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摘要: 文章利用边界控制法研究了一类反阻尼一维波动方程的稳定性. 首先, 通过边界控制的backstepping方法, 引入

包含有两个核函数的积分变换, 将控制系统转化为稳定的目标系统. 核函数个数的增加导致核函数方程更加复杂, 文中

运用了一系列的数学计算技巧求解出核函数, 从而得到反馈控制器; 其次, 运用类似的方法找到变换的逆变换; 最后, 选
择合适范数, 利用变换及逆变换的有界性证明得到闭环系统的稳定性.
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Stabilization of a 1-D wave equation with anti-damping
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Abstract: This paper is to stabilize a 1-D wave equation with an anti-damping by boundary control. To use the back-
stepping method of boundary control, a new transformation of two kernel functions is introduced. The equations of k-
ernel functions are more complicated mathematically. By some mathematical skill, solutions of the kernel equations are
constructed. Finally, the inverse transformation is attained. Through boundedness of the transformation and its inverse,
stability of the closed-loop system is established.

Key words: wave equation; boundary control; stability
Citation: GUO Chunli, HU Rong. Stabilization of a 1-D wave equation with anti-damping. Control Theory & Applica-

tions, 2022, 39(11): 2161 – 2167

1 Introduction
Wave equations describe a variety of natural phe-

nomena, such as sound waves, water waves, etc. There-
fore, wave equation has a rich engineering background.
Stabilization of wave equations plays a role in practical
applications. Some results can be found in [1–2]. Stabi-
lity of a wave equation with velocity recirculation is
considered in [3]. Also, applications in deep oil drilling
can be found, for example, in [4]. In recent years, boun-
dary control of partial differential equations was devel-
oped (see, e.g., [1–13]). In [5], a wave equation with
Kelvin-Voigt damping through boundary control is con-
sidered. Stability of wave equations by output feedback
boundary control are also concerned (see, e.g., [8, 12]).

In [10], stability of a wave equation with an anti-
damping at one boundary is addressed. Motivated by
[10], we consider a 1-D wave equation with antidam-
ping at an internal point, and stabilize it by boundary

control. The control system can be written into

utt(x, t) = uxx(x, t) + λu(x0, t), x ∈ (0, 1),

t > 0,

ux(0, t) = 0, t > 0,

u(1, t) = U(t), t > 0,

(1)

where λ > 0 is a constant and U(t) is the controller.
The system (1) models a string vibration which is mo-
tived at the end x = 1 and is uncontrolled at the oppo-
site end. The anti-damping on the internal point comes
from λu(x0, t). Motivated by [12–15], we will design a
state feedback boundary controller U(t) through back-
stepping to stabilize the closed-loop system.

2 Control design
The idea of control design is derived from the PDE

backstepping method. It is that the control system (1)
is converted into the stable target system by a bounded
inverse transformation.

Firstly, to design the control input by backstepping
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method, consider the transformation

w(x, t) =u(x, t)−
w x

0
k(x, y)u(y, t)dy−w x0

0
r(x, y)u(y, t)dy, (2)

where the kernels k(x, y) and r(x, y) will be calculated
later.

Motivated by [13–15], we introduce the backstep-
ping transformation (2) which maps the control system
(1) into the following target system:

wtt(x, t) = wxx(x, t), x ∈ (0, 1), t > 0,

wx(0, t) = c0w(0, t), t > 0,

wx(1, t) = −c1wt(1, t), t > 0,

(3)

which is exponentially stable for c0 > 0 and c1 > 0
(see, e.g.,[8]).

Secondly, by computing the partial derivative of
both sides of the transformation (2) with respect to x,
we can attain that

wx(x, t) =

ux(x, t)−
w x

0
kx(x, y)u(y, t)dy−

k(x, x)u(x, t)−
w x0

0
rx(x, y)u(y, t)dy. (4)

Taking x = 1 in Eq. (4) and using wx(1, t) =
−c1wt(1, t) in Eq. (3), it gives that

ux(1, t) =

− c1wt(1, t) + k(1, 1)u(1, t)+w 1

0
kx(1, y)u(y, t)dy +

w x0

0
rx(1, y)u(y, t)dy. (5)

By taking the partial derivative of the transforma-
tion (2) with respect to t, we get

wt(x, t) =ut(x, t)−
w x

0
k(x, y)ut(y, t)dy−w x0

0
r(x, y)ut(y, t)dy. (6)

Then, from Eqs. (5)–(6), the controller U(t) can be
obtained.

U(t) = u(1, t) =

c1
k(1, 1)

wt(1, t)−
1

k(1, 1)

w 1

0
kx(1, y)u(y, t)dy+

1

k(1, 1)
(ux(1, t)−

w x0

0
rx(1, y)u(y, t)dy) =

1

k(1, 1)
(c1ut(1, t) + ux(1, t))−

w 1

0
(c1k(1, y)ut(y, t) + kx(1, y)u(y, t))dy

k(1, 1)
−

w x0

0
(c1r(1, y)ut(y, t) + rx(1, y)u(y, t))dy

k(1, 1)
. (7)

Thirdly, in order to construct the stabilization of the

closed-loop system (1), it is necessary to prove the bo-
undedness and reversibility of the transformation (2).
In Section 4, we will find the inverse transformation.
Then, choosing the suitable norm, the stabilization of
the closed-loop system is constructed by using the
boundedness of the transformation.

3 Calculation of kernels
Differentiating (4) with respect to x, we obtain that

wxx(x, t) =

uxx(x, t)− k′(x, x)u(x, t)−

kx(x, x)u(x, t)−
w x

0
kxx(x, y)u(y, t)dy−

k(x, x)ux(x, t)−
w x0

0
rxx(x, y)u(y, t)dy, (8)

where k′(x, x) represents the derivative of function
k(x, x) as follows:

k′(x, x) = kx(x, x) + ky(x, x)

and

kx(x, x) =
∂k(x, y)

∂x
|y=x, ky(x, x) =

∂k(x, y)

∂y
|y=x.

From the system (1), differentiating Eq. (6) with re-
spect to t, we have

wtt(x, t) =

utt(x, t)−
w x

0
k(x, y)utt(y, t)dy−w x0

0
r(x, y)utt(y, t)dy =

uxx(x, t)−
w x

0
k(x, y)(uyy(y, t)+

λu(x0, t))dy + λu(x0, t)−w x0

0
r(x, y)(uyy(y, t) + λu(x0, t))dy.

Through integration by parts and ux(0, t) = 0 in
Eq. (1), it gives that

wtt(x, t) =

uxx(x, t)− (ky(x, 0) + ry(x, 0))u(0, t)−

k(x, x)ux(x, t) + ky(x, x)u(x, t)+

ry(x, x0)u(x0, t)− r(x, x0)ux(x0, t)−w x0

0
ryy(x, y)u(y, t)dy+

λ(1−
w x

0
k(x, y)dy −

w x0

0
r(x, y)dy)u(x0, t)−w x

0
kyy(x, y)u(y, t)dy. (9)

By Eqs. (8)–(9), we obtain that

wtt(x, t)− wxx(x, t) =

2k′(x, x)u(x, t)−
(
ry(x, 0) + ky(x, 0)

)
u(0, t)−

r(x, x0)ux(x0, t) + (λ+ ry(x, x0))u(x0, t)+w x0

0

(
rxx(x, y)− ryy(x, y)

)
u(y, t)dy+
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0

(
kxx(x, y)− kyy(x, y)

)
u(y, t)dy−

λ(
w x

0
k(x, y)dy +

w x0

0
r(x, y)dy)u(x0, t). (10)

To satisfy the equation in Eq. (3), the kernels
k(x, y) and r(x, y) need to satisfy the under equations

kxx(x, y)− kyy(x, y) = 0,

ky(x, 0) + ry(x, 0) = 0,

k′(x, x) = 0,

rxx(x, y)− ryy(x, y) = 0,

r(x, x0) = 0

(11)

and the compatibility condition

λ+ ry(x, x0)− λ
w x

0
k(x, y)dy−

λ
w x0

0
r(x, y)dy = 0. (12)

From Eq. (4) and the condition wx(0, t) = c0w(0,
t) in Eq. (3), we get

wx(0, t)− c0w(0, t) =

− (k(0, 0) + c0)u(0, t)−w x0

0
(rx(0, y)− c0r(0, y))u(y, t)dy = 0.

Hence, we obtain two more conditions rx(0, y) =
c0r(0, y) and k(0, 0) = −c0. From k(0, 0) = −c0 and
k′(x, x) = 0, we get k(x, x) = −c0. Therefore, the
function k(x, y) satisfies the following equations:

kxx(x, y)− kyy(x, y) = 0,

ky(x, 0) = −ry(x, 0),

k(x, x) = −c0.

(13)

Solving Eq. (13), it can be obtained that (see [6] or
verify directly)

k(x, y) =
w x−y

0
ry(s, 0)ds− c0. (14)

Next, affected by the variable separation method of
ODE, we suppose that the function r(x, y) can be ex-
pressed as

r(x, y) = p(x)q(y). (15)

From Eqs. (11) (15) and rx(0, y) = c0r(0, y), it is
obtained that

p′′(x)q(y)− p(x)q′′(y) = 0,

p′(0) = c0p(0),

q(x0) = 0.

(16)

Now, to solve the equation (16), we search the pos-
sible solutions such that q′′(x)/q(x) = p′′(x)/p(x) are
constants. Let

p′′(x)

p(x)
=

q′′(x)

q(x)
= a2,

where a > 0 is a constant to be determined.

Therefore, q(y) and p(x) satisfy the equations{
q′′(y)− a2q(y) = 0,

q(x0) = 0
(17)

and {
p′′(x)− a2p(x) = 0,

p′(0) = c0p(0).
(18)

Solving the problems (17)–(18), we have

p(x) = b(eax +
a− c0
a+ c0

e−ax), (19)

q(y) = c sinh(ay − ax0), (20)

where b and c are constants to be determined.
Now, checking the compatibility condition (12), we

can obtain the conditions which the constants a, b, c
need to satisfy. First, from Eqs. (14)–(15) and Eqs.
(19)–(20), we getw x

0
k(x, y)dy =

w x

0
(
w x−y

0
q′(0)p(ξ)dξ − c0)dy =w x

0
(
w x−y

0
b
(
eaξ +

a− c0
a+ c0

e−aξ
)
q′(0)dξ)dy − c0x =

bq′(0)

a

w x

0
eax−aydy − c0x−

bq′(0)

a

w x

0

(a− c0)e
ay−ax + 2c0

a+ c0
dy =

bq′(0)

a2
(
(a− c0)e

−ax − 2a

a+ c0
+ eax)−

2bc0q
′(0)

a(a+ c0)
x− c0x =

q′(0)

a2
p(x)− 2bq′(0)

a(a+ c0)
− 2bq′(0)c0x

a(a+ c0)
− c0x =

c cosh(ax0)p(x)

a
− 2bc cosh(ax0)

a+ c0
−

(
2bc cosh(ax0)

a+ c0
+ 1)c0x. (21)

Next, from Eqs. (15)(20), it gives thatw x0

0
r(x, y)dy =

w x0

0
p(x)q(y)dy =

cp(x)

a
(1− cosh(ax0)) (22)

and
ry(x, x0) = p(x)q′(x0) = acp(x). (23)

By Eqs. (21)–(23), it holds that

λ+ry(x, x0)−λ
w x

0
k(x, y)dy−λ

w x0

0
r(x, y)dy=

λ(
2bc cosh(ax0)

a+ c0
+ 1)(c0x+ 1) +

a2 − λ

a
cp(x).

To satisfy the compatibility condition (12), we take

a2 = λ, bc = − a+ c0
2 cosh(ax0)

. (24)

Then, by Eqs. (15)(19)–(20) and Eq. (24), it holds



2164 控 制 理 论 与 应 用 第 39 卷

that

r(x, y) = bc(eax +
a− c0
a+ c0

e−ax) sinh(ay − ax0) =

−(
√
λ+ c0)

2 cosh(
√
λx0)

(e
√
λx +

√
λ− c0√
λ+ c0

e−
√
λx)×

sinh(
√
λy −

√
λx0). (25)

By Eqs. (14)(25), the function k(x, y) is obtained

k(x, y) =
w x−y

0
ry(s, 0)ds− c0 =

√
λ− c0
2

e
√
λ(y−x) −

√
λ+ c0
2

e
√
λ(x−y). (26)

According to the above calculation and analysis, the
following theorem can be obtained.

Theorem 1 For any λ > 0, Eq. (11) have classi-
cal solutions which are defined by Eqs. (25)–(26). And
the solutions k(x, y) and r(x, y) are bounded on a tri-
angle 0 6 y < x 6 1.

4 Stability
To establish the stabilization of the closed-loop sys-

tem (1) under the controller (7), the inverse transfor-
mation of the transformation (2) is required. Then, the
stabilization of the closed-loop system can be obtained
by using the boundedness of the transformation.

4.1 Inverse transformation
The inverse transformation of the transformation

(2) can be written as follows:

u(x, t) =

w(x, t) +
w x0

0
h(x, y)w(y, t)dy+

w x

0
l(x, y)w(y, t)dy, (27)

where the functions h(x, y) and l(x, y) will be decided
later.

Similarly, computing utt and uxx, we have

utt(x, t)− uxx(x, t)− λu(x0, t) =

h(x, x0)wx(x0, t)− 2l′(x, x)w(x, t)+(
ly(x, 0) + hy(x, 0)− c0l(x, 0)−

c0h(x, 0)
)
w(0, t)−

(
hy(x, x0) + λ

)
w(x0, t)−w x

0

(
lxx(x, y)− lyy(x, y)

)
w(y, t)dy−

λ
w x0

0
(h(x0, y) + l(x0, y))w(y, t)dy−w x0

0
(hxx(x, y)− hyy(x, y))w(y, t)dy. (28)

From Eq. (28), to satisfy the equation in Eq. (1),
the functions l(x, y) and h(x, y) are determined by the

following equations:

lxx(x, y)− lyy(x, y) = 0,

ly(x, 0) + hy(x, 0)− c0l(x, 0)− c0h(x, 0) = 0,

l′(x, x) = 0,

hxx(x, y)− hyy(x, y) + λh(x0, y) + λl(x0, y) = 0,

hy(x, x0) + λ = 0,

h(x, x0) = 0.

(29)
From Eq. (27), we can obtain

ux(0, t) =
(
l(0, 0) + c0

)
w(0, t)+w x0

0
hx(0, y)w(y, t)dy.

To satisfy the boundary condition ux(0, t) = 0,
take l(0, 0) = −c0 and hx(0, y) = 0. From l′(x, x) =
0 and l(0, 0) = −c0, we get l(x, x) = −c0. The equa-
tions which the the functions l(x, y) and h(x, y) satisfy
are the following equations:

lxx(x, y)− lyy(x, y) = 0,

ly(x, 0) + hy(x, 0)− c0l(x, 0)− c0h(x, 0) = 0,

l(x, x) = −c0,

hxx(x, y)− hyy(x, y) + λh(x0, y) + λl(x0, y) = 0,

hy(x, x0) + λ = 0,

h(x, x0) = 0,

hx(0, y) = 0.
(30)

Now, to search a solution of Eq. (30), we consid-
er the kernel function l(x, y) is a constant. So we can
obtain

l(x, y) = −c0. (31)

Then the equations of the kernel function h(x, y) is
expressed as follows:

hxx(x, y)− hyy(x, y) + λh(x0, y) = λc0,

hy(x, x0) + λ = 0,

h(x, x0) = 0,

hx(0, y) = 0,

hy(x, 0) + c20 − c0h(x, 0) = 0.

(32)

Using the similar method in Section 3, we consider
that the problem of h(x, y) has a solution of separation
variables. h(x, y) is expressed as follows:

h(x, y) = m(x)n(y). (33)
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From Eqs. (32)–(33), we obtain

m′′(x)n(y)−m(x)n′′(y) + λm(x0)n(y) = λc0,

m(x)n′(x0) + λ = 0,

n(x0) = 0,

m′(0) = 0,

m(x)n′(0) + c20 − c0m(x)n(0) = 0.
(34)

For simplicity, to solve Eq. (34), we suppose that
m(x) is a constant. Let

m(x) = M, (35)

where M is a nonzero constant to be determined. It is
easy to verify that m′(0)=0. By Eqs. (34)–(35), we ob-
tain that n(y) needs to satisfy the following equations:

n′′(y)− λn(y) +
λc0
M

= 0,

n′(x0) =
−λ

M
,

n(x0) = 0.

(36)

Then the constant M and the solution of Eq. (36)
need to satisfy the compatibility condition

Mn′(0) + c20 −Mc0n(0) = 0. (37)

Solving the second order ordinary differential Eq.
(36), we can obtain

n(y) = d1e
√
λy + d2e

−
√
λy +

c0
M

. (38)

where the constants d1 and d2 need to be determined.
To calculate the constants d1, d2 and M , we substi-

tute Eq. (38) into n′(x0) =
−λ

M
, n(x0) = 0 and the

compatibility condition (37). So the constants satisfy
the following equations.

d1e
√
λx0 + d2e

−
√
λx0 +

c0
M

= 0,

√
λd1e

√
λx0 −

√
λd2e

−
√
λx0 =

−λ

M
,

M(
√
λd1 −

√
λd2)−Mc0(d1 + d2) = 0.

(39)

Simplifying the equation (39), we obtain

c0 =
√
λ, d2 = 0,Md1 = −

√
λe−

√
λx0 . (40)

By Eqs. (33)(35)(38) and (40), we have

h(x, y) = −
√
λe

√
λ(y−x0) +

√
λ. (41)

From Eq. (31) and c0 =
√
λ, we get

l(x, y) = −
√
λ. (42)

Similarly, based on the above analysis and calcula-
tion, the following theorem can be constituted.

Theorem 2 For any λ > 0, Eq. (30) have cla-
ssical solutions. And the solutions h(x, y) and l(x, y)
are bounded on a triangle 0 6 y < x 6 1.

4.2 Stability
From Theorems 1 and 2, we can establish the fol-

lowing the theorem.(see, e.g,.[6, 10])

Theorem 3 For any λ > 0, the closed-loop sys-
tem (1) with the controller (7) is exponentially stable in
the sense of the norm√w 1

0
u2
x(x, t)dx+

w 1

0
u2
t (x, t)dx+ u2(0, t). (43)

Proof Firstly, to obtain the stabilization of the
closed-loop system (1), we will show that the invertible
transformation of Eq. (2) is Eq. (27). From Theorem 1,
the transformation (2) defines a linear bounded operator
P in the sense of the norm (43), that is

w(x, t) = Pu(x) =u(x, t)−
w x

0
k(x, y)u(y, t)dy−w x0

0
r(x, y)u(y, t)dy. (44)

By the same reason, from the transformation (27)
and Theorem 2, a linear bounded operator Q is defined
in the sense of the norm (43), that is

u(x, t) = Qw(x) =

w(x, t) +
w x

0
l(x, y)w(y, t)dy+w x0

0
h(x, y)w(y, t)dy. (45)

Then, we will prove that the inverse operator of P
is Q. It is required that PQ = I or QP = I , where
I is the identity operator of the norm (43). This means
that (QP )u = u. Substituting Eq. (44) into Eq. (45)
and exchanging the order of integration for the twice
integrals, it gives that

(QPu)(x) =

(Pu)(x) +
w x

0
l(x, y)(Pu)(y)dy+w x0

0
h(x, y)(Pu)(y)dy =

u(x)−
w x

0
k(x, y)u(y)dy +

w x

0
l(x, y)u(y)dy−w x0

0
r(x, y)u(y)dy +

w x0

0
h(x, y)u(y)dy−w x

0

w y

0
l(x, y)k(y, ξ)u(ξ)dξdy−w x

0

w x0

0
l(x, y)r(y, ξ)u(ξ)dξdy−w x0

0

w y

0
h(x, y)k(y, ξ)u(ξ)dξdy−w x0

0

w x0

0
h(x, y)r(y, ξ)u(ξ)dξdy =

u(x)−
w x

0
k(x, ξ)u(ξ)dξ +

w x

0
l(x, ξ)u(ξ)dξ−w x0

0
r(x, ξ)u(ξ)dξ +

w x0

0
h(x, ξ)u(ξ)dξ−w x

0

w x

ξ
l(x, y)k(y, ξ)u(ξ)dydξ−w x0

0

w x

0
l(x, y)r(y, ξ)u(ξ)dydξ−
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0

w x0

ξ
h(x, y)k(y, ξ)u(ξ)dydξ−w x0

0

w x0

0
h(x, y)r(y, ξ)u(ξ)dydξ =

u(x) +
w x

0
F (x, ξ)u(ξ)dξ −

w x0

0
G(x, ξ)u(ξ)dξ,

(46)

where

G(x, ξ) =

r(x, ξ)− h(x, ξ) +
w x

0
l(x, y)r(y, ξ)dy+w x0

ξ
h(x, y)k(y, ξ)dy +

w x0

0
h(x, y)r(y, ξ)dy (47)

and

F (x, ξ) =

l(x, ξ)− k(x, ξ)−
w x

ξ
l(x, y)k(y, ξ)dy. (48)

Now we prove that G(x, ξ) = 0, F (x, ξ) = 0.

From Eqs. (25)–(26) and c0 =
√
λ, the kernel func-

tions k(x, y) and r(x, y) can be rewritten as

r(x, y) =
−
√
λe

√
λx

cosh(
√
λx0)

sinh(
√
λy −

√
λx0), (49)

k(x, y) = −
√
λe

√
λ(x−y). (50)

Hence, from Eqs. (48)(50) and (42), we obtain

F (x, ξ) = l(x, ξ)− k(x, ξ)−
w x

ξ
l(x, y)k(y, ξ)dy =

√
λe

√
λ(x−ξ) −

√
λ−

w x

ξ
λe

√
λ(y−ξ)dy = 0. (51)

For G(x, ξ), by Eqs. (42) and (49), it gives thatw x

0
l(x, y)r(y, ξ)dy =

w x

0

λe
√
λy

cosh(
√
λx0)

sinh(
√
λξ −

√
λx0)dy =

√
λ(e

√
λx − 1)

cosh(
√
λx0)

sinh(
√
λξ −

√
λx0). (52)

By Eqs. (41)(50), it holds thatw x0

ξ
h(x, y)k(y, ξ)dy =w x0

ξ
λ
(
e
√
λ(2y−x0−ξ) − e

√
λ(y−ξ))dy =

√
λ−

√
λ cosh(

√
λx0 −

√
λξ). (53)

Then, we substitute Eqs. (41) and (49) intow x0

0
h(x, y)r(y, ξ)dy,

we havew x0

0
h(x, y)r(y, ξ)dy =

−λ sinh(
√
λξ−

√
λx0)

w x0

0
(e

√
λy−e

√
λ(2y−x0))dy

cosh(
√
λx0)

=

−
√
λ sinh(

√
λξ −

√
λx0)(cosh(

√
λx0)− 1)

cosh(
√
λx0)

.

(54)

Therefore, by Eqs. (52)–(54)(49) and (41), it gives
that

G(x, ξ) =

−
√
λe

√
λx

cosh(
√
λx0)

sinh(
√
λξ −

√
λx0)+

√
λe

√
λ(ξ−x0) −

√
λ cosh(

√
λx0 −

√
λξ)+

√
λ(e

√
λx − 1)

cosh(
√
λx0)

sinh(
√
λξ −

√
λx0)−

√
λ sinh(

√
λξ −

√
λx0)(cosh(

√
λx0)− 1)

cosh(
√
λx0)

=

√
λe

√
λ(ξ−x0) −

√
λ

2

(
e
√
λx0−

√
λξ + e

√
λξ−

√
λx0+

e
√
λξ−

√
λx0 − e

√
λx0−

√
λξ) = 0. (55)

By Eqs. (46)(51) and (55), we obtain that (QP )u=
u. It is that the inverse operator of P is Q. So, we get
that the invertible transformation of Eq. (2) is Eq. (27).

By the boundedness of the operator P and Q, there
are two positive constants C1 and C2 such that

∥Pu∥ 6 C1∥u∥, (56)

∥Qw∥ = ∥P−1w∥ 6 C2∥w∥, (57)

where ∥ · ∥ is the norm of Eq. (43).
Then, we will show that the closed-loop system (1)

is exponentially stable under the controller (7) for the
initial state u0(x), in the sense of the norm (43).

For the initial state u0(x), u(x, t) is the solution of
the closed-loop system (1). According to Theorem 1,
the function w(x, t) determined by w(x, t) = (Pu)
(x, t) is the solution of the target system (3) under the
initial state w0(x) = (Pu0)(x). By Eq. (56), it gives
that

∥w0∥ = ∥Pu0∥ 6 C1∥u0∥. (58)

Meanwhile, the system (3) is exponentially stable
in the sense of the norm (43)(see, e.g., [6]). Hence, it
means that the solution w(x, t) of Eq. (3) satisfies the
following inequality for the initial state w0(x)

∥w(t)∥ 6
√
Ne−

t
2N ∥w0∥, (59)

where N is a large positive number.
Finally, by Eqs. (44)–(45)(57)–(59) and Q = P−1,

it holds that

∥u(t)∥ =∥P−1w∥ 6 C2∥w∥ 6
C2

√
Ne−

t
2N ∥w0∥ =

C2

√
Ne−

t
2N ∥Pu0∥ 6

C1C2

√
Ne−

t
2N ∥u0∥.
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That is ∥u(t)∥ 6 C1C2

√
Ne−

t
2N ∥u0∥. Therefore, the

closed-loop system (1) is exponentially stable in the
sense of the norm√w 1

0
u2
x(x, t)dx+

w 1

0
u2
t (x, t)dx+ u2(0, t).

References:
[1] CHEN G. Energy decay estimates and exact boundary value con-

trollability for the wave equation in a bounded domain. Journal De
Mathématiques Pures Et Appliqués, 1979, 58(3): 249 – 273.

[2] BENADDI A, RAO B. Energy decay rate of wave equations with
indefinite damping. Journal of Differential Equations, 2000, 161(2):
337 – 357.

[3] SU L L, GUO W, WANG J M, et al. Boundary stabilization of wave
equation with velocity recirculation. IEEE Transactions on Automatic
Control, 2017, 62(9): 4760 – 4767.

[4] CAI X S, KRSTIC M. Nonlinear stabilization through wave PDE
dynamics with a moving uncontrolled boundary. Automatica, 2016,
68(1): 27 – 38.

[5] KARAFYLLIS I, KONTORINAKI M, KRSTIC M. Boundary-to-
Displacement asymptotic gains for wave systems with Kelvin-Voigt
damping. International Journal of Control, 2021, 94(10): 2822 –
2833.

[6] KRSTIC M, SMYSHLYAEV A. Boundary Control of PDEs: A
Course on Backstepping Designs. Philadelphia: Society for Industrial
and Applied Mathematics, 2008.

[7] GUO W, ZHOU H C, KRSTIC M. Adaptive error feedback regula-
tion problem for 1D wave equation. International Journal of Robust
and Nonlinear Control, 2018, 28(15): 4309 – 4329.

[8] KRSTIC M, GUO B Z, BALOGH A, et al. Output-feedback stabi-
lization of an unstable wave equation. Automatica, 2008, 44(1): 63 –
74.

[9] SMYSHLYAEV A, CERPA E, KRSTIC M. Boundary stabilization
of a 1-D wave equation with in-domain antidamping. SIAM Journal
on Control and Optimization, 2010, 48(6): 4014 – 4031.

[10] SMYSHLYAEV A, KRSTIC M. Boundary control of an anti-stable
wave equation with anti-damping on the uncontrolled boundary. Sys-
tems & Control Letters, 2009, 58(8): 617 – 623.

[11] GUO B Z, XU C Z, HAMMOURI H. Output feedback stabilization
of a one-dimensional wave equation with an arbitrary time delay in
boundary observation. ESAIM: Control, Optimisation and Calculus
of Variations, 2012, 18(1): 22 – 35.

[12] ZHOU Z C, TANG S X. Boundary stabilization of a coupled wave-
ODE system with internal anti-damping. International Journal of
Control, 2012, 85(11): 1683 – 1693.

[13] GUO C L, XIE C K, ZHOU Z C. Stabilization of a spatially non-
causal reaction-diffusion equation by boundary control. International
Journal of Robust and Nonlinear Control, 2014, 24(1): 1 – 17.

[14] ZHOU Z C, GUO C L. Stabilization of linear heat equation with a
heat source at intermediate point by boundary control. Automatica,
2013, 49(2): 448 – 456.

[15] GUO Chunli, ZHOU Zhongcheng. Boundary control for a partial d-
ifferential equation-ordinary differential equation system cascaded at
internal point. Control Theory & Applications, 2014, 31(6): 779 –
785.
(郭春丽, 周中成. 一类内部点级联的PDE-ODE系统的边界控制. 控
制理论与应用, 2014, 31(6): 779 – 785.)

作者简介:
郭郭郭春春春丽丽丽 讲师, 目前研究方向为分布参数控制系统, E-mail:

guocl@sasu.edu.cn;

胡胡胡 蓉蓉蓉 副教授, 目前研究方向为泛函分析及应用, E-mail:

20090020@sasu.edu.cn.


