the data set Dk, the one-step-ahead predictive mod-
el can be constructed as follows:

xk+1 = h(xk, uk) +md(xk, uk). (7)

Then we can formulate the closed-loop LB-MPC
problem. Considering the following finite-horizon ob-
ject function:

min
u

Jtask =
N−1∑
i=0

l(xi|k, ui|k) + LN(xN), (8)

here, Jtask means the cost function of control task,
i = 0, 1, · · · , N − 1, xi|k is the i-step-ahead predic-
tion of the state initialized at x0|k = x(k), and ui|k
is of the same. This cost function can be selected as
l(xi|k, ui|k) = xT

i|kQxi|k + uT
i|kRui|k or modified to

include set-points for both states and actions. The op-
timization problem is minimized at time step k and the
model above can be used to predict the effect of the con-
trol inputs on the system state as follows:

xi+1|k = h(xi|k, ui|k) +md(xi|k, ui|k),
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x0|k = x(k).

Constraints on the inputs and states from (2) can be
formulated as follows and these constraints are usually
chosen based on physical hardware limitations, desired
performance or safety considerations:

(xi|k, ui|k) ∈ Z ⊂ X × U.

At every time step k, the current system states is
measured, then we can get the error between the real
output of the system and the one of the learned model
in the previous time step. Afterwards, this information
is combined with past information to learn the new pre-
dictive model, and the open-loop optimization problem
formed by (8) is solved. The solution to the optimal con-
trol problem is the open-loop input sequence {ui|k}N−1

i=0

and the first element of this sequence is used as an input
to the system u∗

0|k. Then the process is repeated at each
sampling time.
3.2 Safety consideration

In the LB-MPC problem, satisfaction of the state
constraints cannot be guaranteed and the chosen input
may not be safe. As illustrated above, we apply GPR
mean function to learn the model error. Then, the con-
fidence bounds of the GPR can be used to characterize
model uncertainty.

G(x, u) = {g|(g −md(x, u))T(Σd(x, u))−1(g−
md(x, u)) 6 χ2

n(p)}, (9)

where χ2
n(p) is the quantile function for the chi-squared

distribution with n degrees of freedom and p ∈ (0, 1)
is a tuning parameter. G(x, u) can be found through of-
fline learning. Then we make the following assumption:

Assumption 1 At every time step k, the learned
model satisfies constraint g(xk, uk) ∈ G(xk, uk) in (9)
which is determined through offline learning.

Note that this assumption will not formally hold
since the normal distribution has infinite support, but it
is useful in practice and the confidence bounds are com-
monly used to model uncertainty. Combining it with the
previous constraint on the state and input, we define set
in (10):

Ω := {(x, u, g)|(x, u) ∈ Z ∩ g ∈ G(x, u)}. (10)

It can be viewed as the subset of the graph G where
the state and input constraints are both satisfied. Hence,
we have G = ProjX×U(Ω) which is the orthogonal
projection of set Ω. Then the state-dependent set of ad-
missible inputs can be defined as

U(x) := {u|(x, u) ∈ Z},
such that the set of admissible states is then

X := {x|∃u, (x, u) ∈ Z} = ProjX(Z).

Based on these sets, we define the notions of robust
control invariant set and safe control input set.

Definition 1 (Robust control invariant set) A
set C ⊆ X is a robust control invariant set (RCI) for
(1)(2), if for any, there exists a u ∈ U(x) such that

x ∈ C ⇒ ∃u ∈ U(x) : h(x, u) + g ⊂ C,

∀g ∈ G(x, u).

The set C∞ ⊆ X is the maximal RCI set if all other
RCI sets are contained in it. Based on definition (1), we
define the safe input set.

Definition 2 (Safe control input set) Given an
maximal RCI, the safe control input set (SCIS) for state
x ∈ X is

Πsafe(x) := {u ∈ U(x)|h(x, u) + g ∈ C∞,

∀g ∈ G(x, u)}}. (11)

As a result, any control inputs can be chosen in the
SCIS and keep the system safe.

Theorem 1 Based on Assumption 1, Definitions
1 and 2, at every time step k, system xk+1 = h(xk, usk)
+md(xk, usk) is safe that it always satisfies constraint
(2) for any safe control input usk ∈ Πsafe.

Proof Since C is an RCI set and SCIS is not emp-
ty, from Definition 1 and 2, any control input selected
from the SCIS guarantees that C is an RCI set for sys-
tem system xk+1 = h(xk, usk) + md(xk, usk) and
constraint (2).

So the challenge is how to compute the safe input
set. First, we adopt the notion of predecessor set (or
one-step set). Given a set Ω ⊂ X , the predecessor set
is

Pre(Υ ) := {x|∃u ∈ U(x), f(x, u,G(x, u)) ∈ Υ}.
RCI sets can be computed recursively from the tar-

get set (also called terminal constraint set) Xf ⊆ X ,
then we can get {

X0 = Xf ,

Xi+1 = Pre(Xi).
(12)

For more details, some important and famous re-
sults that related to the recursion and the computation of
invariant sets are in the surveys [28–29]. The next main
problem in this section is how to calculate predecessor
set Pre(Υ ).

Theorem 2 Given the set of admissible state-
input pairs Σ(Υ ) and the set of triplets Φ(Υ ), the pre-
decessor set of Υ is given by

Pre(Υ ) = ProjX(Σ(Υ )),

where

Σ(Υ ) = Z\ProjX×U(Ω\Φ(Υ )),
Φ(Υ ) = f−1(Υ ) = {(x, u, g)|h(x, u) + g ∈ Υ}.

Then the sets Pre(Υ ) can be calculated and the
proof can be referred to paper [28,32]. Due to the confi-
dence bounds in (9) are non-convex union of ellipsoids,
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so we need to construct polyhedral cover outer approx-
imation of set Ω. Firstly, we make polyhedral partition

for Z =
Nc∪
i=1

Zi, Nc is the number of regions used to

construct the polyhedral cover. Then, we calculate the
minimum and maximum value gmin

i , gmax
i according to

(x, u) ∈ Zi and g ∈ G(x, u). Finally, we can get Ω =
Nc∪
i=1

Ωi.

Given this polyhedral cover representations of the
sets and the assumption that the nominal model is lin-
ear or piecewise affine, then the calculation of Pre(Υ )
is outlined by the following procedures:

A) Compute the projection: Z = ProjX×U(Ω).
B) Compute the inverse map: Φ = f−1(Υ ).
C) Compute the projection: Ψ = ProjX×U(Ω\

Φ(Υ )).
D) Compute the set difference: Σ(Υ ) = Z\Ψ .
E) Compute the projection: Pre(Υ ) = ProjX

(Σ(Υ )).
In order to achieve the results, we can use some im-

portant tools such as CPLEX, MPT3 for computing in-
verse images, set differences and projections.

4 Safety guaranteed active learning-based
MPC
In this section, we propose a two-step procedure for

active learning-based MPC. We first compute the most
informative input sequence from the safety control set
aiming to maximize the information of new data. Then,
deviations from the desired input sequence are penal-
ized in the constrained optimization problem. Specific
methods are as follows.
4.1 Information gain and active dynamics learn-

ing
As previously presented, GPR is a non-parametric

model which means we cannot use parameter esti-
mate variance or Fisher information (FI) as the mea-
sure of model uncertainty reduction. So, we intro-
duce an explicit information content objective to mea-
sure the reduction in estimated model uncertainty
I(xnew, unew;D), which denotes the information con-
tent of new data xnew, unew adding to the history data
set D. Here, we employ the concept of information gain
which is commonly used to qualify reduction in estimat-
ed uncertainty.

Definition 3 Given the observation set D, when
new data znew = [xnew unew]

T is available, the infor-
mation gain of the data is defined as

I(znew;D) = H(D)−H(D ∪ znew), (13)

where H(D) denotes the entropy before observation
and H(D∪ znew) is the entropy when adding new data.
I(znew;D), which is also known as mutual informa-
tion, is often greater than zero. The greater the value

is, the more information we have gained and the more
uncertainty reduction is achieved.

As a result, we want to find the new data which
maximize the information gain. Due to the fact that
equation (13) is hard to be optimized [30–31] and needs
to be approximated as follows:

I(znew;D) > H(znew, D) =

d

2
log(2πeΣd(znew)), (14)

this equation illustrates that the information gain ap-
proximates to the log value of the output variance at
new data point. Furthermore, when a new data point is
collected, both the GPR model and information gain
change. We then define the active dynamics learning
problem.

max
Ua

Ja =
Na−1∑
i=0

H((xi, ua,i), D),

s.t. xi+1 = h(xi, ua,i) +md(xi, ua,i),

x0 = xk,

ua,i ∈ Πsafe(xi),

(3)(4)(14), (15)

here, Na is the active learning horizon. Solving this
problem at each time step k, we get the most infor-
mative input sequence Ua := {ua,1, · · · , ua,Na−1} and
guarantee the safety of active exploration because the
control inputs are selected from the safety control input
set.
4.2 Safe active learning-based MPC

In dual control paradigm, the control inputs not on-
ly need to satisfy control task performance but also have
probing effect on system dynamics. So, we consider
two objectives: one is the control task objective Jtask of
equation (8) and the other is dual objective Jdual which
is achieved by penalizing the deviations from the de-
sired input sequence. These two objectives are conflict-
ing and we need to achieve a balance between them:
J = Jtask + Jdual.

The safe active learning-based MPC optimization
problem can be stated in (16)

min
U

J =
N−1∑
i=0

l(xi|k, ui|k) + LN(xN)+

α∥ui|k − ua,i∥22,
s.t. xi+1|k = h(xi|k, ui|k) +md(xi|k, ui|k),

x0|k = xk,

ui|k ∈ Πsafe(xi),

(3)(4)(14), (16)

where α is a tuning parameter which determines the
amount of dual effect. When α = 0, it means no du-
al effect or no active learning and it is a common con-
trol problem. Also, the control inputs are limited in the
safe set which guarantees the safety of our ALB-MPC
approach.
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Remark 1 The advantages of this two-step strategy
lie that, (16) can still generates safe control inputs using Ua at
time k−1 if (15) fails at time step k. This optimization problem
is simplified because we just penalize the deviations from the
desired input sequence.

Remark 2 The dual control problem can be divided
into two phases: a control phase and an identification phase.
Switch between the two phases is based on the model uncer-
tainty that there is no need for active exploration when the un-
certainty becomes small enough.

Finally, the safe active learning-based MPC (ALB-
MPC) strategy is outlined in Algorithm 1.

Algorithm 1 Safety guaranteed active learning-
based MPC scheme.

Offline: Calculate (9) and determine the safe con-
trol input set in Section 4.2.

Online: Update data set, adjust the GPR model and
design controller.

1) Initialize training dataset Dk, control inputs and
states, controller parameters

2) for i = 1 : N , do
3) Measure the current state xk at every time step k;
4) Calculate the model error xk − h(xk−1, uk−1)

and update data set Dk;
5) Learn the model and construct multi-step predic-

tion model using (3)(4)(7);
6) Solve problem (15) according to the information

content using predictive new data (13)(14);
7) Solve problem (16) and apply the first element of

control input;
8) end for

5 Numerical examples
Two numerical examples are considered in this sec-

tion. An Van der Pol oscillator and a cart-pole balanc-
ing task. Both examples are constructed such that we
are able to illustrate advantages of our proposed active
LB-MPC.
5.1 Van der Pol oscillator

The equation of the system dynamics is as follows:

ẋ1 = (1− x2
2)x1 − x2 + u,

ẋ2 = x1.

In the model learning part, the initial states of the
system are x1 = 1, x2 = 0 and the lower and upper
bounds on the inputs are umin = −0.75, umax = 1.
We first discretize this ODE equation to get a nonlinear
discrete model. Then we also get a linear model of the
system using successive linearization methods and treat
it as the prior nominal model: xk+1 = Axk + Buk,
where A = [1.4766 − 0.6221; 0.6221 0.8544] and
B = [0.6221; 0.1456]. We use this nominal model to
start the control process and collect related information
to learn the model error. The initial training data is zero

and updated online, then we learn a GPR model based
on these data and the hyper-parameters are optimized
by maximizing the marginal log-likelihood. Finally, we
get the whole predictive model. In the MPC design, the
modeling horizon Ns is 20, the prediction horizon is
chosen equal to control horizon: Np = Nt = 10, the
weight matrices are Q = diag{[1 1]} and R = 1. The
active learning horizon is selected Na = 5 and the tun-
ing parameter of dual effect α is chosen 0 and 10 (when
α = 0, it means no probing), then we will make com-
parison when α is chosen these two different values.

Figure 1 shows the changes of the system state, they
eventually converge to the origin from the initial state.
when α = 10, the convergence speed of the states is
faster than that when α = 0, suggesting that active
learning scheme not only introduces additional excita-
tion to the system but also makes the system learn ac-
tively. The results show that the tracking effect of the
controller is improved effectively and the learning of
active scheme is faster. In order to illustrate the dual
effect more clearly, we introduce an index to represent
the excitation level defined as Iu = JALBMPC

u /JLBMPC
u =

(
NA∑
k=1

u2
Ak/NA)/(

NL∑
k=1

u2
Lk/NL). This index describes the

comparison of the value of control inputs obtained by
different methods before reaching steady state, and we
can get the excitation level here Iu = 1.14. Note that
we do not consider the sate constraints here and we will
verify safety in the second example.

Fig. 1 Comparison of state trajectory in Vdp

5.2 Cart-pole balancing task
The schematic diagram of the inverted pendulum

example is shown in Figure 2 and we aim to achieve
an upright pendulum position of the pole by applying
force to the cart. The continuous-time dynamics of the
pendulum are given as follows:

(Mc +Mp)ẍ+ bẋ+
1

2
Mplθ̈ cos θ−

1

2
Mplθ̇

2 sin θ = F,
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(I +Mp(
l

2
)2)θ̈ − 1

2
Mpgl sin θ +Mplẍ cos θ = 0.

Fig. 2 Schematic diagram of Cart-pole

The mass of the carriage and the pole are given by
Mc = 5,Mp = 2, the pole is defined by its length
and moment of inertia l = 3, I = 0.6. b is the friction
coefficient and g = 9.81 is gravitational constant. The
states of the system are chosen as [ẍ, ẋ, θ̈, θ] and u = F
is the control input. In the model learning part, we first
linearize the equation above and get a linear nominal
model. Then the model error is learning by GPR online.
In the controller designing part, the control objective is
to stabilize the pole at ẋ = 0, θ̇ = 0, θ = 0. The ori-
gin of the system corresponds to the pendulum standing
upright and so the reference is selected as r = [0, 0, 0].
The objective function is modified to include set-points
for the states as l(x, u) = (x− r)TQ(x− r)+uTRu,
where Q and R are penalizing weight matrices/values.
In this part, we choose the prediction horizon: Np = 10
which equals to the control horizon. The active learning
horizon is selected Na = 10 and the tuning parameter is
chosen α = 0, 1, 5. In this example, the system is under
control constraint U = {u ∈ R| − 10 6 u 6 5]} and
state constraint X = {θ ∈ R||θ| 6 π

3
]}. In the sim-

ulation, pendulum will be unstable if the pole angle is
beyond π\3. The target constraint set (12) of this prob-
lem acts as a stability constraint and keep the pendulum
stable.

The evolution of state θ is depicted in Fig. 3. We
can see that these methods all enable adapting the model
and stabilizing the system. The passive learning-based
method in black color shows slower convergence than
other active learning ones. When the parameter is cho-
sen α = 5, the state converges faster than the one with
α = 1. This result illustrates that our algorithm really
introduces active learning and the tracking performance
of the controller is improved effectively. The safety can
also be reflected in this experiment that the inverted pen-
dulum has not failed during the whole process.

Fig. 3 Comparison of state trajectory in Cart-pole

6 Conclusion
In this work, we focus on the drawbacks of

learning-based MPC methods that they lack effective
data information and cannot excite any form of learn-
ing. we solve this problem by introducing active learn-
ing and dual effect, which enhances rapid learning abil-
ity and improves closed-loop control performance. The
input and state constraints are also guaranteed in our
method, and the advantages of the proposed method are
illustrated in the simulations. Further research will be
devoted to the control-oriented uncertainty description
of the complex systems and the new form of dual ob-
jective. We will also study how to reduce the computa-
tional cost and focus on the application of our proposed
method in process control.
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