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摘要:文章考虑了具适多智能体系统的分布式跟踪控制问题.通过设计带有初始学习机制的P型和PDα型迭代学习

控制策略求解跟踪问题.具适导数具有良好的性质且可以刻画不同步长的实际数据采样情况. 初始学习机制放松了初始
值条件且提高了算法实现趋同跟踪的性能.在可重复操作环境和有向通信拓扑的假设下,提出了一种分布式迭代学习方
案,通过重复同一轨迹的控制尝试和用跟踪误差修正不满意的控制信号来实现有限时间趋同.严格证明了随着迭代次数
增加,提出的P型和PDα 型迭代学习控制策略使得所有智能体能渐近跟踪上参考轨迹. 两个代表性数值仿真验证了算
法的有效性.
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Abstract: This paper considers the consensus tracking control problem for conformable multi-agent systems with linear
and nonlinear dynamics by designing P-type and PDα-type iterative learning control law with initial learning mechanisms.
Conformable derivative is well-behaved and can characterize a different step in real data sampling. The initial learning
mechanism relaxes the initial value condition and improves the performance of the protocol to achieve consensus tracking.
A distributed iterative learning scheme is proposed to realize the finite-time consensus by repeating the control attempt
of the same trajectory and correcting the unsatisfactory control signal with the tracking error under the assumption of
repeatable operation environments as well as a directed communication topology. The asymptotical convergence of the
proposed P-type and the PDα-type distributed iterative learning protocol for all agents is strictly proved as the iteration
number increases. Two numerical examples are simulated to verify the effectiveness of the protocols.

Key words: iterative techniques; consensus tracking control; conformable derivative; multi-agent systems
Citation: WANG Xiaowen, LIU Shuai, WANG Jinrong. Iterative learning-based consensus tracking control for con-

formable multi-agent systems. Control Theory & Applications, 2022, 39(10): 1836 – 1844

1 Introduction
Multi-agent systems are composed of a set of intel-

ligent agents that through mutual communication, co-
operation, and other ways to complete complex tasks
that a single agent cannot realize. Distributed cooper-
ative control of multi-agent systems include consensus,
flocking, formation, swarming and rendezvous has been
concerned by many researchers due to its wide applica-
tions in many areas such as physics [1], biology [2],
satellites [3] and control engineering [4]. In particular,
the consensus tracking control problem [5–7] is a kind

of practical cooperation task that all agents are required
to achieve specified value as desired. It can be applied
in the vehicles and aerospace areas, exploration of un-
known environments, navigation in harsh environments,
cooperation on transportation tasks, helicopters and so
on [8–10].

In recent years, researchers have proposed many ap-
proaches for the multi-agent system to realize desired
consensus tracking from initial configuration [11–13].
For example, Liu et al. [14] studied the leader-following
exponential consensus tracking problem with abrupt
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and incipient actuator faults under edge-fixed and edge-
switching topologies. Cao and Song [15] develope-
d a distributed adaptive control scheme to complete
the consensus tracking problem for high-order multi-
agent systems with consensus error transformation tech-
niques.

However, the above literatures can only guarantee
the realization of the desired consensus tracking asymp-
totically or in finite time. In practice, considering the
safety and effectiveness of operation, a group of agents
have to keep relative position during the whole pro-
cess when performing specific repetitive tasks, such as
a group of autonomous vehicles [16] and UAVs [17] co-
operative to deliver huge goods and patrol in the air, re-
spectively. Iterative learning control (ILC) [18] is an ac-
curate technology by correcting the deviation between
the output signal and the desired target to improve the
performance of the system, which is suitable for solving
the above problems. Recently, there are many research-
es on multi-agent systems consensus tracking control
with ILC technology. Xiong et al. [19] presented quan-
tized iterative learning controllers for digital networks
to achieve the consensus tracking in a finite time in-
terval with limited information communication. For a
class of nonlinear multi-agent systems, Bu et al. [20]
proposed a distributed model free adaptive ILC control
protocol to solve the consensus tracking problem. To
achieve the high precision consensus tracking, Zhang et
al. [21] gave a unified ILC algorithm for heterogeneous
multivehicle systems with switching topology and ex-
ternal disturbances.

In 2014, Khalil et al. [22] introduced the new con-
cept of conformable derivative which is a natural exten-
sion of the usual derivative. The conformable derivative
is well-behaved and obeys the chain rule and Leibniz
rule. A rich number of relevant theoretical results are
emerging [23–25]. It has attracted the attention of re-
searchers due to its applications in various area, such
as biology [26], physics [27], finance [28] and so on.
Therefore, it is of great practical interest to study the
distributed consensus tracking control for conformable
multi-agent systems.

Motivated by the above discussion, the main pur-
pose of this paper is to design appropriate protocols by
using the ILC theory to achieve perfect tracking over
finite time intervals. The main contributions of this pa-
per can be summarized as follows: we considered a new
simple well-behaved definition of derivative called con-
formable derivative in this paper. Different from the tra-
ditional difference method, conformable derivative can
characterize a different step in real data sampling. The
proposed distributed iterative learning-based scheme is
a significant extension of the ILC approach to multi-
agent systems and brings new alternatives to solve dis-
tributed consensus problems over finite time intervals.

The remainder of the paper is arranged as follows.
The consensus tracking problem is formulated in Sec-
tion 2. In Section 3, we present a distributed iterative
learning scheme. Main results of this paper are given
in Section 4, where the convergence conditions are an-
alyzed. In Section 5, two simulation examples are giv-
en to illustrate the results. Finally, the conclusions are
drawn in Section 6.

Notations: For a vector ω = (ω1, · · · , ωn) ∈ Rn,

we consider its vector norm ∥ω∥ =

√
n∑

i=1

ω2
i . For a

matrix A∈Rm×n, we consider its matrix norm ∥A∥=√
λmax(ATA), where λmax is the maximum eigenval-

ue of the matrix. The standard λ-norm and λ. α-
norm for a function g : [0, T ]→Rn are defined as

∥g∥λ= sup
t∈[0,T ]

{e−λt∥g(t)∥},

∥g∥λ.α= sup
t∈[0,T ]

{e−λ tα

α ∥g(t)∥}

for some λ>0 and 0<α<1, where ∥ · ∥ is any generic
norm defined in the vector space Rn. N+ stands for the
set of positive integers. Given vectors or matrices A and
B, A⊗B denotes the Kronecker product of A and B.

Preliminaries in graph theory: The communication
topology of multi-agent systems composed of N agents
can be described by a graph G = (V, E ,A), where
V = {1, 2, · · · , N} is the set of vertices, E ⊆ V × V
is the set of edges, and A is the adjacency matrix. The
set of neighboring nodes of the ith agent is denoted by
Ni = {j ∈ V|(j, i) ∈ E}. If j ∈ Ni, the jth agent
can receive the information from the ith agent. A =
[ai,j] ∈ RN×N is the adjacency matrix of G and ai,i >
0. Set ai,j > 0 for (j, i) ∈ E and ai,j = 0 otherwise.
Let L = [li,j] ∈ RN×N denote the Laplacian matrix of

G where li,i =
N∑
j=1

ai,j and li,j = −ai,j if i ̸= j. De-

fine a directed path as a sequence of edges of the form
(i1, i2), (i2, i3), · · · , (in−1, in). A directed graph is
known as containing a spanning tree if the graph has
at least one agent (as a root agent) with a directed path
to any other agent.

2 Problem formulation
In this paper, we consider the iterative learning-

based consensus tracking control for the following
linear and nonlinear conformable multi-agent systems
with repetitive properties as follows:

D0
αxk,i(t) = Axk,i(t) +Buk,i(t),

yk,i(t) = Cxk,i(t) +Duk,i(t),

t ∈ [0, T ], T > 0, i ∈ V
(1)

and{
D0

αxk,i(t) = f(xk,i(t), t) +Buk,i(t),

yk,i(t) = Cxk,i(t), t ∈ [0, T ], T > 0, i ∈ V ,
(2)
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where D0
α(0<α< 1) denotes the conformable deriva-

tive with lower index zero (see Definition 1), xk,i(t) ∈
Rn, uk,i(t) ∈ Rm, yk,i(t) ∈ Rm, f(xk,i(t), t) ∈ Rn,
A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n and D ∈ Rm×m

are real matrices.
Moreover, we rewrite the system in a compact form.

For the kth iteration in the multi-agent systems, (1) and
(2) can be rewritten as

D0
αxk(t) = (IN ⊗A)xk(t) + (IN ⊗B)uk(t),

yk(t) = (IN ⊗ C)xk(t) + (IN ⊗D)uk(t),

t ∈ [0, T ], T > 0.

(3)

and
D0

αxk(t) = f̃(xk(t), t) + (IN ⊗B)uk(t),

yk(t) = (IN ⊗ C)xk(t),

t ∈ [0, T ], T > 0.

(4)

Definition 1[22, Definition 2.1] The conform-
able derivative with lower index a of a function x : [a,
∞) → R is defined as

Da
βx(t) = lim

ε→0

x(t+ ε(t− a)1−β)− x(t)

ε
,

t > a, 0 < β 6 1,

Da
βx(a) = lim

t→a+
Da

βx(t).

Obviously, each state xk(t) of (3) and (4) with the
initial state xk(0) and control function uk(t) have the
form, respectively

xk(t) = xk(0)e
(IN⊗A) tα

α +w t

0
e(IN⊗A)( tα

α − τα

α )(IN ⊗B)uk(τ)τ
α−1dτ,

(5)

and

xk(t) = xk(0) +
w t

0
(f̃(xk(τ),τ) +

(IN ⊗B)uk(τ))τ
α−1dτ. (6)

Let yd(t) denote the desired trajectory for consen-
sus tracking, which is regarded as a leader and in-
dex it by vertex 0 in the directed graph. Consequent-
ly, the united graph describing the information interac-
tion between the leader and followers can be defined by
G+ = (V∪{0}, E+,A+), where E+ is the edge set and
A+ is the adjacency matrix of graph G+. The commu-
nication topology of multi-agent systems is assumed to
be described by graph G+, where each agent is corre-
sponding to a node in G+. Meanwhile, we assume the
virtual leader has at least one path to connect with any
follower such that all the followers can receive the con-
trol objective from the leader. That is, the directed graph
G+ contains a spanning tree with the virtual leader be-
ing the root. The main objective of this paper is to de-
sign appropriate distributed iterative learning schemes
to guarantee all the agents implement the desired con-

sensus tracking control over a finite time interval.

3 Distributed iterative learning scheme
ILC is used to realize the complete tracking task in

a finite time interval by repeating the control attempt
of the same trajectory and correcting the unsatisfactory
control signal with the tracking error between the output
signal and the desired trajectory. We defined the track-
ing error as the difference between the real-time rela-
tive outputs and the desired trajectory. In this section,
we shall design distributed iterative learning schemes
to drive the above tracking errors to converge to zero so
that the multi-agent systems can implement the desired
consensus tracking control objective.

We denote ηk,j(t) as the available information at
the (k + 1)th iteration for the jth agent. Consider

ηk,j(t) =
∑

w∈Nj

aj,w(yk,w(t)− yk,j(t)) +

sj(yd(t)− yk,j(t)), (7)

where sj equals 1 if the jth agent can access the desired
trajectory and 0 otherwise. Let ek,j(t) = yd(t)−yk,j(t)
be the tracking error. Further, we can get

ηk,j(t)=
∑

w∈Nj

aj,w(ek,j(t)−ek,w(t))+sjek,j(t). (8)

Remark 1 We shall design distribute protocols that
only use the relative output instead of absolute measurements
of output in the global framework. Each agent measures rela-
tive output errors through information interaction with neigh-
bors in the local framework by limited communication.

For system (3) and (4), we consider the P-type and
the PDα-type learning law with the initial state learning
law, respectively

uk+1,j(t) = uk,j(t) +WPηk,j(t),

xk+1,j(0) = xk,j(0) +WP0
ηk,j(0)

and 
uk+1,j(t) =uk,j(t) +WPD1

ηk,j(t)+

WPD2
D0

αηk,j(t),

xk+1,j(0) =xk,j(0) +BWPD2
ηk,j(0),

where WP ∈Rm×m, WP0
∈Rn×m, WPD1

∈Rn×m and
WPD2

∈Rm×m are constant learning gain matrices.

Remark 2 Complete tracking can only be achieved
under strict initial reset conditions, that is the initial state of the
system is exactly equal to the expected initial state. However,
it is difficult to meet the above conditions in actual situations.
Therefore, we relax the initial value conditions and design the
initial state learning laws.

Remark 3 Initial state learning laws can be rec-
ognized as discrete-time consensus protocols. That is, the
iteration-axis can be treated as a discrete time-axis. under the
proposed learning laws, the initial states of all agents can con-
verge to the desired value over a finite interval.

For the k th iteration, we denote the column stack
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vectors: η k(t) = [η k,1(t)
T · · · η k,N(t)

T ]T, xk(t) =

[xk,1(t)
T · · · xk,N(t)

T ]T, yk(t) = [ yk,1(t)
T · · ·

yk,N(t)
T]T, uk(t)=[uk,1(t)

T · · · uk,N(t)
T]T, ek(t)=

[ek,1(t)
T · · · ek,N(t)

T]T. Therefore, linking (8) and
both P-type and PDα-type learning law by using Kro-
necker product, we obtain

ηk = ((L+ S)⊗ Im)ek(t),{
uk+1(t) = uk(t) + ((L+ S)⊗WP )ek(t),

xk+1(0) = xk(0) + ((L+ S)⊗WP0
)ek(0)

(9)

and
uk+1(t) =uk(t) + ((L+ S)⊗WPD1

)ek(t)+

((L+ S)⊗WPD2
)D0

αek(t),

xk+1(0) =xk(0) + ((L+ S)⊗BWPD2
)ek(0),

(10)

where Im and L denote m×m identity matrix and gr-
aph Laplacian of G, respectively, and S = diag{s1,
· · · , sN}, si > 0(i = 1, 2, · · · , N). Then, the conver-
gence of this distributed iterative learning scheme will
be analyzed in the next section.

Remark 4 In practical application, we can set to stop
the iteration when the consensus tracking error is less than the
actual required value. That is, we can stop the iteration if there
exists a k ∈ N+ such that |ek(t)| < ϵ, where ϵ > 0 is a preset
parameter according to the actual demand.

4 Convergence analysis
In this section, we shall present two main results on

the convergence of the proposed scheme.
4.1 Convergence analysis of P-type learning law

for linear systems
First of all, we establish the following theorem by

combining the P-type iterative learning law and multi-
agent consensus tracking control of linear comformable
systems (3).

Theorem 1 Consider the linear multi-agent sys-
tems (3) with P-type learning law (9). Suppose a direct-
ed graph G+ contains a spanning tree corresponding to
the communication topology. If control gains satisfy

∥ImN −(L+S)⊗ CWP0
−(L+ S)⊗DWP∥< 1

(11)

and
∥ImN − (L+ S)⊗DWP∥ < 1, (12)

then the consensus tracking error ek(t) → 0 as iteration
k → ∞, i.e. lim

k→∞
yk,j(t) = yd(t) for all t ∈ [0, T ].

Proof According to (9), the tracking error of the
(k + 1)th iteration can be written as

ek+1(t) = yd(t)− yk+1(t) =

(ImN − (L+ S)⊗DWP )ek(t)−

(In ⊗ C)(xk+1(t)− xk(t)), (13)

which yields that

ek+1(0) = (ImN − (L+ S)⊗ CWP0
−

(L+ S)⊗DWP )ek(0). (14)

Then taking the matrix norm for the above equality, we
have

∥ek+1(0)∥6 ∥(ImN − (L+ S)⊗ CWP0
−

(L+ S)⊗DWp)∥ × ∥ek(0)∥.
By condition (11), one can obtain

lim
k→∞

∥ek(0)∥ = 0. (15)

Then using (9) to the states of all the agents (5), we get

xk+1(t) =

xk(t) + ((L+ S)⊗WP0
)ek(0)e

(IN⊗A) tα

α +w t

0
e(IN⊗A)( tα

α − τα

α )((L+ S)⊗BWP ) ·

ek(τ)τ
α−1dτ.

Denoting δxk(t) = xk+1(t)− xk(t), we have

∥δxk(t)∥ 6
∥(L+ S)⊗WP0

∥ × ∥ek(0)e(IN⊗A) tα

α ∥+w t

0
∥e(IN⊗A)( tα

α − τα

α )∥ × ∥(L+ S)⊗BWP∥ ×

∥ek(τ)∥d
τα

α
.

Next, multiplying both sides by e−λ tα

α , it has

∥δxk(t)∥e−λ tα

α 6
∥(L+ S)⊗WP0

∥ × ∥ek(0)e(IN⊗A) tα

α ∥e−λ tα

α +w t

0
∥e(IN⊗A)( tα

α − τα

α )∥ × ∥(L+ S)⊗BWP∥ ×

∥ek(τ)∥e−λ tα

α d
τα

α
6

∥(L+ S)⊗WP0
∥ × ∥ek(0)∥e−λ tα

α e∥IN⊗A∥ tα

α +w t

0
e(∥IN⊗A∥−λ) tα−τα

α ∥(L+ S)⊗BWP∥ ×

∥ek∥λ.αd
τα

α
. (16)

Taking supremum, we get

∥δxk∥λ.α 6
∥(L+ S)⊗WP0

∥× ∥ek(0)∥eM
Tα

α +

∥(L+ S)⊗BWP∥∥ek∥λ.α
(
1− e−λTα

α

)
λ−M

, (17)

where we denote M = ∥IN ⊗A∥.
For (13), taking the matrix norm, we can have

∥ek+1(t)∥ 6
∥ImN − (L+ S)⊗DWP∥ × ∥ek(t)∥+
∥IN ⊗ C∥ × ∥δxk(t)∥. (18)

Taking the λ.α-norm and substituting (17) into (18)



1840 Control Theory & Applications Vol. 39

for the above inequality yield

∥ek+1∥λ.α 6
(∥ImN − (L+ S)⊗DWP∥+
∥IN ⊗ C∥ × ∥(L+ S)⊗BWP∥

λ−M
) ·

(1− e−λTα

α )∥ek∥λ.α +

∥IN ⊗ C∥ × ∥(L+ S)⊗WP0
∥ × ∥ek(0)∥eM

Tα

α .

This implies that ∥ek+1∥λ.α → 0 due to ∥ek(0)∥ → 0
and (12) when λ is sufficiently large, that is lim

k→∞
∥ek∥λ.α = 0. �
4.2 Convergence analysis of PDα-type ILC for

nonlinear systems
Next, we will give the following theorem for the

combined studies of PDα-type ILC law and multi-agent
consensus tracking control of nonlinear conformable
systems (4). It is necessary to give the following as-
sumption.

A1) Globally Lipschitz condition: The time-vary-
ing nonlinear function f(xz, t), satisfies

∥f(xz1 , t)− f(xz2 , t)∥ 6 γ∥xz1 − xz2(t)∥,
∀xz1 , xz2 ∈ Rn, (19)

where γ > 0 is constant.

Theorem 2 Consider the nonlinear multi-agent
systems (4) with PDα-type learning law (10). Suppose
assumption A1) holds and directed graph G+ contains
a spanning tree corresponding to the communication
topology. If control gains satisfy

∥ImN − (L+ S)⊗ CBWPD2
∥ < 1, (20)

then the consensus tracking error ek(t) → 0 as iteration
k → ∞, i.e. lim

k→∞
yk,j(t) = yd(t) for all t ∈ [0, T ].

Proof The tracking error of the (k + 1)th itera-
tion can be written as

ek+1(t) = ek(t)− (IN ⊗ C)δxk(t). (21)
Based on (10) and (21), one can obtain

ek+1(0) = (ImN − (L+ S)⊗ CBWPD2
)ek(0).

Then, taking the matrix norm to both sides, it has

∥ek+1(0)∥ =

∥ImN − (L+ S)⊗ CBWPD2
∥ × ∥ek(0)∥.

According to (20), we get

lim
k→∞

∥ek(0)∥ = 0. (22)

By the state equation (6) and PDα-type iterative
learning law (10), we have

δxk(t) = xk+1(0)− xk(0) +w t

0
(f̃(xk+1(τ), τ)− f̃(xk(τ), τ))τ

α−1dτ +w t

0
(IN ⊗B)(uk+1(τ)− uk(τ))τ

α−1dτ =

((L+ S)⊗BWPD2
)ek(t) +w t

0
(f̃(xk+1(τ), τ)− f̃(xk(τ), τ))τ

α−1dτ +

(L+ S)⊗BWPD1

w t

0
ek(τ)τ

α−1dτ. (23)

Then, taking norm for the above inequality and imple-
menting into A1), we can get

∥δxk(t)∥ 6

(∥(L+ S)⊗BWPD2
∥+ γ

w t

0
∥δxk(τ)∥d

τα

α
+

∥(L+ S)⊗BWPD1
∥tα)eλt∥ek∥λ.

Note that (∥(L + S) ⊗ BWPD2
∥ + ∥(L + S) ⊗

BWPD1∥tα)eλt∥ek∥λ is a nondecreasing function on
[0, T ]. Applying the Gronwall inequality for ∥δxk(t)∥,
we have

∥δxk(t)∥6ω(t)eλt∥ek∥λ + γ
w t

0
∥δxk(τ)∥d

τα

α
6

ω(t)eλt∥ek∥λeγ
r t
0
ταdτ 6

ω(t)eλt∥ek∥λeγt
α

,

where ω(t) = ∥(L + S) ⊗ BWPD2
∥ + ∥(L + S) ⊗

BWPD1
∥tα. Moreover, taking λ-norm, one can obtain

∥δxk∥λ 6 sup
t∈[0,T ]

∥ω(t)eγt
α

∥ × ∥ek∥λ. (24)

By (21) and (23), it follows with

ek+1(t) =

ek(t)− (IN ⊗ C)δxk(t) =

(ImN − (L+ S)⊗BWPD2
)ek(t)−

(IN⊗ C)
w t

0
(f̃(xk+1(τ), τ)−f̃(xk(τ), τ))τ

α−1dτ −

(L+ S)⊗ CBWPD1

w t

0
ek(τ)τ

α−1dτ. (25)

Taking norm for (25), we have

∥ek+1(t)∥ 6
∥ImN − (L+ S)⊗BWPD2

∥ × ∥ek(t)∥+

∥IN ⊗ C∥γ
w t

0
eλτd

τα

τ
∥δxk∥λ

∥(L+ S)⊗ CBWPD1
∥

w t

0
eλτd

τα

τ
∥ek∥λ. (26)

For any given 0 < α < 1, the existence of p > 1

makes α >
1

p
. Then we can see ∃q > 1 makes

1

p
+

1

q
= 1. By applying Hölder inequality,

w t

0
eλττα−1dτ 6 eλt

p
√
p p
√
λ
(

tqα−q+1

qα− q + 1
)

1
q 6

1

λ
eλt

Tα− 1
p

q
√
qα− q + 1

, (λ > 1). (27)

Substituting (27) into (26), we get

∥ek+1(t)∥6 ∥ImN−(L+S)⊗BWPD2
∥×
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∥ek(t)∥+
∥IN⊗C∥γeλtTα− 1

p∥δxk∥λ
λ q
√
qα− q + 1

+

∥(L+ S)⊗CBWPD1
∥eλtTα− 1

p∥ek∥λ
λ q
√
qα− q + 1

.

(28)

Next, taking λ-norm and substituting (24) into (28)

∥ek+1∥λ 6 (∥ImN − (L+ S)⊗BWPD2
∥+

∥IN ⊗ C∥γTα− 1
p sup

t∈[0,T ]

∥ω(t)eγtα∥

λ q
√
qα− q + 1

+

(∥L+ S)⊗ CBWPD1
∥Tα− 1

p

λ q
√
qα− q + 1

)∥ek∥λ.

This implies that ∥ek+1∥λ → 0 due to (20) when λ is
sufficiently large, i.e., lim

k→∞
∥ek∥λ = 0. �

5 Simulation examples
Two simulation examples are performed to illus-

trate the effectiveness of the proposed distributed iter-
ative learning protocols.

The interaction graph among agents is described by
an directed graph G+ = (V ∪ {0}, E+,A+) in Fig. 1,
where vertex 0 represents the virtual leader. We adopt
ai,j = 1 if (i, j) ∈ EG . It is easy to get the Laplacian
matrix for followers

L =


0 0 0 0
0 2 − 1 − 1
−1 0 1 0
0 0 − 1 1

 ,

and S = diag{1, 1, 0, 0},

Fig. 1 Directed communication topology among agents in the
network

In this section, we set α=0.7. The norm of the trac-
king errors in each iteration is designated 2-norm in
the following examples. The initial state at first itera-
tion is chosen as x1 = [1 − 3]T, x2 = [2 − 1]T, x3

=[0 4]T, and x4=[−1 2]T. The desired initial state is
unique xd = 0. The initial control signal u1,i = 0, i =
1, 2, 3, 4 for all agents.

Example 1 Consider the multi-agent system (3)
as follows:
D0

αxk,i(t)=

[
−1 1
0 −2

]
xk,i(t)+

[
0.1 0
0 −0.2

]
uk,i(t),

yk,i(t) =

[
0.2 0
0 0.1

]
xk,i(t) +

[
1 0
0 0.2

]
uk,i(t),

(29)

and the desired reference trajectory

yd =

[
1− cos(2πt)

sin(2πt)

]
, t ∈ [0, 1].

To verify the contraction conditions in Theorem 1, we
select the learning gain matrix

WP =

[
0.2 0
0 0.4

]
, WP0

=

[
0.3 0
0 0.4

]
.

By explicit calculation, we can obtain that ∥ImN −
(L+S)⊗DWP∥ = 0.9895 < 1 and ∥ImN−(L+S)⊗
CWP0

− (L+ S)⊗DWP∥ = 0.9899 < 1. The con-
vergence condition in Theorem 1 is satisfied so that the
consensus tracking can be achieved. Fig. 2 shows the
initial state learning of agents. Fig. 3 shows the output
of a leader and four agents at the 1st and 100th itera-
tion. Fig. 4 depicts the tracking errors of each agent. It
is easy to see all the initial states and outputs converge
to the desired trajectory over a finite time interval, re-
spectively.

Fig. 2 Initial state value at each iteration under P-type
learning law

Example 2 Set xk,i(t) := [xk,i,1(t) xk,i,2(t)]
T

for each agent. Consider the multi-agent system (4) as
follows:
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D0
αxk,i(t)=

[
cos(xk,i,1(t))−1.2xk,i,1(t)

0.8sin(1.5xk,i,2(t))+0.2xk,i,2(t)

]
+[

1 1.4

0.5 1.2

]
uk,i(t),

yk,i(t) =

[
1.8 1.2

0 2

]
xk,i(t),

(30)

and the desired reference trajectory

yd=

[
2t+ 2cos(3t)
−2t− sin(2t)

]
, t∈∀[0, 1].

To verify the contraction conditions in Theorem 2, we
select the learning gain matrix

WP1 =

[
0.125 0
0 0.125

]
, WP2

=

[
0.28 −0.47
−0.12 0.28

]
.

Through simple calculation, we can get ∥ImN −
(L+S)⊗CBWP2∥ = 0.9318 < 1. The convergence
condition in Theorem 2 is satisfied so that the consensus
tracking can be achieved. Fig. 5 shows the initial state
learning of agents. Fig. 6 shows the output of a leader
and four agents at the 1st and 50th iteration. Fig. 7 de-
picts the tracking errors of each agent. It is easy to see
all the initial states and outputs converge to the desired
trajectory in a finite time interval, respectively.

Fig. 3 Output trajectory at 1st and 100th iteration under
P-type learning law

Fig. 4 The tracking error at each iteration under P-type
learning law

6 Conclusions
In this paper, the finite-time consensus tracking

control problem for conformable multi-agent system-
s has been addressed. Under the proposed distributed
iterative learning scheme, the desired consensus track-
ing can be achieved over a finite interval as the iteration
increases. By using initial state learning laws, the per-
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formance of our protocol can be improved to reach the
perfect tracking of the desired trajectory. Two simula-
tions are given to verify the effectiveness of our results
on iterative learning-based consensus tracking control.

In our future work, the derived protocols will be further
studied to provide them with explicit application valida-
tions by considering some practical applications such as
biomedical science and intelligent unmanned systems.

Fig. 5 Initial state value at each iteration under PDα-type learning law

Fig. 6 Output trajectory at 1st, 10th, and 50th iteration under PDα-type learning law
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Fig. 7 The tracking error at each iteration under PDα-type
learning law
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