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Stabilization of a 1-D wave equation with anti-damping
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Abstract: This paper is to stabilize a 1-D wave equation with an anti-damping by boundary control. To use the back-
stepping method of boundary control, a new transformation of two kernel functions is introduced. The equations of k-
ernel functions are more complicated mathematically. By some mathematical skill, solutions of the kernel equations are
constructed. Finally, the inverse transformation is attained. Through boundedness of the transformation and its inverse,

stability of the closed-loop system is established.
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1 Introduction

Wave equations describe a variety of natural phe-
nomena, such as sound waves, water waves, etc. There-
fore, wave equation has a rich engineering background.
Stabilization of wave equations plays a role in practical
applications. Some results can be found in [1-2]. Stabi-
lity of a wave equation with velocity recirculation is
considered in [3]. Also, applications in deep oil drilling
can be found, for example, in [4]. In recent years, boun-
dary control of partial differential equations was devel-
oped (see, e.g., [1-13]). In [5], a wave equation with
Kelvin-Voigt damping through boundary control is con-
sidered. Stability of wave equations by output feedback
boundary control are also concerned (see, e.g., [8,12]).

In [10], stability of a wave equation with an anti-
damping at one boundary is addressed. Motivated by
[10], we consider a 1-D wave equation with antidam-
ping at an internal point, and stabilize it by boundary
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control. The control system can be written into
U (2, 1) = U (x, 1) + Au(zo,t), 2 € (0,1),
t>0,
u.(0,t) =0, t>0,
u(l,t) =U(t), t >0,

where A > 0 is a constant and U(¢) is the controller.
The system (1) models a string vibration which is mo-
tived at the end x = 1 and is uncontrolled at the oppo-
site end. The anti-damping on the internal point comes
from Au(zg,t). Motivated by [12-15], we will design a
state feedback boundary controller U () through back-
stepping to stabilize the closed-loop system.

)]

2 Control design

The idea of control design is derived from the PDE
backstepping method. It is that the control system (1)
is converted into the stable target system by a bounded
inverse transformation.

Firstly, to design the control input by backstepping
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method, consider the transformation
w(a, t) =u(z,t) = | k(r,y)uly, t)dy—

I v, Hay, @

where the kernels k(x, y) and r(x, y) will be calculated
later.

Motivated by [13-15], we introduce the backstep-
ping transformation (2) which maps the control system
(1) into the following target system:

Wy (x,t) = wee(z,t), x € (0,1), t >0,
w,(0,t) = cow(0, 1), t>0, 3
wy(1,t) = —cywe(1, 1), t >0,
which is exponentially stable for ¢g > O and ¢; > 0
(see, e.g.,[8]).
Secondly, by computing the partial derivative of

both sides of the transformation (2) with respect to z,
we can attain that

wy(x,t) =
wal,t) = [ k(@ y)uly, )y

k(z, x)u(z,t) — j:o ro(z,y)u(y, t)dy.  (4)

Taking z = 1 in Eq. (4) and using w,(1,t) =
—ciwy(1,t) in Eq. (3), it gives that

ugy(1,t) =
—cqwy(1,t) + k(1, Du(1,t)+
1 o
L k. (1, y)u(y, t)dy + fo (1, y)u(y, t)dy. (5)

By taking the partial derivative of the transforma-
tion (2) with respect to ¢, we get

wy(z,t) =u(z, t) — f: E(x,y)u(y, t)dy—

f:o r(z,y)u(y, t)dy. (6)

Then, from Egs. (5)—(6), the controller U () can be
obtained.

U(t) =u(l,t) =
“ 1 1
k(0 1)UJt(1,t) - (1) fo k. (1, y)u(y, t)dy+
k(ll, 1) (s (1,2) = f:o ro(Ly)u(y, t)dy) =
1
g L0+ (1,0)-
j:(clk(l, Yue(y, 1) + ko (1, y)uly, t))dy
k(1,1) -
f:o (err (1, y)ue(y, t) + T.’Jf(17 y)u(y, t))dy
k(1,1) - (D

Thirdly, in order to construct the stabilization of the

closed-loop system (1), it is necessary to prove the bo-
undedness and reversibility of the transformation (2).
In Section 4, we will find the inverse transformation.
Then, choosing the suitable norm, the stabilization of
the closed-loop system is constructed by using the
boundedness of the transformation.

3 Calculation of kernels
Differentiating (4) with respect to x, we obtain that

Wee (T, 1) =

Uge (2, 1) — k' (2, 2)u(z, t)—
o, @)u(@,t) = [yl y)uly, Hdy—

ko, @)u(@,t) = [ ra(o y)uly, dy, )

where k'(z,x) represents the derivative of function
k(x,x) as follows:

E(z,z) =k (x,x) + ky(x,x)

and

ok(x,y Ok(x,y
bo(ez) = POD) ke = (8y)|y_x.

From the system (1), differentiating Eq. (6) with re-
spect to t, we have

wy(z,t) =
we(, 1) — jo k(2 y)us (y, £)dy—

J, @ y)ualy, Hdy =

o (,8) = [ k2, ) (i (3, 1)+
Au(xo, t))dy 4+ Au(zo, t)—
17 1@y gy, 0) + Mo, £)dy.

Through integration by parts and u,(0,¢) = 0 in
Eq. (1), it gives that

wy(z,t) =

Uz (2, 1) — (ky(x,0) + 7, (2,0))u(0,t)—
k(z,x)ug(x,t) + ky(z, x)u(z, t)+

ry(z, zo)u(zo, t) — r(x, 2o)Us (20, t)—

I r e yyuty. Hyay+

1= [ kG p)dy — [ (@ y)dyule, ) -
f: kyy (2, y)uly, t)dy. 9
By Egs. (8)-(9), we obtain that

Wy (2, 1) — Wy (2, 1) =

2k (z, x)u(z, t) — (ry(z,0) + ky(z,0))u(0,t)—

r(z, o)uz (o, t) + (A + 7y (2, 20))u(zo, t)+

f:o (me(:v,y) - 74yy(3@aZ/))U(y,t)dy+
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f: (km(:n,y) — kyy(z, y))U(y,t)dy—

[ k(@ y)dy + [ v y)dy)ulz,t).  (10)

To satisfy the equation in Eq. (3), the kernels
k(z,y) and r(z,y) need to satisfy the under equations

ka:m(x7y) - kyy(xﬂy) = 07

ky($, 0) + ’I"y(IL‘, 0) =0,

K (z,z) =0, (11)
Ta::r(x’y) - Tyy(l'ay) = 05

r(x,z0) =0

and the compatibility condition
- Af k(w,y)dy—
)\f r(z,y)dy = 0. (12)

From Eq. (4) and the condition w, (0, t) = cow(0,
t) in Eq. (3), we get

w,(0,t) — cow(0,t) =
— (k(0,0) 4+ ¢o)u(0,t)—
[ r20,9) = car(0,1))uly. )y = 0.

Hence, we obtain two more conditions 7,(0,y) =

A+ 7ry(x, z0)

cor(0,y) and £(0,0) = —co. From k£(0,0) = —co and
E'(z,x) = 0, we get k(x,z) = —co. Therefore, the
function k(x, y) satisfies the following equations:

koo (@,y) — kyy(2,9) = 0,

ky(.’IT,O) = _Ty(ﬂf,O), (13)

k(z,x) = —co.

Solving Eq. (13), it can be obtained that (see [6] or
verify directly)

k(I,y) = J‘Oxiy

Next, affected by the variable separation method of
ODE, we suppose that the function 7(z,y) can be ex-
pressed as

ry(s,0)ds — co. (14)

r(z,y) = p(@)a(y). (15)
From Egs. (11) (15) and r,(0,y) = ¢or(0,y), it is
obtained that
p"(z)q(y) — p()q"(y) = 0,
p'(0) = cop(0), (16)
q(xo) = 0.

Now, to solve the equation (16), we search the pos-
sible solutions such that ¢ (x)/q(x) = p” (x)/p(x) are
constants. Let

') _¢"(=) _ ,
= =a’,
p(z)  q(z)
where a > 0 is a constant to be determined.

Therefore, ¢(y) and p(x) satisfy the equations

" 42 — 0,
{q (y) — a*q(y) an
q(z9) =0
and
/" 2 — 0’
{g@>ap@ .
P'(0) = cop(0).
Solving the problems (17)—(18), we have
_ ax | @7 C0 _az
ple) = b +ooe™™),  (19)
q(y) = csinh(ay — axy), (20)

where b and c are constants to be determined.

Now, checking the compatibility condition (12), we
can obtain the conditions which the constants a, b, ¢
need to satisfy. First, from Egs. (14)—(15) and Egs.
(19)—(20), we get

[ ke = [T dOpeae — oy =
Jo U, bl e ) (O)de)dy — eue =
J: am—aydy — Cox—

a — cp)e™ T 4 2¢q

a—+ ¢y

S
Q\
—~
[aw)
SN—
o
8
— )

¢'(0)

a2

2b4¢'(0) 2bq'(0)cox
ala+co)  ala+co)
ccosh(azg)p(x)  2bccosh(azxy)
a B a—+ ¢y B
2bc cosh(azy) + Do 2D
a—+ ¢
Next, from Egs. (15)(20), it gives that

[ way = [ ple)aly)dy =

P C(L‘r) (1 — cosh(azo)) 22)

— Co =

(

and
= p()q' (o) = acp(z).  (23)
By Egs. (21)—(23), it holds that

Ary(x, o) —A fo k(z,y)dy—A fo ’

2b h
A ccosh(axg) D)oz +1) +
a-—+cy a

To satisfy the compatibility condition (12), we take
a—+ ¢

S P i 24
“ e 2 cosh(azxg) @4

Then, by Egs. (15)(19)—(20) and Eq. (24), it holds

Ty (2, z0)

r(x,y)dy=

a?—

ep(x).
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that

r(z,y) = be(e® + “— L= sinh(ay — azy) =

—(\A‘FC()) oz \F)\_CO Az
2 cosh(v/ o) (e + VA + coe )
sinh(VAy — VAzo). (25)

By Egs. (14)(25), the function k(z,y) is obtained
z—y
Rley) = [ ry(s.0)ds — o =

VA = ¢ oVAy—x) _ VA + ¢ oVAE-y)
2 2
According to the above calculation and analysis, the

(26)

following theorem can be obtained.

Theorem 1 Forany A > 0, Eq. (11) have classi-
cal solutions which are defined by Egs. (25)—(26). And
the solutions k(z,y) and r(z,y) are bounded on a tri-
angle0 <y <z <L
4 Stability

To establish the stabilization of the closed-loop sys-
tem (1) under the controller (7), the inverse transfor-
mation of the transformation (2) is required. Then, the
stabilization of the closed-loop system can be obtained
by using the boundedness of the transformation.

4.1 Inverse transformation

The inverse transformation of the transformation
(2) can be written as follows:

u(z,t) =
w(z,t) + j:o h(z,y)w(y,t)dy+

J, iy, Hdy, @

where the functions h(z,y) and I(z, y) will be decided
later.

Similarly, computing u;; and u,,, we have

U (2, 1) — U (2, 1) — Au(x0,t) =

h(z, zo)w, (zo,t) — 2l (z, x)w(z, t)+

(1, (x,0) + hy(x,0) — col(z,0)—
coh(x,0))w(0,t) — (hy(z,0) + A)w(xo, t)—

jz (lm:(xa y) - lyy(xv y))lU(y, t)dy_

0

A (hlwo.w) + 1o y)wly, iy

J, (e, 9) = By (a2, )y, £)dy. (28)

From Eq. (28), to satisfy the equation in Eq. (1),
the functions [(z, y) and h(z,y) are determined by the

following equations:

law (2, ) = Ly (2,y) = 0,

l,(x,0) + hy(x,0) — col(x,0) — coh(x,0) =0,
I'(z,z) =0,

hao (2,y) = hyy (2, y) + A(20,y) + Al(20, ) = 0,
hy(z,20) + XA =0,

h(z,xq) = 0.
(29)
From Eq. (27), we can obtain

u,(0,¢) =(1(0,0) + co)w(0, )+

I, hal0, 9wy, )ay.

To satisfy the boundary condition u,(0,t) = 0,
take [(0,0) = —c¢p and h,(0,y) = 0. From l'(z, z) =
0and [(0,0) = —co, we get [(x,2) = —cg. The equa-
tions which the the functions (z, y) and h(x, y) satisfy
are the following equations:

Lo (T, ) — Lyy(z,y) =0,

l,(x,0) + hy(z,0) — col(x,0) — coh(x,0) = 0,
l(x,z) = —co,

haw (2, y) = By (2, y) + AR(z0,y) + A0, y) = 0,
hy(x,20) + A =0,

h(z,zo) = 0,

h.(0,y) = 0.

(30)

Now, to search a solution of Eq. (30), we consid-

er the kernel function [(x,y) is a constant. So we can
obtain

l(z,y) = —co. @D

Then the equations of the kernel function h(z, y) is
expressed as follows:

oo (@, Y) = hyy(@,y) + A(20,y) = Aco,
hy(z,z0) + A =0,

h(z,z9) =0, (32)
h.(0,y) =0,

hy(z,0) + ¢; — coh(z,0) = 0.

Using the similar method in Section 3, we consider
that the problem of h(z, y) has a solution of separation
variables. h(x,y) is expressed as follows:

h(z,y) = m(z)n(y). (33)
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From Eqgs. (32)-(33), we obtain
m" (z)n(y) — m(z)n"(y) + Am(zo)n(y) = Aco,
m(x)n'(zo) + A =0,

(34
For simplicity, to solve Eq. (34), we suppose that
m(x) is a constant. Let
m(z) = M, (35)
where M is a nonzero constant to be determined. It is
easy to verify that m’(0)=0. By Egs. (34)—(35), we ob-
tain that n(y) needs to satisfy the following equations:

A
n”(y) — An(y) + ﬁ =0,
—A
n(0) = 57 o
n(xy) = 0.

Then the constant M and the solution of Eq. (36)
need to satisfy the compatibility condition

Mn'(0) + ¢ — Mcon(0) = 0. (37)

Solving the second order ordinary differential Eq.
(36), we can obtain

n(y) = dleﬁy + dge_ﬁy + CMO. (38)

where the constants d; and ds need to be determined.
To calculate the constants d;, ds and M, we substi-
tute Eq. (38) into n’(xo) = _ﬁ’ n(zy) = 0 and the

compatibility condition (37). So the constants satisfy
the following equations.

dleﬁm" =+ dge_ﬁwo =+ ch = 0,

M
—A
ﬁdleﬁmo — \/Xd2€7\/Xa:0 = M, (39)

M(VAdy — VAdy) — Mey(dy + dy) = 0.
Simplifying the equation (39), we obtain
co =V, dy =0, Md, = —VAe V. (40)
By Eqgs. (33)(35)(38) and (40), we have
h(z,y) = —VAeV =) 4 /X, (41)
From Eq. (31) and ¢y = VI, we get
I(z,y) = =V 42)

Similarly, based on the above analysis and calcula-
tion, the following theorem can be constituted.

Theorem 2  For any A > 0, Eq. (30) have cla-

ssical solutions. And the solutions h(z,y) and I(z,y)
are bounded on a triangle 0 < y < = < 1.

4.2 Stability

From Theorems 1 and 2, we can establish the fol-
lowing the theorem.(see, e.g,.[6, 10])

Theorem 3  For any A > 0, the closed-loop sys-
tem (1) with the controller (7) is exponentially stable in
the sense of the norm

\/fol w2 (z, t)dz + fol Wz, t)dz +u2(0,1). (43)

Proof Firstly, to obtain the stabilization of the
closed-loop system (1), we will show that the invertible
transformation of Eq. (2) is Eq. (27). From Theorem 1,
the transformation (2) defines a linear bounded operator
P in the sense of the norm (43), that is

w(a, ) = Pu(x) =u(z,1) — [ " k(z, y)uly, )dy-

[ @yt dy. @

By the same reason, from the transformation (27)
and Theorem 2, a linear bounded operator () is defined
in the sense of the norm (43), that is

u(r,t) = Qu(z) =
w(z,t) + f: Iz, y)w(y, t)dy+
I, s yyw(y,dy. 45)

Then, we will prove that the inverse operator of P
is Q. It is required that PQ) = I or QP = I, where
1 is the identity operator of the norm (43). This means
that (QP)u = u. Substituting Eq. (44) into Eq. (45)
and exchanging the order of integration for the twice
integrals, it gives that

(QPu)(x) =
(Pu)(@) + [ iz, y)(Pu)(y)dy+
" h(w,y) (Pu)(y)dy =
x) - fo k(z, y)u(y)dy + fo l(z, y)u(y)dy—
(@, y)u(y)dy + f:o h(z, yyu(y)dy—
", y)k(y, €)u(€)dgdy—
gy, u(€)dedy—
h(@,y)k(y, §u(§)dsdy—
h(z,y)r(y, §u(§)dédy =
(2) = [ k(@ Ou(©)ae + [ i@, Ou(e)ae~
r(@, ©u(€)de + [ hlw, u(€)de~
J; e k(. u(§)ayag -

[ 1w )y, ule)dyde

0

S5 T 2
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[ 7 hek(s, ute)ayac- VA sinh (VA€ — Vo) (cosh(vAzo) — 1)

h
f f h(z,y)r(y, §u(§)dyds = cosh(Ar) (54)

(x +j0 (2, §u(§)dg — j §)dg,
(40)
where
G(xvé) =
r(@,6) = hw,) + [ U y)r(y, O)dy+

J. Mk, Ody + [ b ey Edy @)
and
F(x,@ =
l(z,€) - f Uz, y)k(y, )dy.  (48)

Now we prove that G(z,§) = 0, F(z,§) =
From Egs. (25)-(26) and ¢y = ﬁ, the kernel func-

tions k(z,y) and r(z, y) can be rewritten as
eV

r@y) = cosh(v/Az)

k(z,y) = —V eV @0, (50)

Hence, from Eqs. (48)(50) and (42), we obtain
Fle.€) = 1(2.8) = k(z.&) = [ Iz, y)k(y.£)dy =
VeV e=6 _ /) - f: AP =94y = 0. (51)
For G(z,£), by Egs. (42) and (49), it gives that
f: Uz, y)r(y,§)dy =

eV

sinh(\f)\y — \f)\xo), (49)

A Ginh(VAE — Va)dy =
Io cosh(v/xr0) sinh(VAE — Vzg)dy
V(e 1) |
——————~sinh(VA§ — V). 52
cosh(v/\zo) - (\ff \f%) o

By Eqgs. (41)(50), it holds that
J. ha k(. )dy =
jwo )\(6\5(211—900—6) _ eﬁ(y—f))dy —
13
VA = VA cosh(V Az — VAE). (53)

Then, we substitute Egs. (41) and (49) into

f:o h(z, y)r(y,§)dy,

we have

f:o h(z, y)r(y, §)dy =

—asinh(VAE =V Aao) [ (e —ev X))y
cosh(v/Axg)

Therefore, by Egs. (52)—(54)(49) and (41), it gives
that

G(l‘,é) =
VR h(VAE - V)t

cosh(v/Azo)
VeV Emm0) — /X cosh(vVAzg — VAE)+
VAE - 1)
VAT = 1) G (RE — Vi)
cosh(v/Azo) Sinh(vAS o)

Vsinh(VAE — VAzg) (cosh(vAzg) — 1) B

cosh(v/Az) B
\F)\eﬁ(éfﬂﬁo) _ @ (eﬁm*ﬁﬁ + eﬁé*ﬁro_k

2

eVATVATO _ gVATo=VAL) — (55)

By Egs. (46)(51) and (55), we obtain that (QP)u=
u. It is that the inverse operator of P is ). So, we get
that the invertible transformation of Eq. (2) is Eq. (27).

By the boundedness of the operator P and (), there
are two positive constants C'; and C5 such that

[Pull < Chlful, (56)
lQul| = [P~ wl]| < Caflw], (57)

where || - || is the norm of Eq. (43).

Then, we will show that the closed-loop system (1)
is exponentially stable under the controller (7) for the
initial state uo(x), in the sense of the norm (43).

For the initial state ug(z), u(x,t) is the solution of
the closed-loop system (1). According to Theorem 1,
the function w(z,t) determined by w(z,t) = (Pu)
(x,t) is the solution of the target system (3) under the
initial state wy(z) = (Puo)(z). By Eq. (56), it gives
that

lwo || = [ Puol| < Cil|uoll. (58)

Meanwhile, the system (3) is exponentially stable
in the sense of the norm (43)(see, e.g., [6]). Hence, it
means that the solution w(x,t) of Eq. (3) satisfies the
following inequality for the initial state wg(x)

lw(®)[l < VNe 2 ||w], (59)

where NNV is a large positive number.
Finally, by Egs. (44)—(45)(57)~(59) and Q = P~ 1,
it holds that

[u(®)]] =P~ w|| < Cafjw|| <
CyV/Ne 28 |Jwy|| =
CyV/Ne 2% || Pug|| <
C’lCQ\/NefﬁHuOH.
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That is ||u(t)|| < C1Cyv/Ne™ 2% ||lug]|. Therefore, the
closed-loop system (1) is exponentially stable in the
sense of the norm

1 1
\/ |, @@ tde + [ u(@,de +u(0,1).
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