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Abstract: Distributed optimization plays an increasingly significant role in power systems. This paper investigates a
dynamic energy resources (DERs) coordination problem with distributed generations (DGs) and energy storages (ESs), the
goal of which is to minimize the total cost including generation (or storage) and environmental cost meanwhile satisfying
local and coupled physical constraints. Firstly, the dynamic DERs coordination problem is equivalently converted into
a more generalized distributed composite constrained optimization form, and its dual setting is also constructed, through
exploiting the Lagrangian duality. Then, a novel distributed primal dual algorithm is developed to deal with the considered
problem. It is worth mentioning that the proposed algorithm has edge-based communicating phrase and local constant step-
sizes, essentially different from some node-based consensus methods. Finally, the simulation setting based on the IEEE
39-bus system are conducted to verify the effectiveness and feasibility of the proposed algorithm for solving the considered

problem.

Key words: distributed optimization; energy resources coordination; smart grid; primal-dual algorithm
Citation: WANG Chengbo, SHI Yawei, RAN Liang, et al. Distributed primal-dual algorithm for dynamic energy
resources coordination. Control Theory & Applications, 2022, 39(10): 1978 — 1984

1 Introduction

With the development of digital smart grid sens-
ing, the efficiency, the reliability and the security of
power systems have been substantially improved [1].
As important components of dynamic energy resources
(DERs), distributed generation (DG) and energy storage
(ES) play a crucial role in fast responding. Thus, DERs
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can work as a valuable system by coordinating with sys-
tem requirements and control processes [1]. The tradi-
tional centralized control mechanisms for DERs require
a center receiving information from the entire network
and sending control signals back to the system [2-3].
However, there exit some limitations, such as the heavy
communication burden and single-point-of-failure, un-
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der the centralized methods. In contrast, distributed
methods possess stronger robustness and extensibility,
which are widely applied in smart grid, resource allo-
cation, Nash equilibrium, machine learning, and other
scenarios [4-8].

In distributed algorithms, each agent (distributed
generation or storage device) receives information from
neighbors and makes its own decision. Some existing s-
tudies only consider a single type of DERs, such as DGs
in [9-10] and ESs in[11-12]. To coordinate multiple
types of DERs, the authors in[13] proposed a distribut-
ed energy management algorithm based on consen-
sus +innovations method. In[14], the Laplacian gradi-
ent dynamics and dynamic average consensus was em-
ployed to design a distributed algorithm for coordinate
DGs and ESs. The authors in[15] improved the distri-
buted DERSs coordination algorithms by considering the
charging and discharging efficiency. In recent years, en-
vironmental issues have attracted attention, and it would
be more practical to consider environmental factors in
the DERs model. Inspired by this fact, we introduce en-
vironmental cost functions in the DERs coordination
problem, which further refines the DERs model.

This paper focuses on a DERs coordination prob-
lem with DGs and ESs, where the involved constrai-
nts include local output capacity limitations, coupled
supply-demand equality, ramping up/down constraints,
storage capacity limitations for energy storages devices,
and the limits of state-of-charge of the storages. Unlike
recent works[1,9-17] that only consider the cost of ge-
nerations, we additionally introduce the environmental
cost. Considering that the complexity of the DERs mod-
el may make itself difficult to be solved, we first simpli-
fy it into a generalized minimization problem and fur-
ther construct its dual setup by using the Lagrangian
function. Inspired by the distributed primal-dual method
[18], we put forward a novel distributed splitting algo-
rithm to deal with DERs problem, essentially disting-
uishing from the consensus methods [16—-17, 19]. The
proposed algorithm only relies on local step-sizes rather
than coordinated ones [1], guaranteeing the privacy of
agents. Meanwhile, the involved relaxed constant en-
hances the flexibility of algorithm implementability
through setting different values. To our knowledge, th-
ere only are a few works for solving the DERs coordina-
tion. Finally, we verify the correctness and effectiveness
of the proposed algorithm by using the IEEE 39-bus
system.

The remainder of this paper is arranged as follows:
Section 2 formulates the DERs coordination problem,
and Section 3 describes its dual setup. Then, the devel-
opment of distributed algorithm is presented in Section
4. In Section 5, simulation results are reported. A con-
clusion and future work are given in Section 6.

2 Problem formulation

In this paper, an optimal coordination of DERs
containing s DGs and v ESs is considered, the objec-
tive of which aims to collaboratively minimize the to-
tal cost, while all agents (including generations and s-
torages) has to satisfy a given supply-demand through
communication exchange during certain time slot 7 =
{1,- -+ ,n}. Next, more details on the considered prob-
lem are described below.

The total cost over the time slot 7 takes form of

n s+v

;:1 2:1 (C5 (Pit)+C5 (pie)), (1)
where C¢(+) and C§ () are respectively generation cost
and environmental cost functions of agent ¢, while p; ;
is its output power at the instant ¢ € 7. In this paper, we
assume that both of the cost functions are strongly con-
vex, which is common in recent literature [21, 24]. At
time period ¢ € T, all agents need to meet the supply-

demand constraint
s+v

E Dit = Dy, )
i=1

with the time-varying demand D;. For each generation,
the output p; ; is restricted by the capacity limitation

p?ill < pi,t < pznax’ vt c 7—7 (3)
and the ramping up/down constraint
Py P KPP, VEET. ()

For each storage, the output p; ; is given by

Dit = Diy — Digs ©)
where p;ft is charging efficiency and p, ; discharging
one, both of which, for ¢t € T, also are bounded by

0 < pfy <p™, ©
0 <pi, <pi™.
Furthermore, each storage dynamically stores the ener-
gy E, att €T

E,=FE, 11— p?j‘i“Vt, (7)
batt

where pi** = pl,/m" — 0 p;, withn;, " € (0,1)
is the rate of change of energy, V¢ is the size of slot.
Meanwhile, E; ; has to be restricted within

0< E;, < E™. (8)

As stated above, we can formulate the DERS coor-
dination problem as the following constrained optimiza-

tion one:
n s+v

min Y. > Ci(pis), )

Pit =1 =1
which subjects to (2)—(8). To address this problem (9),
we define the local objective function
Ci(pi)= 21 (C5(pii) + C5 (pie))
t=

with p; = [pi1 pio- Pin]’ € R™. Let S and M be
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the sets of DGs and ESs, respecti- vely. Then, the local
constraint corresponding to p; is given by

Ji=J2UuIRuUIw, (10)

where J8 = {p; € R" : p™ < p;, <PVt € T,
jR == {pz S Rn : down pz,t pl,t—l < p3p7Vt S
Thand TV = {p; = pf —p; : Eix = Eiy 1 —
pzi‘“Vt, 0 < E;; < E™* V¥Vt € T}. Therefore,
problem (9) can be reformulated into the following gen-
eral form:
mlnlmlze E Ci(ps),
= (11)
subject to E Aip; =

2 2:1 bi, pi € Ti

where m = s+ v is the total number of agents, A;
€ R™" is a linear transformer and b, = [Dy/m - - -
D,/m]T € R™ is the virtue local demand, some discus-
sion of which can refer to[19].

As a result, the dynamic optimal coordination of
DERs (9) can be addressed through solving the general
model (11).

3 Dual problem

This section formally constructs the dual setup of

(11). First of all, let’s consider the Lagrangian function

B(p, \) = f: £ (1) +07, (p)+ jZ AT (Api—by),
(12)

where the stacked vector p = col{p; }/"; (col{-}, de-
notes the stacked vector from 1 to m) is the Lagrange
multiplier, and ¢ 7, (p;) is the indicator function of 7,

expressed by
0’ Di € tjia

67.(pi) = {+OO pi ¢ .

Next, construct the dual function

a(V)= min @(p, \)=

waz
pgﬁg}n E( i) +0.7,(p) + AT (Aipi—b,))=
i=1 Pi i

For ease of analysis processing, we define the conjugate
function F; (z) = max {zYA;p; — C; (p;)}. There-
pi i

fore, one obtains the dual problem of (11), given by

maxq(}) = —Z(F*(

AeR™

A) + ATh,). (14)

The strong convexity assumption on C; implies that
FE*(—)) has Lipschitz continuous gradient [22] and its
gradient is attainable, i.e.,
VFi*(_S‘) =—A4A;- argmin{S‘TAipi + Ci (pi) }s
pi €T

(15)

from of which the unique optimal solution of (11) can
be given by

pi (A7) = arggin{()\*)TAipi +Ci(pi)} (16)

pi i
Consequently, we can solve the DERs coordination pro-
blem (9), by addressing the following minimization du-
al problem:
minimize i (Fr (=) + ATh,). (17)
AER™ =1

Note that the Lagrange multiplier ) is known by all
agents, which prevent us from solving the DERs coor-
dination problem in the distributed manner. To this end,
each agent has to maintain its own local variables \; to
estimate :\ and further communicate with its neighbor-
ing agents to achieve the consensus state.

In what follows, we consider m agents communi-
cating over an undirected graph G, consisting of the
vertex set V = {1,--- ,m} and edge set & =V x V.
Then, the obtained dual problem (17) can be equivalent-
ly rewritten as the following constrained problem:

. . T

minimize Z:l (FF(=Xi) + A bi), as)

subjectto U\, +Uj\; =0, (4,7) € &,
where A\ = col{\;}[",, the linear operator U;; = I if
1 < jand —I if i > j. The coupled edge constraint re-
veals that neighboring agents, linked by (i, 7) € &, will
locally share U;; \; and U;; \; with each other. Next, we
define the following operator:

N:\— (N(i,j))‘)(i,j)ee’

where the edge-based linear operator N(; j; is expressed
by

(19)

Ny s A= (Ui, UjiA;s) - (20
Define the set
Zip ={(21,22) ER" xR |21+ 2, =0}. (21

The coupled edge constraint in (18) can be constrained
by the following indictor function

0, NujpA € Z2aj),
Ontgpy (NiijyA) = { ’ ’
400, others.
Thus, we obtain the unconstrained formulation of (18)

minimize 32 fi(A)+ 3 3 0z, (Najph),

i=1 i=1(i.j)ee

(22)

(23)
where f;(\;) = F(=\;) + ATb,.
4 Distributed algorithm for DERC

Inspired by the forward-backward splitting[18], this
section develops a new distributed algorithm to deal
with the globally optimal solution of optimization prob-
lem (23). According to[23, Proposition 19.18], one can
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derive the Lagrangian function of (23) as follows:
LA\ w) =

F)+Y 2 (way NapA—

i=1(i,j)€€

0z, (Wap))=

> (ih M+ S (uf

JEN;

)
wE

NapA =0z, (Wi ),

where wy; ;) = col{w ;).i, Wi, )., }i.)ee 18 the edge-
based variable, w col{w(; jy }(i,j)ee and 52( N is
the conjugate function of § 2., Then, applylng the
forward-backward method, we can develop a distribut-

ed iterative algorithm to address (23) as follows:
(Wi ) + K NapA®),

(4,9)

—k
W, pro
60 2 )

M= M7 (05, fi(AD)+

9

T,k ok 24
JGZ U (200 ) s =W i) 24
wiy = awf; ;) + (1= a)wf, ),
)\f“ = a)\f +(1—-a) )\f,

where k(; ;) is the edge step-size, 7; is the local step-
size, and « is a relaxed factor. In (24), it should be
pointed out that: i) the update of 71)@7 ;) is not explicit-
ly distributed manner owing to it containing w; jy ; and
wi,j),;5 i) the local function f; involves the conjugate
function F;* (see (23)). Both of the mentioned block the
implementation of the distributed form of (24). There-
fore, it is necessary for us to tackle such issues.

Using Moreau decomposition [41], one can decom-
pose the first line of (24) into

Blig) = Wi T K N A=
-1
K P, (R Wiy T N ).
Combing the projection of Z; ;)

(25)

Zl}a

we obtain the update of @; ), at the iteration k

K(i,j
+%(Uij)\f+Uji)\f).

1
PZ(M)(Zly 22) = §C01{Zl — Z9,%9 —

1
—k _ k k
Wi gy, = 5 (W), HWG ) 5)

On the other hand, ﬁ is endowed with Lipschitz differ-
entiability due to C; with strong convexity [24, Lemma
V.8]. Calculating the derivatives of f; obtains

i €Ji
’ 27)

For ease of computation, let

pi = argmin ((A})" Aip; + C; (pi)) + bs.

pi€T;

Consequently, replacing ~ pro () and 9y, f; (AF)

ORI
of (24) with (26) and (27), we de(:vezlop a new distribut-
ed algorithm and the detailed updates are described in
(28)—(29).
Each agent 7 initializes p?, \Y, w& sy forj € N;

and
p? = argmin {(A\))" A;p;, + C; (pi) },

pPi€T;
then chooses the parameters 7;, % (; ;) and oe. For & > 0,
each agent 7 € ) carries out the local updates

1

—k _ k
Wi~y (“’a,j)ﬁ
el S0 (U N+ UAY),

Z UT(2w (4,9),% wé,j),i))’

JEN;

k+1 — k
Wiig),i = (_lw@,j)@ + (L= a)wg
AL — a)F 4 (1 — a) A,
k+1

and broadcasts w;";) ; and Ui AFT to neighbors j €

N, and computes

= argmin{ (X)) Aip, + C: (1)}
pi€Ti
Remark 1

shown in Fig. 1. Notice that, each agent requires U. ji)\§ receiv-

j) € &, there

k+1 __

p; (29)

The proposed algorithm flowchart is

ing from its neighbors j € N;. For each edge (3,

exist two edge variables w( and w( i) , which are respec-

4,7),%
tively maintained by 4 and j. The local step-size 7; is only knew

by agent ¢, while the edge step-size ; ;) is shared commonly

(26) between ¢ and j because of the communication phrase.
Agent 7
Uitk | Gather | Uphk
Neighbouring | [ | R0t ™ ocat updates |_pf, 29 | ASSessment
| agentjCN; | UI/VZ“ "Broadeast L UyAF 1 bY@ b g intializatin E
wiilyyy | information! wlihi i

Fig. 1 The flowchart of operations of an agent

Remark 2  Although the proposed algorithm (see
(28)—(29)) is based on the forward-backward splitting [18], its
update formulations are totally different from that of the dis-

tributed forward-backward algorithm. In particular, the dis-
tributed algorithm (24) cannot be accessible to deal with prob-

lem (23), since the complex composite function f; contains
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a conjugate function. Fortunately, using the strong convexity
assumption on cost function C; and the equality (27), we can s-
moothly and explicitly evaluate the derivatives of f; and obtain
the new algorithm (28)—(29), which is the essential difference
compared with (24). Finally, as a convergence rate is not estab-
lished in [18], we explore the possible superiority of our pro-
posed algorithm that adopts the constant relaxed factor, through
the simulations. The work in terms of this issue are still studied
in the future.

Theorem 1[18, Theorem 1] Suppose that the
local step-sizes o; > 0, K(; ;) > 0,and 0 < o < 1.
Meanwhile, 7; needs to meet
< 2He

V24 21 3 R

JEN;
where /ﬂé is the strong convexity factor associated
with C;. Then, the sequence {\F},cn, generated by
the proposed algorithm (i.e., (28) and (29) ) converge
to an optimal solution A} = = M\ of (18),

ie., lim /\f = \*. Meanwhile, the optimal respons-
k—+o00

es pi,--- ,p}, of problem (11) is obtained.

Remark 3 It is worth mentioning that the algorithm
(28)—(29) inherits the convergence of the distributed one [18],

30

0<m

the key analysis line of which is to establish the Krasnosel’skii-
Mann iteration[18, Lemma 1]. Here we report the convergence
results by Theorem 1 and omit the detailed proof. Other com-

ments on the convergence results can refer to[18].

S Illustrative example

In this section, we use an example of DERs in
power system to illustrate the effectiveness of the pro-
posed algorithm. As shown in Fig. 2, this example is
carried out on the IEEE 39-bus system given in[21].
The buses 30 -39 and buses 17—18 are connected with
DGs and ESs, respectively. The communication net-
work between DGs and ESs is a connected undirected
graph. The cost function of DG is Cy (p;¢) = a:p;,
+ Bipit + pi, the cost function of ES is Cf (p; ;) =
7iP; - and the environmental cost function is C; (p; +)
= 0.01(a; + bipis + c,-p%t) + d;exp (0;p;), where
«;, B; and p; denote the coefficients of DG, ~; indi-
cates the coefficients of ES, while a;, b;, ¢;, d; and 6;
are the coefficients of the environmental cost func-
tion. The specific parameters of DGs and ESs are
derived from [21]. Let Alg. 1 denote the proposed
algorithm (28)—(29) and Alg. 2 indicate the algorithm
in[18].

37
[ 25 26 28 JTL 29 l
2 4 | | 27
I 38—
l —_
@ 3 18 17 DG,
| 39 16 21 _
15 T— l
TT 4 14 l 24 — 1 36
5 13 23
5 6 | |
1 12 19
11 — 20 22
7
10
8 31 32 34 33 35
6 | 6o 60 60

Fig. 2 IEEE 39-bus system.
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The results are shown in Figs. 3-9. Fig. 3 presents
the role of ESs in cutting the peak and filling the val-
ley. Specifically, the ESs discharge at peak periods
(hours 12-16) and charge at the valley periods (hours
2-4). Fig. 4 plots the optimal power generated by the
DGs and ESs for 24 hours, and Fig. 5 indicates that
the total generation meets the total demand at hour 18
after 1500 iterations for Alg. 1. The state of charge
(SOC) and power output for the ESs are plotted in
Figs. 6 and 7, where SOC is represented by a percen-
tage of the rated capacity of ES, while discharging
power by a positive value and charging power of ES
by a negative one. In addition, the total charging pow-
er is not less than the total discharging one due to the
charging and discharging efficiency.

The evolution of dual variables A\F at hour 18 is
given in Fig. 8, from which we can obtain that all dual
variables converge to —0.0883% /kWh. Fig. 9 plots
the residual iteration evolution of Alg. 1 and Alg. 2
in solving the DERs, respectively. The residual is ex-

m
pressed as (1/m) 3" ||pix — pi ||, where pf € R** is
=1

1=
the optimal power generated by DG or ES. It is shown
that Alg. 1 converges faster than Alg. 2.

1500F ‘ ‘ \ ‘ 1
1400

1300

_._.
-
o S
S S

Output / kW

1000

900

800 Native load (without storage)

— Net load (with storage)

700 L | | 1 |
0 5 10 15 20
Hour of day / h
Fig. 3 Cut the peak and fill the valley
250 C T T T T H
200
= 150
=~
2.100
= —DGg
© — DG,
50F 17— DGy
— DGy
— DGy
O — ESI
1 L L L —ES,
0 5 10 15 20
Hour of day / h

Fig. 4 Optimal power output for DGs and ESs over a day
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Fig. 5 Total generations and total demands at hour 18
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6 Conclusion

This paper has presented a distributed splitting al-
gorithm for solving the optimal DERs coordination
problem with both generation (storage) and environ-
mental cost. The proposed algorithm enjoys certain
flexibility due to the introduction of the relaxed fac-
tor and local step-sizes. Future work is to consider
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more practical physical constraints (such as the pow-
er flow capacities) and solve the considered problem
over more complex scenarios, including time-varying
or asynchronous networks, stochastic noises, etc.

T T T T T T T T

— DG,

i DG, |
08 DG,
— DG,

0.6} — DGs |
— DGy

0.4 DGy
< DGg

0.2 —— DGy |

—ES

ol §
f W@M T ESZ
s e 2.

-0.2 MW B

1 1 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Iterations

Fig. 8 Evolution of dual variables Af at hour 18

30 T T T T T T T T T
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—_— =
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e
W

|
e 2o
(o) (=]

L
o

-1.5

1 1 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Iterations

Fig. 9 Performance comparison between Alg. 1 and Alg. 2
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